Forward Energy and Particle Flow with CMS

Deniz Sunar Cerci

Adiyaman University
On behalf of the CMS Collaboration

XL International Symposium on Multiparticle Dynamics (ISMD 2010)

Antwerpen, Belgium

September 23, 2010

Outline

- 1. Energy Flow
 - Why energy flow measurement?
 - Forward detectors
 - From **small energy deposition** to **high pt jets** in forward region
- 2. Larger energies in the forward region: Forward Jets
 - Motivation
 - Forward jet spectra
- 3. Conclusion

Why Energy Flow Measurement?

- In the forward region (3.15 < $|\eta|$ < 4.9) has **never** been reported at **hadron colliders**.
- Directly sensitive to the amount of initial state parton radiation and to multiple interactions.
- Discriminate between different models of multiparton radiation and also improve our understanding of the basic process responsible for multiparton radiation.
- At **very large** \sqrt{s} the momentum fraction of the proton carried by the parton in the hard scattering (x_1, x_2) can become **very small** and the parton densities become **very large**.
- Extrapolation to larger energies is very uncertain.
- Implemented in MC event generators: need **parameters** to be adjusted to describe the measurements (parameters tuned to data from Tevatron $|\eta| < 3$).

CMS: Forward Detectors

- @11.2 m from interaction point
- Rapidity coverage: $3 < |\eta| < 5$
- Steel absorbers/quartz fibers (Long+short fibers)
- $0.175x0.175 \, \eta/\phi$ segmentation

Energy Flow: Predictions

- Different predictions giving different results are available.
- \bullet Energy flow in central region at low \sqrt{s} does not change much with tunes.
- Significant difference observed in the large pseudorapidity region ($|\eta| > 2$).
- The difference still appears when one includes the MPI.
- Prediction at generator level for Pythia6 tunes with MPI and no MPI scenario.

Event Selection

- LHC collision data sets with pp interactions @ 0.9, 2.36 and 7 TeV.
- @ least 1 reconstructed primary vertex (PV) to reject non-IP collision events.
- Require primary vertex to be consistent with the beam spot centre to within 15 cm in z direction and have at least three tracks associated with it.

$$\begin{split} E_{\textit{FLOW}}(\textit{dijet}) = & \frac{1}{N_{\textit{dijet}}} \frac{\Delta E}{\Delta \eta}(\textit{dijet}) \\ E_{\textit{FLOW}}(\textit{minbias}) = & \frac{1}{N_{\textit{minbias}}} \frac{\Delta E}{\Delta \eta}(\textit{minbias}) \end{split}$$

Minimum Bias Sample: All events trigger with MB trigger activity on both sides of IP + vertex reconstructed.

Dijet Sample

: Jets (Anti-
$$k_{T}$$
 algorithm with R = 0.5)
 $p_{T} > 8$ GeV for 0.9 & 2.36 TeV

$$p_{\scriptscriptstyle T}$$
 > 20 GeV for 7 TeV

Results: MinBias (0.9 / 2.36 TeV)

- Uncorrected data (shown as points), the predictions from PYTHIA tunes & PHOJET (shown histogram).
- Error bars corresponds to statistical errors.
- Shaded yellow bands represent the systematic uncertainties of the measurements (largely correlated point-to-point).

Results: MinBias (0.9 / 2.36 TeV)

- Clear tendency of Fwd. Energy flow to increase more strongly in data than MC with increasing \sqrt{s} .
- Data is best described by D6T tune, PROQ20 & P0 and PHOJET underestimate data.

Results: MinBias (0.9 / 7 TeV)

- **Significant increase** with increasing \sqrt{s} about factor of 3.
- At \sqrt{s} = 7 TeV: MC predictions describe the data more or less.
- MC models are tuned at low energies in the central region @ 7 TeV.
- All are below, only a few of MC models are within the systematic uncertainity.

