Understanding Jet Structure and Constituents: Track Jets and Jet Shapes at the ATLAS Detector

Seth Zenz (UC Berkeley and LBNL)
On behalf of the ATLAS Collaboration

22 September 2010
XL International Symposium on Multiparticle Dynamics
Antwerp, Belgium
Overview

- ATLAS and the Large Hadron Collider
- Prologue: Jets and their properties
- Jet Reconstruction and definitions
 - Calorimeter-based: topological clustering, associated tracks
 - Inner Detector-based: apply jet algorithm to tracks
- Data-Simulation comparison of jet constituents
 - Constituent multiplicity
 - Jet shapes
- Track-based jet measurements
 - Inclusive cross section
 - Charged particle fragmentation w.r.t. charged particle jets
The LHC and ATLAS

- Large Hadron Collider: p-p, Pb-Pb
- 2010-2011: 7 TeV CM energy, maximum luminosity: $1-2 \times 10^{32} \text{ cm}^{-2}\text{s}^{-1}$
- Ultimately: 14 TeV CM energy, max. lumi. $\sim 5 \times 10^{34} \text{ cm}^{-2}\text{s}^{-1}$

ATLAS
- 45m long, 25m diameter, 7000 tons
- 3-level trigger: reduce design beam-crossing rate of 40 MHz to ~ 200 Hz recorded
Data Collected So Far

ATLAS uptime and data quality excellent
- >94% for all subsystems

Luminosity increasing rapidly
- Note log scale!

Moving steadily to goal of 1 fb$^{-1}$ collected through 2011
ATLAS Subdetectors

- **ATLAS Calorimeters**
 - Electromagnetic: Pb + Liquid Ar
 - Separate jets, e/γ
 - Hadronic
 - Central: Fe + scintillating tiles
 - Forward: Cu/W + Liquid Ar
 - Coverage: $|\eta| < 4.9$

- **ATLAS Inner Detector**
 - 3 silicon pixel layers
 - 4 double-sided silicon strip layers
 - Transition Radiation Tracker
 - 2.0 T solenoid magnet
 - Coverage: $|\eta| < 2.5$
 - $\sigma/pT \sim 3.8 \times 10^{-4}$ pT (GeV) \oplus 0.015

And, of course, ATLAS got its name from the large toroidal magnetic field for the muon system... Not used for this talk!
Triggers (in this talk)

- **Minimum Bias Trigger Scintillator (MBTS)**
 - Polystyrene structures mounted on endcap calorimeter cryostat
 - 2 cm thick, $Z = 3.6m$
 - Acceptance: $2.09 < |\eta| < 3.48$

- Most plots in this talk triggered with 1 MBTS hit
 - ~100% efficiency for events with jets

- Jet and EM triggers based on sliding tower jet-finding in calorimeter
 - Jet shape plots use lowest-threshold jet trigger, which is 100% efficient for applicable jet momenta ($p_T > 60$ GeV)

ATLAS Preliminary
\(s = 7\) TeV, Data 2010

Level 1 Trigger Rates

![Graph](https://example.com/graph.png)
Prologue: Jets and their Properties

- ATLAS jet measurements
 - Inclusive jet cross-section (see talk – A. Alonso)
 - New di-jet resonance limit (see talk – H. Peng)
- Major uncertainty: jet energy scale
- Pileup will impact every ATLAS measurement
 - Continuum from very soft interactions to dijets
- Need to verify modeling of QCD and soft physics that produces jet structure
- This talk: our knowledge so far, measurements to improve it...

![Graph showing jet measurement data]
Overview

- ATLAS and the Large Hadron Collider
- Prologue: Jets and their properties
- Jet Reconstruction and definitions
 - Calorimeter-based: topological clustering, associated tracks
 - Inner Detector-based: apply jet algorithm to tracks
- Data-Simulation comparison of jet constituents
 - Constituent multiplicity
 - Jet shapes
- Track-based jet measurements
 - Inclusive cross section
 - Charged particle fragmentation w.r.t. charged particle jets
Jet Reconstruction: Calorimeter

- **Main constituent algorithm: topological clusters**
 - Seed with cells with signal 4σ above noise
 - Extend with adjacent (3D) cells 2σ above noise
 - Add one final “layer” of cells above noise
- **Apply anti-k_T jet algorithm** ($R=0.6, 0.4$)
 - Cone-like
 - Infrared safe – JHEP 04 (2008) 063
- **Association of tracks with jet:**
 - Select good-quality tracks (next slide)
 - Associate track with jet if: $\Delta R(\text{Track, Jet}) < R_{\text{Jet}}$
Jet Reconstruction: Tracks

