ATLAS Tracking and Vertexing Performance

XL Int. Symp. Multiparticle Dynamics University of Antwerp, Antwerp, 21st-25th September 2010

http://atlas.ch

The ATLAS Inner Detector

	Pixel	SCT	SCT TRT	
Technology	Silicon pixels	Silicon strips	Drift tubes	
Resolution	10μm (Rφ), 115μm (Z)	17μm (Rφ), 580μm (Z)	130μm (Rφ)	
Number of Layers	3 Barrel, 2x3 Endcap	4 Barrel, 2x9 Endcap	3 Barrel, 2x40 Endcap	
Number of Modules	1744	4088	176	

Expected Performance

- Table below gives expected resolutions from simulation.
- Multiple scattering means that track parameter resolutions are dependent on p_T.

Endoon Slico

Track parameter	$0.25 < \eta $	$0.25 < \eta < 0.50$		$1.50 < \eta < 1.75$	
	$\sigma_X(\infty)$	p_X (GeV)	$\sigma_X(\infty)$	p_X (GeV)	
Inverse transverse momentum (q/p_T)	0.34 TeV^{-1}	44	0.41 TeV^{-1}	80	
Azimuthal angle (ϕ)	70 μ rad	39	92 μ rad	49	
Polar angle $(\cot \theta)$	$0.7 imes 10^{-3}$	5.0	1.2×10^{-3}	10	
Transverse impact parameter (d_0)	10 µm	14	12 µm	20	
Longitudinal impact parameter $(z_0 \times \sin \theta)$	91 µm	2.3	71 µm	3.7	

Parrol Slico

- How do we achieve this performance?
 - At high p_T :
 - ID Alignment: Determining the position/orientation of the ID modules.
 - Understanding the b-field mapping of the detector (already mapped to very high ~0.4 mT precision)
 - At low p_T :
 - Understanding the material distribution.

ID Alignment

- Alignment is crucial for resolutions (at high p_T) and momentum scale:
 - Require alignment to $\sim 10 \mu m$ precision in measurement plane.
- Alignment has been substantially improved using 900 GeV collisions data!
- Estimated residual misalignments ~17µm (Pixel barrel) ~25µm (SCT barrel).

Material Description

- Understanding the ID material distribution is crucial for low p_T tracking:
 - To understand the contribution of multiple scattering (resolutions).
 - To correctly compensate for ionisation losses in the track fit (p_T scale).

Data-MC comparison of rate of secondary hadronic interaction vertices as a function of radius in barrel. Data-MC comparison of rate of photon conversions in barrel as a function of radius in the barrel.

Direct probes of material map show that it is generally very good – discrepancy in Pixel support structure already understood.

$K_{s}^{0} \rightarrow \pi^{+}\pi^{-}$ Reconstruction

- K_s reconstruction probes quality of low p_T track reconstruction (< 1 GeV):
 - Mainly sensitive to material description
- Fitted mass and width compatible with MC simulation (and PDG mass):
 - Validation of track momentum scale at low p_T

PDG mass = 497.614 ± 0.024 MeV

Probing Material Map with K⁰_S

- Incorrect material budget will bias track momenta and hence $K_S \rightarrow \pi^+\pi^-$ reconstructed mass.
- Compare reconstructed K_S mass over a large rapidity range with special MC minbias simulation samples with additional material.
- No evidence for additional material in the barrel.
- Evidence for ~10% material uncertainty in endcaps.

Reconstruction of Cascade Decays

- All measured resonance masses in agreement with PDG values.
- All measured resonance widths in agreement with simulation expectations.

$J/\psi \rightarrow \mu\mu$ Reconstruction

- Muons identified from combined ID and muon spectrometer track, but m_{uu} formed from ID-tracks only.
- No deviation larger than $0.2 \pm 0.1\%$ in mean of reconstructed mass vs PDG.
 - Validation of momentum scale for average muon $p_T \sim 4$ GeV.
- Across all rapidity ranges width of signal peak in agreement with MC simulation.

0

1

ATLAS Preliminary

-2

L dt = 78 nb

-1

Data: 2010

2

m_{J/\} [GeV]

3.1

3.115

3.11

3.105

3.095

3.09

3.085

3.08E

3.075<u>⊏</u>-

3.1

Tracking Efficiencies

- Tracking efficiencies are thus far determined from MC simulation.
- Main systematic is from uncertainty in material budget.
- We can do this since (after much work) the simulation models the tracks seen in data extremely well:

Primary Vertex Reconstruction

- Iterative vertex finding algorithm:
 - Uses all tracks not significantly different from beamspot with $p_T > 100$ MeV and minimum number of hits in silicon detectors.
 - Fits these to a single vertex, with progressive downweighting of outlier tracks.
 - Tracks incompatible with vertex are used to seed a new one.
 - Repeats until no tracks left or no new seed created.
- In case of multiple vertices primary vertex chosen as that with highest $\sum p_{
 m T}^2$

- Primary vertex reconstruction efficiency as a function of number of tracks.
- Turn on due to looser definition of tracks in the analysis.
- Vertex efficiency is 100% provided there are enough tracks of reasonable quality.

Primary Vertex Resolution

- Data-driven single-vertex resolution determination:
 - Split single vertices randomly into two and refit independently.
 - Width of the resultant vertex separation distribution gives intrinsic resolution.
- Resolution dependent on number and p_T of tracks used to fit vertex:
 - Can look significantly better for high p_T analyses.

Impact Parameter Resolution

- B-tagging relies on successful identification of tracks/vertices displaced from the primary interaction:
 - Understanding of transverse impact parameter (d_0) resolution is crucial.

- Iterative procedure is applied to deconvolve $\sigma_{d0,trk}$ from $\sigma_{d0,PV}$.
- Good agreement with MC at low $\ensuremath{p_{\text{T}}}$
- Deviations at high p_T potentially due to residual misalignment

Summary & Conclusions

- Detailed comparisons between track reconstruction in data and simulation demonstrate that tracking at ATLAS is already very well understood.
- "Successful" reconstruction of low mass resonances demonstrates the accuracy of the momentum determination at low p_T
 - The material description is already very good and can be improved further.
 - Work ongoing to assess the reconstruction of higher mass resonances such as Z bosons (more sensitive to alignment and B-field mapping).
- Primary vertex reconstruction is working well and data-driven methods can be used to determine the vertex resolution and efficiency.
- Data-driven determination of impact parameter resolutions and comparison to simulation demonstrates that this is also generally well understood – rapid commissioning of b-taggers should be possible.

Backup Slides

Track-Based Alignment Algorithms

- Use module residual distributions to determine alignment constants *a*.
- Global χ^2 Algorithm (Pixel & SCT):
 - full minimisation of χ^2 w.r.t track parameters π and a.
 - Requires 6N x 6N matrix inversion (N=5832)! Numerically challenging!
 - Iterative procedure needed.
 - Baseline algorithm for Si alignment.