Bose-Einstein Results from L3 and the Tau Model

W.J. Metzger

Radboud University Nijmegen

with T. Novák, T. Csörgő, W. Kittel

XL International Symposium on Multiparticle Dynamics
Antwerp
21–25 September 2010
BEC Introduction

\[R_2 = \frac{\rho_2(p_1, p_2)}{\rho_1(p_1)\rho_1(p_2)} = \frac{\rho_2(Q)}{\rho_0(Q)} \]

Assuming particles produced incoherently with spatial source density \(S(x) \),

\[R_2(Q) = 1 + \lambda |\tilde{S}(Q)|^2 \]

where \(\tilde{S}(Q) = \int dx \ e^{iQx} S(x) \) – Fourier transform of \(S(x) \)

\(\lambda = 1 \) — \(\lambda < 1 \) if production not completely incoherent

Assuming \(S(x) \) is a Gaussian with radius \(r \)

\[R_2(Q) = 1 + \lambda e^{-Q^2r^2} \]
The L3 Data

- $e^+e^- \rightarrow \text{hadrons at } \sqrt{s} \approx M_Z$
- about $36 \cdot 10^6$ like-sign pairs of well measured charged tracks from about $0.8 \cdot 10^6$ events
- about $0.5 \cdot 10^6$ 2-jet events — Durham $y_{\text{cut}} = 0.006$
- about $0.3 \cdot 10^6 > 2$ jets, “3-jet events”
- use mixed events for reference sample, ρ_0
Previous Results: Elongation

Results in **LCMS frame**: Longitudinal = Thrust axis

\[\frac{R_L}{R_{side}} \]

- L3: \(1.25 \pm 0.03^{+0.36}_{-0.05} \)
- OPAL: \(1.19 \pm 0.03^{+0.08}_{-0.01} \)

(ZEUS finds similar results in ep)

\(\sim 25\% \) elongation along thrust axis

OPAL: Elongation larger for narrower jets

- **Conclusion**: Elongation, but it is relatively small.
- **So**: Ignore it. — Assume spherical.
Transverse Mass dependence of r

r decreases with m_t (or k_t) for all directions

Smirnova & Lörstad, 7th Int. Workshop on Correlations and Fluctuations (1996)

Van Dalen, 8th Int. Workshop on Correlations and Fluctuations (1998)

Results on Q from $L_3 Z$ decay

$$R_2 = \gamma \cdot [1 + \lambda G] \cdot (1 + \epsilon Q)$$

- **Gaussian**
 $$G = \exp \left(-(rQ)^2 \right)$$

- **Edgeworth expansion**
 $$G = \exp \left(-(rQ)^2 \right) \cdot [1 + \frac{\kappa}{3!} H_3(rQ)]$$
 Gaussian if $\kappa = 0$
 $$\kappa = 0.71 \pm 0.06$$

- **symmetric Lévy**
 $$G = \exp \left(-|rQ|^{\alpha} \right)$$
 $$0 < \alpha \leq 2$$
 $$\alpha = 1.34 \pm 0.04$$

Poor χ^2. Edgeworth and Lévy better than Gaussian, but poor.
Problem is the dip of R_2 in the region $0.6 < Q < 1.5$ GeV
Summary

- BEC depend (approximately) only on Q, not its components.
- BEC depend on m_t.
- Gaussian and similar parametrizations do not fit.

Turn now to a model providing such dependence.
The τ-model

- Assume avg. production point is related to momentum:
 \[\bar{x}^\mu (p^\mu) = a \tau p^\mu \]
 where for 2-jet events, \(a = 1/m_t \)
 \[\tau = \sqrt{t^2 - r_z^2} \]
 is the “longitudinal” proper time
 and \(m_t = \sqrt{E^2 - p_z^2} \) is the “transverse” mass

- Let \(\delta_\Delta (x^\mu - \bar{x}^\mu) \) be dist. of prod. points about their mean, and \(H(\tau) \) the dist. of \(\tau \). Then the emission function is
 \[S(x, p) = \int_0^\infty d\tau H(\tau) \delta_\Delta (x - a \tau p) \rho_1(p) \]

- In the plane-wave approx.
 \[\rho_2(p_1, p_2) = \int d^4x_1 d^4x_2 S(x_1, p_1) S(x_2, p_2) (1 + \cos ([p_1 - p_2] [x_1 - x_2])) \]

- Assume \(\delta_\Delta (x - a \tau p) \) is very narrow — a \(\delta \)-function. Then
 \[R_2(p_1, p_2) = 1 + \lambda \text{Re} \tilde{H} \left(\frac{a_1 Q^2}{2} \right) \tilde{H} \left(\frac{a_2 Q^2}{2} \right) , \quad \tilde{H}(\omega) = \int d\tau H(\tau) \exp(i\omega \tau) \]
BEC in the τ-model

- **Assume** a Lévy distribution for $H(\tau)$
 Since no particle production before the interaction, $H(\tau)$ is one-sided.
 Characteristic function is
 $$\tilde{H}(\omega) = \exp \left[-\frac{1}{2} (\Delta \tau |\omega|)^{\alpha} \left(1 - i \text{sign}(\omega) \tan \left(\frac{\alpha \pi}{2} \right) \right) + i \omega \tau_0 \right], \quad \alpha \neq 1$$
 where
 - α is the index of stability
 - τ_0 is the proper time of the onset of particle production
 - $\Delta \tau$ is a measure of the width of the dist.