- **Select good-quality tracks:**
 - $p_T > 500$ MeV, $|\eta| < 2.5$
 - Impact parameter requirements w.r.t. primary vertex
 - $|d_0| < 1.5$ mm, $|z_0 \sin \theta| < 1.5$ mm
 - Silicon hit requirements
 - Analysis: 6 SCT hits, innermost pixel hit + outer pixel or inner SCT hit
 - Calorimeter matching: 6 SCT hits, any pixel hit
- **Anti-k_T jet algorithm ($R=0.6$, 0.4) applied to selected tracks**
 - Track jet analysis requirements: jet $p_T > 4$ GeV, $|\eta| < 0.57$
- **Complement to calorimeter jet measurements**
 - Independent systematic errors
 - Very low momentum – emergence of jets from soft collisions
Overview

- ATLAS and the Large Hadron Collider
- Prologue: Jets and their properties
- Jet Reconstruction and definitions
 - Calorimeter-based: topological clustering, associated tracks
 - Inner Detector-based: apply jet algorithm to tracks
- Data-Simulation comparison of jet constituents
 - Constituent multiplicity
 - Jet shapes
 - N.B. Not corrected for detector effects
- Track-based jet measurements
 - Inclusive cross section
 - Charged particle fragmentation w.r.t. charged particle jets
Constituent Multiplicity

- Sensitive to soft particle modeling

Clusters

Tracks - $p_T > 0.5$ GeV

Tracks - $p_T > 1.0$ GeV
Jet Shapes

- \(\rho(r) = \langle \frac{1}{r} \frac{dp_T}{dr} \rangle_{\text{jets}} = \frac{1}{A N_{\text{jet}} \sum_{\text{jets}}} p_T(r - \Delta r/2, r + \Delta r/2) \)

- Shape depends on event generator, but generally good agreement
Overview

- ATLAS and the Large Hadron Collider
- Prologue: Jets and their properties
- Jet Reconstruction and definitions
 - Calorimeter-based: topological clustering, associated tracks
 - Inner Detector-based: apply jet algorithm to tracks
- Data-Simulation comparison of jet constituents
 - Constituent multiplicity
 - Jet shapes
- Track-based jet measurements
 - Inclusive cross section
 - Charged particle fragmentation w.r.t. charged particle jets
Charged Particle Jet Measurements

- **Charged particle jets**: apply anti-k_T algorithm to all charged primary particles with $p_T > 500$ MeV
 - No direct comparison to pQCD
 - Can compare to Monte Carlo generators
- **Inclusive cross section measurement**
 - Correction method: bayesian iterative unfolding
 - Systematic uncertainties, $R = 0.6$:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Tracking efficiency</td>
<td>$+4%$ $-4%$</td>
<td>$+7%$ $-7%$</td>
<td>$+8%$ $-7%$</td>
<td>$+8%$ $-8%$</td>
<td>$+9%$ $-8%$</td>
</tr>
<tr>
<td>Fragmentation/ U.E.</td>
<td>$+2%$ $-1%$</td>
<td>$+0.4%$ $-3%$</td>
<td>$+2%$ $-0.0%$</td>
<td>$+2%$ $-1%$</td>
<td>$+5%$ $-11%$</td>
</tr>
<tr>
<td>High p_T tracks</td>
<td>negligible</td>
<td>negligible</td>
<td>$+0.1%$ $-0.7%$</td>
<td>$+1%$ $-4%$</td>
<td>$+6%$ $-10%$</td>
</tr>
<tr>
<td>Unmatched reconstructed jets</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$\pm 1.0%$</td>
</tr>
<tr>
<td>Mismodelling in ϕ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$\pm 1.6%$</td>
</tr>
<tr>
<td>Luminosity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$\pm 11%$</td>
</tr>
</tbody>
</table>
Inclusive cross section

- Cross-section best modeled by Phojet
- Disagrees with Pythia
Fragmentation measurement

- z correction uses simple bin-by-bin factors from simulation
- Systematic uncertainties
 - Track-finding efficiency
 - Event generator tuning
$z = \frac{\vec{p}_{\text{track}} \cdot \vec{p}_{\text{jet}}}{|\vec{p}_{\text{jet}}|}$