Results: Dijet (0.9 / 2.36 TeV)

- **Significant increase** of energy flow with **increasing** \sqrt{s} is about factor of 2.
- This increasement is reproduced by the MC simulations.
- Large spread of MC predictions which cover the data.

Results: Dijet (0.9 / 7 TeV)

- Increase of data is about factor of 5 @ $|\eta| = 4.5$.
- MC predictions which describe the data @ 0.9 TeV are too low @ 7 TeV (blue curve).

2. Larger energies in the forward region:

Forward Jets

Motivation

- CMS with its large calorimetric coverage (|η| < 5.2) can provide first measurements on forward jet production which was never investigated before.</p>
- Longer term prospects:
 - Forward jets probe the low-x domain; in 2->2 process:

$$x_2^{min} \approx \frac{p_T}{\sqrt{s}} \cdot e^{-y} = x_T \cdot e^{-y}$$

every 2 units of y: x_2^{min} decreases by factor of 10.

First step: validate jet reconstruction in the forward region.

Forward Jet Spectra

- Large energy deposition in the forward region with the forward jets is also measured.
- only the **detector level** p_T and |η| spectra **no unfolding** and **no systematic** effects are shown.
- Going to a harder scale process, the energy deposition in the forward region increases.
- Reasonable description of data is given by the MC, for larger scale processes description becomes better.

Conclusion

- 1st time measurement of energy flow (at detector level) in hadron hadron collisions in the forward region of $3.15 < |\eta| < 4.9$ is presented.
 - → Minimum bias events and events having a hard scale defined by a dijet samples are considered.
- The increase in forward energy flow with **increasing s** is significant and is reproduced by MC simulations for events with dijets, whereas **it is not** described for MinBias events.
- None of the MC simulations can describe all energy flow measurements in all aspects.
- Measurement of the energy flow in the forward region provides further input to the tuning MC event generators.
 - → Constrains the modelling of parton radiation at high energies and at large rapidities.
- Measurement of large energy deposition in the forward region with the forward jets is also presented.
- Going to a harder scale process, the energy deposition in the forward region increases.

Backup

Monte Carlo: Tunes

		D6T (108)	DW (103)	Pro-Q20 (129)	P0 (320)
pdfs		CTEQ6L	CTEQ5L	CTEQ5L	CTEQ5L
P _{t0}	PARP(82)	1.84 GeV	1.9 GeV	1.9 GeV	2.0 GeV
E _o	PARP(89)	1.96 TeV	1.8 TeV	1.8 TeV	1.8 TeV
ϵ	PARP(90)	0.16	0.25	0.22	0.26
fragmentation	standard	standard	standard	professor LEP tune	professor LEP tune
Q2 factor (ISR)	PARP(67)	2.5	2.5	2.65	1.0
Q2 factor (FSR)	PARP(71)	4.0	4.0	4.0	2.0

- LEP data revisited better fragmentation tunes.
- More Tevatron data included better underlying-event tunes.
- LEP + Tevatron tunes combined: new generation of tunes.
- Tunes available for BOTH new and old MPI models + Systematic

HARD / SOFT / CR / PDF variations (incl LO)

Event and Jet Selection

- Only runs with stable beam and fully operating detector were used which correspond to an integrated luminosity of $\mathcal{L} = \sim 10 \text{ nb}^{-1}$.
- Cleaning cuts were imposed to remove events whose timing was not consistent with the LHC bunch crossing time as well as to reject beam halo events.
- ullet Accept events to have a high-quality primary vertex, within ± 15 cm of the nominal interaction point along the proton beam axis.
- Jets were reconstructed using anti- k_T jet clustering algorithm with the radius R = 0.5.
- The Calorimeter Jets were corrected for energy loss and effects due to non-linear response of the CMS calorimeter.
- $35 < p_T(Jet) < 120 \text{ GeV} \text{ and } 3.2 < |\eta(Jet)| < 4.7$