- Then, R_2 depends on Q, a_1, a_2
 $$R_2(Q, a_1, a_2) = \gamma \left\{ 1 + \lambda \cos \left[\frac{\tau_0 Q^2 (a_1 + a_2)}{2} + \tan \left(\frac{\alpha \pi}{2} \right) \left(\frac{\Delta \tau Q^2}{2} \right)^{\alpha} \frac{a_1^{\alpha} + a_2^{\alpha}}{2} \right] \right. \cdot \exp \left[- \left(\frac{\Delta \tau Q^2}{2} \right)^{\alpha} \frac{a_1^{\alpha} + a_2^{\alpha}}{2} \right] \right\} \cdot (1 + \epsilon Q)$$
BEC in the τ-model

$$R_2(Q, a_1, a_2) = \gamma \left\{ 1 + \lambda \cos \left[\frac{\tau_0 Q^2(a_1+a_2)}{2} + \tan \left(\frac{\alpha \pi}{2} \right) \left(\frac{\Delta \tau Q^2}{2} \right)^\alpha \frac{a_1^\alpha + a_2^\alpha}{2} \right] \cdot \exp \left[- \left(\frac{\Delta \tau Q^2}{2} \right)^\alpha \frac{a_1^\alpha + a_2^\alpha}{2} \right] \right\} \cdot (1 + \epsilon Q)$$

Simplification:

- Particle production begins immediately, $\tau_0 = 0$
- Effective radius, R, defined by $R^{2\alpha} = (\frac{\Delta \tau}{2})^\alpha \frac{a_1^\alpha + a_2^\alpha}{2}$
- Then
 $$R_2(Q) = \gamma \left[1 + \lambda \cos \left((R_a Q)^{2\alpha} \right) \exp \left(- (R Q)^{2\alpha} \right) \right] \cdot (1 + \epsilon Q)$$

where $R_a^{2\alpha} = \tan \left(\frac{\alpha \pi}{2} \right) R^{2\alpha}$

Compare to sym. Lévy parametrization:

$$R_2(Q) = \gamma \left[1 + \lambda \exp \left[- |r Q|^{\alpha} \right] \right] \cdot (1 + \epsilon Q)$$
2-jet Results on Simplified τ-model from $L3$ Z decay

R_a free
χ^2/dof = 91/94

$R_a^2 \alpha = \tan \left(\frac{\alpha \pi}{2} \right) R^{2\alpha}$
χ^2/dof = 95/95
3-jet Results on Simplified τ-model from L3 Z decay

R_a free
χ^2/dof = 84/94

$R_a^{2\alpha} = \tan \left(\frac{\alpha \pi}{2} \right) R^{2\alpha}$
χ^2/dof = 113/95
CL = 10%
Summary of Simplified τ-model

<table>
<thead>
<tr>
<th></th>
<th>α</th>
<th>R (fm)</th>
<th>R_a (fm)</th>
<th>CL</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-jet</td>
<td>0.41 \pm 0.02(^{+0.04}_{-0.06})</td>
<td>0.79 \pm 0.04(^{+0.09}_{-0.19})</td>
<td>0.69 \pm 0.04(^{+0.21}_{-0.09})</td>
<td>57%</td>
</tr>
<tr>
<td>3-jet</td>
<td>0.35 \pm 0.01(^{+0.03}_{-0.04})</td>
<td>1.06 \pm 0.05(^{+0.59}_{-0.31})</td>
<td>0.85 \pm 0.04(^{+0.15}_{-0.05})</td>
<td>76%</td>
</tr>
<tr>
<td>3-jet</td>
<td>0.41 \pm fixed</td>
<td>0.93 \pm 0.03</td>
<td>0.76 \pm 0.01</td>
<td>38%</td>
</tr>
<tr>
<td>2-jet</td>
<td>0.44 \pm 0.01(^{+0.05}_{-0.02})</td>
<td>0.78 \pm 0.04(^{+0.09}_{-0.16})</td>
<td>—</td>
<td>49%</td>
</tr>
<tr>
<td>3-jet</td>
<td>0.42 \pm 0.01(^{+0.02}_{-0.04})</td>
<td>0.98 \pm 0.04(^{+0.55}_{-0.14})</td>
<td>—</td>
<td>10%</td>
</tr>
<tr>
<td>3-jet</td>
<td>0.44 \pm fixed</td>
<td>0.87 \pm 0.01</td>
<td>—</td>
<td>3%</td>
</tr>
</tbody>
</table>