- Impacted by jet fragmentation, underlying event
- Best described by AMBT1 Tune of Pythia

\[4 \text{ GeV} < p_{T,\text{Jet}} < 6 \text{ GeV}\]

\[10 \text{ GeV} < p_{T,\text{Jet}} < 15 \text{ GeV}\]
Conclusions

- **First ATLAS measurements and studies of jet constituents done**
 - Number of constituents in fair agreement, improves with $p_T > 1$ GeV
 - Jet shapes – good agreement
 - Charged particle jet momentum – Pythia prediction too high at low end
 - Charged particle jet z – AMBT1 tune good, suggests further tuning
- **Studies so far give confidence in jet measurements, further measurements and refinements planned...**
- **Foundations being laid for years of exciting discoveries ahead!**
Charged Fraction

\[f_{\text{track}} = \frac{\Sigma p_{T,\text{track}}}{p_{T,\text{jet}}} \]

- Good between simulated events and data!
- \(f_{\text{track}} > 1 \) mostly due to calorimeter fluctuating low
More on Unfolding

- Inclusive charged particle jet cross section determined from track jet distributions using Bayesian Iterative unfolding
- Corrects for:
 - Jet-finding efficiency
 - Reconstructed track jets not matched to charged particle jets
 - Bin-to-bin migration of reconstructed jets due to tracking efficiency and resolution smearing
 - Corrections determined from migrations in simulated sample

- Correction of z done with simple correction factors in bins of jet p_T – correction factors vary slowly with p_T

S. Zenz, ISMD 2010
Tests of Unfolding

- Unfolding validated with toy samples
 - Simulated MC tracks smeared
- Also tested with fully-simulated MC pseudodata
 - Produce response matrix with Pythia 6 main sample
 - Apply to reconstructed track jets in fully-simulated Pythia 8 sample – quite different truth distribution from Pythia 6
 - Compare unfolded result to original Pythia 8 truth
 - Agrees within uncertainties that are correlated between samples
$R = 0.6 \ z$ distributions (1)

$\int Ldt = 370 \mu b^{-1}$

ATLAS Preliminary

anti-k_t Charged Particle Jets $R=0.6$

$4 \text{ GeV} < p_{T,\text{Jet}} < 6 \text{ GeV}$

$6 \text{ GeV} < p_{T,\text{Jet}} < 10 \text{ GeV}$
$R = 0.6 \, z$ distributions (2)

\[\int \text{d}t = 370 \, \mu\text{b}^{-1} \]

ATLAS Preliminary
anti-k_t Charged Particle Jets $R=0.6$

\[10 \, \text{GeV} < p_{T,\text{Jet}} < 15 \, \text{GeV} \]

\[15 \, \text{GeV} < p_{T,\text{Jet}} < 24 \, \text{GeV} \]

22 September 2010

S. Zenz, ISMD 2010
R = 0.4 z distributions (1)

$\int L dt = 370 \mu b^{-1}$

ATLAS Preliminary

anti-k_t Charged Particle Jets $R=0.4$

$4 \text{ GeV} < p_{T,\text{Jet}} < 6 \text{ GeV}$

$6 \text{ GeV} < p_{T,\text{Jet}} < 10 \text{ GeV}$

22 September 2010

S. Zenz, ISMD 2010
$R = 0.4$ z distributions (2)

10 GeV $< p_{T,\text{Jet}} < 15$ GeV

15 GeV $< p_{T,\text{Jet}} < 24$ GeV

ATLAS Preliminary
anti-k_t Charged Particle Jets $R=0.4$
Raw track multiplicity in track jets
Anti-\(k_T\) Jet Algorithm

- Anti-\(k_T\) algorithm is related to \(k_T\) – operates by iteratively combining constituent pairs with smallest “distance” \(d\)
 - Difference with \(k_T\) is in the exponent in the definition of “distance”
 - Shown recently to be **infrared safe** – JHEP 04 (2008) 063
 - Results are **cone-like**: well-contained inside radius \(D\) in \((y,\phi)\) space and thus approximately contained inside radius \(D\) in \((\eta,\phi)\) space
- Algorithm: make a list of distances between constituents \(d_{ij}\) and distances to beam axis \(d_{iB}\) (defined below), proceed iteratively:
 - If smallest value is a \(d_{ij}\), replace them on the list with their sum
 - If smallest value is a \(d_{iB}\), call it a jet and remove it from the list
 - Continue until the list is empty

\[
d_{i,j} = \min(p_{T,i}^{-2}, p_{T,j}^{-2}) \frac{[\Delta R_y(i, j)]^2}{D^2}
\]

\[
d_{iB} = p_{T,i}^{-2}
\]