Measuring the thermalization time

Piotr Bożek
Rzeszów University/Institute of Nuclear Physics Kraków

with Iwona Wyskiel
Fluid expansion at RHIC

- HBT requires hard EOS

- Early transverse expansion

Have we seen a 3D expanding fireball?
Transverse / Longitudinal Pressure

Non-equilibrium and/or viscosity
Early stage

\[
\tau_{\mu \nu} = \begin{pmatrix}
\epsilon & 0 & 0 & 0 \\
0 & p + \pi/2 & 0 & 0 \\
0 & 0 & p + \pi/2 & 0 \\
0 & 0 & 0 & p - \pi
\end{pmatrix}
\]

\[
\pi = \frac{4 \eta}{3 \tau} \quad \text{Navier-Stokes}
\]

more general \(\pi \) possible - (initial value, dynamics, far off-equilibrium)

What signatures of isotropization?
What measure of thermalization time?
Early dissipation

\[(P_\perp - P_\parallel) \propto \exp \left(-\frac{\tau}{\tau_{iso}} \right) \]

phenomenological ansatz
thermalization time \(\tau_{iso} \)

Early dissipation

\[(P_\perp - P_\parallel) \propto \exp \left(-\frac{\tau}{\tau_{iso}} \right) \]

phenomenological ansatz

thermalization time \(\tau_{iso} \)

BUT Universal flow

No sensitivity of transverse flow to early dissipation!
Longitudinal expansion - cooling

Ideal hydro

Viscous hydro $\eta/s = 0.2$

Cannot be observed in final distributions!

Piotr Bożek
Early thermalization
Standard observables are not sensitive to early dissipation

transverse or longitudinal expansion alone is insufficient
Standard observables are not sensitive to early dissipation

transverse or longitudinal expansion alone is insufficient

\[
\text{transverse } + \text{ longitudinal expansion } = \text{ directed flow}
\]
Standard observables are not sensitive to early dissipation

transverse or longitudinal expansion alone is insufficient

\[\text{transverse} + \text{longitudinal} \text{ expansion} = \text{directed flow} \]

and

it happens very early
Directed flow - v_1

\[\frac{dN}{d^2pdy} = \frac{dN}{2\pi pdp} dy \left(1 + 2v_1 \cos \phi + 2v_2 \cos 2\phi + \ldots \right) \]

- large flow at 200GeV
- anti-flow
- Au-Au similar to Cu-Cu
- Dynamics: early, 3D
Asymmetric emission

Asymmetric emission

\[\rho(\eta, x, y) \propto f_+(\eta)N_+(x, y) + f_-(\eta)N_-(x, y) \]
Asymmetric emission

\[
\rho(\eta, x, y) \propto f_+(\eta)N_+(x, y) + f_-(\eta)N_-(x, y)
\]

bremsstrahlung (Adil Gyulassy, Phys. Rev. C72, 034907 (2005))
Tilted source

\[\partial_\tau u_x = -\frac{\partial_x p_\perp}{p + \epsilon} \]

\[\partial_\tau Y = -\frac{\partial_\eta p_\parallel}{\tau(p + \epsilon)} \]

Tilted source \(\rightarrow\) transverse pressure + longitudinal pressure

Glauber model
Anti-flow explained!
System size dependence
Consistent with asymmetric emission
3+1D expansion with off-equilibrium pressure

\[T^{\mu\nu} = \begin{pmatrix} \epsilon & 0 & 0 & 0 \\ 0 & p_\perp & 0 & 0 \\ 0 & 0 & p_\perp & 0 \\ 0 & 0 & 0 & p_\parallel \end{pmatrix} \]

\[\partial_\mu T^{\mu\nu} = 0 \]

in 3+1D

\[\epsilon, P_\perp, P_\parallel, P_{eq} \]
Central collisions - *spectra*

No sensitivity to off-equilibrium pressure
Central collisions - HBT

No sensitivity to off-equilibrium pressure
Mid-peripheral collisions - \textbf{elliptic flow}

PHENIX Data Au-Au $\sqrt{s}=200$ GeV
Charged particles \(c=20-25\% \)

- $P_L(\tau_0)=0$, $\tau_{\text{iso}}=0.25\text{fm/c}$
- $P_L(\tau_0)=0$, $\tau_{\text{iso}}=0.5\text{fm/c}$ large tilt
- Ideal fluid

No sensitivity to off-equilibrium pressure
Mid-peripheral collisions - directed flow

- Sensitive to off-equilibrium pressure
- RHIC data indicate early thermalization
tilt \rightarrow HYDRO \rightarrow v_1
\[\tilde{t} \rightarrow \text{HYDRO} \rightarrow \nu_1 \]

\[0 \leq \tau_{iso} \]

STAR Data Au-Au \(\sqrt{s}=200 \text{ GeV} \) c=5-40\%

\(\rho \sim x \)
Viscosity- minimal pressure anisotropy

\[\Pi \simeq \frac{4\eta}{3\tau} \]
\[\frac{\eta}{s} = \frac{1}{4\pi} \]

Pressure anisotropy compatible with small shear viscosity
Directed flow

New observable for early stages

- Directed flow sensitive to longitudinal and transverse pressure
- Directed flow develops early
- Need 3+1D model
Directed flow

New observable for early stages

- Directed flow sensitive to longitudinal and transverse pressure
- Directed flow develops early
- Need 3+1D model

Conclusions

- No room for early pressure anisotropy
- Very fast thermalization

$\tau_{iso} \leq 0.25\text{fm/c}$
Hydro : mass scaling

PID ν_1

Au-Au $\sqrt{s}=200$ GeV $b=6.7$fm
PID v_1

Hydro: mass scaling

Zero baryon flow! (STAR)
Baryon asymmetry!

Fragmenting nucleons

\[\Delta \gamma_1 \propto \frac{\mu}{T} \frac{N_+ - N_-}{N_+ + N_-} \]

Baryons pushed to \(\gamma_1 > 0 \)
Transverse + Longitudinal Expansion = Directed Flow

longitudinal pressure appears before 1 fm/c
fast isotropization

Piotr Bożek
Early thermalization
Early collectivity

ν_1 develops before ν_2
$\left< p_\perp \right>$ dependence

deformed source
(Kolb Heinz)

$\left< p_x \right> = 0$
p_\perp dependence

![Graph showing the v_1 dependence on p_T with different η_s values.](image)

Deformed source

(Kolb Heinz)

$\langle p_x \rangle = 0$

3+1D → shift to $v_1 < 0$