- Consistent values of α
- $R_a^{2\alpha} = \tan\left(\frac{\alpha\pi}{2}\right)R^{2\alpha}$ to 0.5σ for 2-jet and to 1.5σ for 3-jet
- Simplified τ-model works well
- R seems to be larger for 3-jet than for 2-jet events
Full τ-model for 2-jet events — $a = 1/m_t$

$$R_2(Q, m_{t1}, m_{t2}) = \gamma \left\{ 1 + \lambda \cos \left[\frac{\tau_0 Q^2 (m_{t1} + m_{t2})}{2 (m_{t1} m_{t2})} + \tan \left(\frac{\alpha \pi}{2} \right) \left(\frac{\Delta \tau Q^2}{2} \right)^\alpha \frac{m_{t1}^\alpha + m_{t2}^\alpha}{2 (m_{t1} m_{t2})^\alpha} \right] \right. \right.$$

$$\times \exp \left[- \left(\frac{\Delta \tau Q^2}{2} \right)^\alpha \frac{m_{t1}^\alpha + m_{t2}^\alpha}{2 (m_{t1} m_{t2})^\alpha} \right] \} \cdot (1 + \epsilon Q)$$

- Fit $R_2(Q)$ using avg m_{t1}, m_{t2} in each Q bin, $m_{t1} > m_{t2}$
- $\tau_0 = 0.00 \pm 0.02$
 so fix to 0
- χ^2/dof = 90/95
Full τ-model for 2-jet events

- τ-model predicts dependence on m_t, $R_2(Q, m_{t1}, m_{t2})$
- Parameters α, $\Delta \tau$, τ_0 are independent of m_t
- λ (strength of BEC) can depend on m_t

- divide m_{t1}-m_{t2} plane in regions (equal statistics)
- in each region fit $R_2(Q)$ using avg m_{t1}, m_{t2} in each Q bin with α, $\Delta \tau$, fixed to values found for entire plane and $\tau_0 = 0$ fits
Summary of τ-model

- τ-model with a one-sided Lévy proper-time distribution describes BEC well
 - in simplified form it provides a new parametrization of $R_2(Q)$ for both 2- and 3-jet events,
 - in full form for 2-jet events, $R_2(Q, m_{t1}, m_{t2})$
 - both Q- and m_t-dependence described correctly
 - Note: we found $\Delta \tau$ to be independent of m_t
 $\Delta \tau$ enters R_2 as $\Delta \tau Q^2 / m_t$
 In Gaussian parametrization, r enters R_2 as $r^2 Q^2$
 Thus $\Delta \tau$ independent of m_t corresponds to $r \propto 1/\sqrt{m_t}$

- BUT, what about elongation?
Elongation?

- Previous elongation results used fits of Gaussian or Edgeworth
- But we find that Gaussian and Edgeworth fit $R_2(Q)$ poorly
- τ-model predicts no elongation and fits the data well
- Could the elongation results be an artifact of an incorrect fit function?
 or is the τ-model in need of modification?
- So, we modify *ad hoc* the τ-model description to allow elongation and see what we get
Elongation in the Simplified τ-model?

LCMS: $Q^2 = Q^2_L + Q^2_{\text{side}} + Q^2_{\text{out}} - (\Delta E)^2$

$= Q^2_L + Q^2_{\text{side}} + Q^2_{\text{out}} (1 - \beta^2)$, $\beta = \frac{p_{1\text{out}} + p_{2\text{out}}}{E_1 + E_2}$

Replace $R^2 Q^2 \Longrightarrow A^2 = R^2 L Q^2_{\text{L}} + R^2_{\text{side}} Q^2_{\text{side}} + R^2_{\text{out}} Q^2_{\text{out}}$

Then in τ-model,

$R_2(Q_L, Q_{\text{side}}, Q_{\text{out}}) = \gamma \left[1 + \lambda \cos \left(\tan \left(\frac{\alpha \pi}{2} \right) A^{2\alpha} \right) \exp \left(-A^{2\alpha} \right) \right]$

$\cdot (1 + \epsilon_L Q_L + \epsilon_{\text{side}} Q_{\text{side}} + \epsilon_{\text{out}} Q_{\text{out}})$

for 2-jet events:

<table>
<thead>
<tr>
<th></th>
<th>R_{side}/R_L (fm)</th>
<th>χ^2/dof</th>
<th>CL</th>
</tr>
</thead>
<tbody>
<tr>
<td>τ-model</td>
<td>0.61 \pm 0.02</td>
<td>14847/14921</td>
<td>66%</td>
</tr>
<tr>
<td>Edgeworth</td>
<td>0.64 \pm 0.02</td>
<td>14891/14919</td>
<td>56%</td>
</tr>
</tbody>
</table>

consistent

Elongation is real
Direct Test of Q^2-only Dependence

1. $Q^2 = Q^2_{\text{LE}} + Q^2_{\text{side}} + Q^2_{\text{out}}$
 where $Q^2_{\text{LE}} = Q^2_{\text{L}} - (\Delta E)^2$
 inv. boosts along thrust axis

2. $Q^2 = Q^2_{\text{L}} + Q^2_{\text{side}} + q^2_{\text{out}}$
 where $q_{\text{out}} = Q_{\text{out}}$ boosted (β) along out direction to rest frame of pair

In τ-model, for case 1

$R_2(Q_{\text{LE}}, Q_{\text{side}}, Q_{\text{out}}) = \gamma \left[1 + \lambda \cos \left(\tan \left(\frac{\alpha \pi}{2} \right) B^{2\alpha} \right) \exp \left(-B^{2\alpha} \right) \right] b$

where $B^2 = R^2_{\text{LE}} Q^2_{\text{LE}} + R^2_{\text{side}} Q^2_{\text{side}} + R^2_{\text{out}} Q^2_{\text{out}}$

$b = 1 + \epsilon_{\text{LE}} Q_{\text{LE}} + \epsilon_{\text{side}} Q_{\text{side}} + \epsilon_{\text{out}} Q_{\text{out}}$

and comparable expression for case 2, $R_2(Q_{\text{L}}, Q_{\text{side}}, q_{\text{out}})$
Direct Test of Q^2-only Dependence

Compare fits with all ‘radii’ free to fits with all ‘radii’ constrained to be equal

<table>
<thead>
<tr>
<th></th>
<th>case 1</th>
<th>case 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>0.46 ± 0.01</td>
<td>0.44 ± 0.01</td>
</tr>
<tr>
<td>R_{LE} (fm)</td>
<td>0.84 ± 0.04</td>
<td>0.82 ± 0.04</td>
</tr>
<tr>
<td>R_{side}/R_{LE}</td>
<td>0.60 ± 0.02</td>
<td>1</td>
</tr>
<tr>
<td>R_{out}/R_{LE}</td>
<td>0.986 ± 0.003</td>
<td>1</td>
</tr>
</tbody>
</table>

| χ^2/DoF | 14590/14538 | 14886/14540 |
| CL | 38% | 2% |

$\Delta \chi^2 = 296/2 \approx 0$

<table>
<thead>
<tr>
<th></th>
<th>case 1</th>
<th>case 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>0.41 ± 0.01</td>
<td>0.44 ± 0.01</td>
</tr>
<tr>
<td>R_L (fm)</td>
<td>0.96 ± 0.05</td>
<td>0.82 ± 0.04</td>
</tr>
<tr>
<td>R_{side}/R_L</td>
<td>0.62 ± 0.02</td>
<td>1</td>
</tr>
<tr>
<td>r_{out}/R_L</td>
<td>1.23 ± 0.03</td>
<td>1</td>
</tr>
</tbody>
</table>

| χ^2/DoF | 10966/10647 | 11430/10649 |
| CL | 2% | 10^{-7} |

$\Delta \chi^2 = 464/2 \approx 0$

Dependence on components of Q is strongly preferred.
Q Dependence

Case 2, $R_2(Q_L, Q_{side}, q_{out})$ vs.
- Q_L for $Q_{side}, q_{out} < 0.08$ GeV
- Q_{side} for $Q_L, q_{out} < 0.08$ GeV
- q_{out} for $Q_L, Q_{side} < 0.08$ GeV

Dependence on components of Q is preferred.
Summary

- R_2 depends, to some degree, separately on components of Q, i.e., on \bar{Q}
- contradicts τ-model, where dependence is on Q, not on \bar{Q}
- Nevertheless, τ-model with a one-sided Lévy proper-time distribution succeeds:
 - Simplified, provides a new parametrization of $R_2(Q)$ which works well
 - $R_2(Q, m_{t1}, m_{t2})$ successfully fits R_2 for 2-jet events both Q- and m_t-dependence described correctly
- But dependence of R_2 on components of Q implies τ-model is in need of modification
 Perhaps, a should be different for transverse/longitudinal

\[\bar{x}^\mu(p^\mu) = a \tau p^\mu, \quad a = 1/m_t \text{ for 2-jet} \]
Emission Function of 2-jet Events.

In the τ-model, the emission function in configuration space is

$$S(\vec{x}, \tau) = \frac{1}{n} \frac{d^4 n}{d\tau d\vec{x}} = \frac{1}{n} \left(\frac{m_t}{\tau} \right)^3 H(\tau) \rho_1 \left(\vec{p} = \frac{m_t \vec{x}}{\tau} \right)$$

For simplicity, assume $\rho_1(\vec{p}) = \rho_y(y) \rho_{p_t}(p_t)/\bar{n}$ (ρ_1, ρ_y, ρ_{p_t} are inclusive single-particle distributions)

Then $S(\vec{x}, \tau) = \frac{1}{n^2} H(\tau) G(\eta) I(r)$

Strongly correlated $x, p \implies$

$$\eta = y \quad r = p_t \tau / m_t$$

$$G(\eta) = \rho_y(\eta) \quad I(r) = \left(\frac{m_t}{\tau} \right)^3 \rho_{p_t}(r m_t / \tau)$$

So, using experimental $\rho_y(y)$, $\rho_{p_t}(p_t)$ dists. and $H(\tau)$ from BEC fits, we can reconstruct S.

expt. – Factorization OK

$H(\tau)$

$\alpha = 0.47$

$\Delta \tau = 1.56 \text{ fm}$

$\tau_0 = 0$
Emission Function of 2-jet Events.

Integrating over r,

Integrating over z,

"Boomerang" shape

Particle production is close to the light-cone
Emission Function of 2-jet Events.

Integrating over \(z \),

Integrating over \(r \),

“Boomerang” shape

Expanding ring

Particle production is close to the light-cone
\(\alpha_s \)

- LLA parton shower leads to a fractal in momentum space
 fractal dimension is related to \(\alpha_s \)
 Gustafson et al.
- Lévy dist. arises naturally from a fractal, or random walk, or anomalous diffusion
- strong momentum-space/configuration space correlation of \(\tau \)-model \(\implies \) fractal in configuration space with same \(\alpha \)
- generalized LPHD suggests particle dist. has same properties as gluon dist.
- Putting this all together leads to
 \[\alpha_s = \frac{2\pi}{3} \alpha^2 \]
 Csőrgő et al.
- Using our value of \(\alpha = 0.47 \pm 0.04 \) yields \(\alpha_s = 0.46 \pm 0.04 \)
- This value is reasonable for a scale of 1–2 GeV, where production of hadrons takes place
 cf., from \(\tau \) decays \(\alpha_s(m_\tau \approx 1.8 \text{ GeV}) = 0.34 \pm 0.03 \) PDG
BEC Introduction

q-particle density

$$\rho_q(p_1, \ldots, p_q) = \frac{1}{\sigma_{\text{tot}}} \frac{d^q \sigma_q(p_1, \ldots, p_q)}{dp_1 \ldots dp_q}$$

2-particle correlation:

$$\frac{\rho_2(p_1, p_2)}{\rho_1(p_1)\rho_1(p_2)}$$

To study only BEC, not all correlations, let

$$\rho_0(p_1, p_2)$$

be the 2-particle density if no BEC ($= \rho_2$ of the ‘reference sample’) and define

$$R_2(p_1, p_2) = \frac{\rho_2(p_1, p_2)}{\rho_1(p_1)\rho_1(p_2)} \cdot \frac{\rho_1(p_1)\rho_1(p_2)}{\rho_0(p_1, p_2)} = \frac{\rho_2(p_1, p_2)}{\rho_0(p_1, p_2)}$$

Since 2-π BEC only at small Q

$$Q = \sqrt{-(p_1 - p_2)^2} = \sqrt{M_{12}^2 - 4m_\pi^2}$$

integrate over other variables:

$$R_2(Q) = \frac{\rho(Q)}{\rho_0(Q)}$$
The usual parametrization assumes a symmetric Gaussian source. But, there is no reason to expect this symmetry in $e^+e^- \rightarrow q\bar{q}$. Therefore, do a 3-dim. analysis in the Longitudinal Center of Mass System (LCMS):

Boost each π-pair along event axis (thrust or sphericity) $\rho_{L1} = -\rho_{L2}$

$p_1 + p_2$ defines ‘out’ axis

$Q_{side} \perp (Q_L, Q_{out})$
Advantages of LCMS:

\[Q^2 = Q_L^2 + Q_{\text{side}}^2 + Q_{\text{out}}^2 - (\Delta E)^2 \]
\[= Q_L^2 + Q_{\text{side}}^2 + Q_{\text{out}}^2 (1 - \beta^2) \quad \text{where} \quad \beta \equiv \frac{p_{\text{out}1} + p_{\text{out}2}}{E_1 + E_2} \]

Thus, the energy difference, and therefore the difference in emission time of the pions couples only to the out-component, \(Q_{\text{out}} \).

Thus, \(Q_L \) and \(Q_{\text{side}} \) reflect only spatial dimensions of the source \(Q_{\text{out}} \) reflects a mixture of spatial and temporal dimensions.
Fit Results Simplified τ-model

<table>
<thead>
<tr>
<th>parameter</th>
<th>two-jet</th>
<th>three-jet</th>
</tr>
</thead>
<tbody>
<tr>
<td>λ</td>
<td>$0.63 \pm 0.03^{+0.08}_{-0.35}$</td>
<td>$0.92 \pm 0.05^{+0.06}_{-0.48}$</td>
</tr>
<tr>
<td>α</td>
<td>$0.41 \pm 0.02^{+0.04}_{-0.06}$</td>
<td>$0.35 \pm 0.01^{+0.03}_{-0.04}$</td>
</tr>
<tr>
<td>R (fm)</td>
<td>$0.79 \pm 0.04^{+0.09}_{-0.19}$</td>
<td>$1.06 \pm 0.05^{+0.59}_{-0.31}$</td>
</tr>
<tr>
<td>R_a (fm)</td>
<td>$0.69 \pm 0.04^{+0.21}_{-0.09}$</td>
<td>$0.85 \pm 0.04^{+0.15}_{-0.05}$</td>
</tr>
<tr>
<td>ϵ (GeV$^{-1}$)</td>
<td>$0.001 \pm 0.002^{+0.005}_{-0.008}$</td>
<td>$0.000 \pm 0.002^{+0.001}_{-0.007}$</td>
</tr>
<tr>
<td>γ</td>
<td>$0.988 \pm 0.005^{+0.026}_{-0.012}$</td>
<td>$0.997 \pm 0.005^{+0.019}_{-0.002}$</td>
</tr>
<tr>
<td>χ^2/DoF</td>
<td>$91/94$</td>
<td>$84/94$</td>
</tr>
<tr>
<td>confidence level</td>
<td>$57%$</td>
<td>$76%$</td>
</tr>
</tbody>
</table>
Fit Results Simplified τ-model

<table>
<thead>
<tr>
<th>parameter</th>
<th>two-jet</th>
<th>three-jet</th>
</tr>
</thead>
<tbody>
<tr>
<td>λ</td>
<td>$0.61 \pm 0.03^{+0.08}_{-0.26}$</td>
<td>$0.84 \pm 0.04^{+0.04}_{-0.37}$</td>
</tr>
<tr>
<td>α</td>
<td>$0.44 \pm 0.01^{+0.05}_{-0.02}$</td>
<td>$0.42 \pm 0.01^{+0.02}_{-0.04}$</td>
</tr>
<tr>
<td>R (fm)</td>
<td>$0.78 \pm 0.04^{+0.09}_{-0.16}$</td>
<td>$0.98 \pm 0.04^{+0.55}_{-0.14}$</td>
</tr>
<tr>
<td>ϵ (GeV$^{-1}$)</td>
<td>$0.005 \pm 0.001 \pm 0.003$</td>
<td>$0.008 \pm 0.001 \pm 0.005$</td>
</tr>
<tr>
<td>γ</td>
<td>$0.979 \pm 0.002^{+0.009}_{-0.003}$</td>
<td>$0.977 \pm 0.001^{+0.013}_{-0.008}$</td>
</tr>
<tr>
<td>χ^2/DoF</td>
<td>95/95</td>
<td>113/95</td>
</tr>
<tr>
<td>confidence level</td>
<td>49%</td>
<td>10%</td>
</tr>
<tr>
<td>m_t regions (GeV)</td>
<td>average m_t (GeV)</td>
<td>confidence level (%)</td>
</tr>
<tr>
<td>---------------------</td>
<td>---------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>m_{t1} m_{t2}</td>
<td>$Q < 0.4$</td>
<td>all</td>
</tr>
<tr>
<td>0.14 – 0.26</td>
<td>0.19</td>
<td>0.19</td>
</tr>
<tr>
<td>0.14 – 0.34</td>
<td>0.27</td>
<td>0.27</td>
</tr>
<tr>
<td>0.14 – 0.46</td>
<td>0.37</td>
<td>0.37</td>
</tr>
<tr>
<td>0.14 – 0.66</td>
<td>0.52</td>
<td>0.52</td>
</tr>
<tr>
<td>0.26 – 0.42</td>
<td>0.25</td>
<td>0.26</td>
</tr>
<tr>
<td>0.34 – 0.46</td>
<td>0.32</td>
<td>0.33</td>
</tr>
<tr>
<td>0.46 – 0.58</td>
<td>0.43</td>
<td>0.44</td>
</tr>
<tr>
<td>0.66 – 0.86</td>
<td>0.65</td>
<td>0.65</td>
</tr>
<tr>
<td>0.42 – 0.62</td>
<td>0.34</td>
<td>0.34</td>
</tr>
<tr>
<td>0.46 – 0.70</td>
<td>0.41</td>
<td>0.41</td>
</tr>
<tr>
<td>0.58 – 0.82</td>
<td>0.52</td>
<td>0.52</td>
</tr>
<tr>
<td>0.86 – 1.22</td>
<td>0.80</td>
<td>0.81</td>
</tr>
<tr>
<td>0.70 – 4.14</td>
<td>0.59</td>
<td>0.65</td>
</tr>
<tr>
<td>0.82 – 4.14</td>
<td>0.71</td>
<td>0.76</td>
</tr>
</tbody>
</table>
Fit Result \(R_2(Q, m_{t1}, m_{t2}) \)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\lambda)</td>
<td>0.58 ± 0.03^{+0.08}_{-0.24}</td>
</tr>
<tr>
<td>(\alpha)</td>
<td>0.47 ± 0.01^{+0.04}_{-0.02}</td>
</tr>
<tr>
<td>(\Delta \tau) (fm)</td>
<td>1.56 ± 0.12^{+0.32}_{-0.45}</td>
</tr>
<tr>
<td>(\epsilon) (GeV(^{-1}))</td>
<td>0.001 ± 0.001 ± 0.003</td>
</tr>
<tr>
<td>(\gamma)</td>
<td>0.988 ± 0.002^{+0.006}_{-0.002}</td>
</tr>
<tr>
<td>(\chi^2/\text{DoF})</td>
<td>90/95</td>
</tr>
<tr>
<td>Confidence level</td>
<td>62%</td>
</tr>
</tbody>
</table>
Fit Results elongation in τ-model for 2-jet events

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>λ</td>
<td>0.49 ± 0.02</td>
</tr>
<tr>
<td>α</td>
<td>0.46 ± 0.01</td>
</tr>
<tr>
<td>R_L (fm)</td>
<td>0.85 ± 0.04</td>
</tr>
<tr>
<td>R_{side}/R_L</td>
<td>0.61 ± 0.02</td>
</tr>
<tr>
<td>R_{out}/R_L</td>
<td>0.66 ± 0.02</td>
</tr>
<tr>
<td>ϵ_L (GeV$^{-1}$)</td>
<td>0.001 ± 0.001</td>
</tr>
<tr>
<td>ϵ_{side} (GeV$^{-1}$)</td>
<td>$-0.076 ± 0.003$</td>
</tr>
<tr>
<td>ϵ_{out} (GeV$^{-1}$)</td>
<td>$-0.029 ± 0.002$</td>
</tr>
<tr>
<td>γ</td>
<td>1.011 ± 0.002</td>
</tr>
</tbody>
</table>

χ^2/DoF 14847/14921
CL 66%
Fit Results of direct tests for 2-jet events

<table>
<thead>
<tr>
<th>case 1</th>
<th>λ</th>
<th>0.51 ± 0.03</th>
<th>0.49 ± 0.03</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>α</td>
<td>0.46 ± 0.01</td>
<td>0.46 ± 0.01</td>
</tr>
<tr>
<td></td>
<td>$R_{LE} \text{ (fm)}$</td>
<td>0.84 ± 0.04</td>
<td>0.71 ± 0.04</td>
</tr>
<tr>
<td></td>
<td>R_{side}/R_{LE}</td>
<td>0.60 ± 0.02</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>R_{out}/R_{LE}</td>
<td>0.986 ± 0.003</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>$\epsilon_{LE} \text{ (GeV}^{-1})$</td>
<td>0.001 ± 0.001</td>
<td>0.000 ± 0.001</td>
</tr>
<tr>
<td></td>
<td>$\epsilon_{side} \text{ (GeV}^{-1})$</td>
<td>-0.069 ± 0.003</td>
<td>-0.064 ± 0.003</td>
</tr>
<tr>
<td></td>
<td>$\epsilon_{out} \text{ (GeV}^{-1})$</td>
<td>-0.032 ± 0.002</td>
<td>-0.035 ± 0.002</td>
</tr>
<tr>
<td></td>
<td>γ</td>
<td>1.010 ± 0.002</td>
<td>1.012 ± 0.002</td>
</tr>
</tbody>
</table>

| | χ^2/DoF | 14590/14538 | 14886/14540 |
| CL | 38% | 2% |
Fit Results of direct tests for 2-jet events

<table>
<thead>
<tr>
<th></th>
<th>case 2</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>λ</td>
<td>0.65 ± 0.03</td>
<td>0.57 ± 0.03</td>
</tr>
<tr>
<td>α</td>
<td>0.41 ± 0.01</td>
<td>0.44 ± 0.01</td>
</tr>
<tr>
<td>R_L (fm)</td>
<td>0.96 ± 0.05</td>
<td>0.82 ± 0.04</td>
</tr>
<tr>
<td>R_{side}/R_L</td>
<td>0.62 ± 0.02</td>
<td>1</td>
</tr>
<tr>
<td>r_{out}/R_L</td>
<td>1.23 ± 0.03</td>
<td>1</td>
</tr>
<tr>
<td>ϵ_L (GeV$^{-1}$)</td>
<td>0.004 ± 0.001</td>
<td>0.003 ± 0.001</td>
</tr>
<tr>
<td>ϵ_{side} (GeV$^{-1}$)</td>
<td>-0.067 ± 0.003</td>
<td>-0.059 ± 0.003</td>
</tr>
<tr>
<td>ϵ_{out} (GeV$^{-1}$)</td>
<td>-0.022 ± 0.003</td>
<td>-0.029 ± 0.002</td>
</tr>
<tr>
<td>γ</td>
<td>1.000 ± 0.002</td>
<td>1.003 ± 0.002</td>
</tr>
<tr>
<td>χ^2/DoF</td>
<td>10966/10647</td>
<td>11430/10649</td>
</tr>
<tr>
<td>CL</td>
<td>2%</td>
<td>10^{-7}</td>
</tr>
</tbody>
</table>
Transverse Mass dependence of r

r decreases with m_t (or k_t) for all directions.
\[R_2 = \gamma \cdot \left[1 + \lambda G \right] \cdot \left(1 + \epsilon Q \right) \]

- Gaussian
- Edgeworth expansion
- Symmetric Lévy

\[G = \exp \left(- \frac{(rQ)^2}{2} \right) \cdot \left[1 + \kappa 3! H_3 (rQ) \right] \]

- Gaussian if \(\kappa = 0 \)
- \(0.71 \pm 0.06 \) symmetric Lévy

- \(0 < \alpha \leq 2 \)
- \(\alpha = 1.34 \pm 0.04 \)

CL:

- Poor \(\chi^2 \)
- Edgeworth and Lévy better than Gaussian, but poor.

Problem:

- Dip of \(R_2 \) in the region \(0.6 < Q < 1.5 \) GeV
$R^2 = \gamma \cdot \left[1 + \lambda G \right] \cdot (1 + \epsilon Q)$

- Gaussian
 - $G = \exp\left(- \left(\frac{r Q}{\alpha}\right)^2\right)$
 - $\alpha = 1.34 \pm 0.04$

- Edgeworth expansion

- Lévy
 - $G = \exp\left(-|r Q|^{\alpha}\right)$
 - $0 < \alpha \leq 2$
 - $\alpha = 1.34 \pm 0.04$

Poor χ^2.

Gauss, Edgew, Lévy better than Gaussian, but poor.

Problem is the dip of R^2 in the region $0.6 < Q < 1.5$ GeV.
R^a_{free}

$\chi^2/\text{dof} = 91/94$
\[R_a = \tan \left(\frac{\alpha \pi}{2} \right) \]
$$R_{a}^{2\alpha} = \tan \left(\frac{\alpha \pi}{2} \right) R_{a}^{2\alpha}$$

$$\chi^2/\text{dof} = 95/95$$
\[2 \alpha = \tan \left(\frac{\pi}{2} \right)\]
$R_{a, \text{ free}}$

$\chi^2 / \text{dof} = 84/94$

CL = 10%

p. 44
\[R^2 = \tan(\frac{\pi}{2}) \]

\[R^2 \chi^2 / \text{dof} = 113/95 \]

\[CL = 10\% \]

p. 44
\[R_{a}^{2\alpha} = \tan \left(\frac{\alpha \pi}{2} \right) R_{a}^{2\alpha} \]

\[\chi^2 / \text{dof} = 113/95 \]

CL = 10%
$$\chi^2/\text{dof} = 84/94$$

$$R^2 = \tan(\alpha \pi/2)$$

$$\chi^2/\text{dof} = 113/95$$

CL = 10%
$$R_2 = \gamma \left\{ 1 + \lambda \cos \left(\tau_0 Q^2 (m_{t1} + m_{t2})^2 (m_{t1} m_{t2}) \alpha \right) \exp \left(-\Delta \tau Q^2 2 \right) \alpha \cdot (1 + \epsilon Q) \right\} \cdot (1 + \epsilon Q)$$

Fit R_2 using avg m_{t1}, m_{t2} in each Q bin, $m_{t1} > m_{t2}$

$\tau_0 = 0.00 \pm 0.02$ so fix to 0

$\chi^2 / \text{dof} = 90 / 95$ fit
Dependence on components of Q is preferred.

R^2 vs. Q_L for Q_{side}, $q_{out} < 0.08$ GeV

R^2 vs. Q_{L}, Q_{side} < 0.08 GeV

R^2 vs. q_{out} for Q_{L}

Q Dependence
Dependence on components of Q is preferred.
Integrating over r,

Integrating over z,

“Boomerang” shape

Particle production is close to the light-cone

$S(r,\tau)$ from L3 2–jet events, $\tau = 0.01, 0.02, \ldots, 0.1$ fm
Integrating over r,

```
<table>
<thead>
<tr>
<th>t (fm)</th>
<th>0</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>S(z,t) (fm$^{-2}$)</td>
<td>0</td>
<td>10</td>
</tr>
</tbody>
</table>
```

Integrating over z,

```
<table>
<thead>
<tr>
<th>$r_t$ (fm)</th>
<th>0.00</th>
<th>0.10</th>
</tr>
</thead>
<tbody>
<tr>
<td>$S(r_t,t)$ (fm$^{-3}$)</td>
<td>50</td>
<td>10</td>
</tr>
</tbody>
</table>
```

“Boomerang” shape

Particle production is close to the light-cone
Integrating over r,

Integrating over z,

“Boomerang” shape

Particle production is close to the light-cone
Integrating over r, "Boomerang" shape
Particle production is close to the light-cone

Integrating over z, $S(r_z, \tau)$ from L3 2–jet events, $\tau = 0.01, 0.02, ..., 0.1$ fm
Integrating over r, Integrating over z,

"Boomerang" shape

Particle production is close to the light-cone
Integrating over r,

“Boomerang” shape

Integrating over z,

Particle production is close to the light-cone
Integrating over r,

Integrating over z,

“Boomerang” shape

Particle production is close to the light-cone

$S(r, t)$ from L3 2–jet events, $t = 0.01, 0.02, ..., 0.1$ fm

Particle production is close to the light-cone
Integrating over r,

“Boomerang” shape
Particle production is close to the light-cone

Integrating over z,

$S(r, \tau)$ from L3 2–jet events, $\tau = 0.01, 0.02, ..., 0.1$ fm
Integrating over r, "Boomerang" shape

Particle production is close to the light-cone

Integrating over z, $S(r,t)$ from L3 2–jet events, $t = 0.01, 0.02, ..., 0.1$ fm
Particle production is close to the light-cone
Integrating over \(r \), "Boomerang" shape

Integrating over \(z \),

\[
S(r_t, \tau)\text{ from L3 2–jet events, } \tau = 0.01, 0.02, ..., 0.1 \text{ fm}
\]
(Loading movie...)

Particle production is close to the light-cone p. 51
Integrating over r, “Boomerang” shape

Integrating over z, $\tau = 0.01$ fm

$\tau = 0.02$ fm

$\tau = 0.04$ fm

$\tau = 0.07$ fm

$\tau = 0.15$ fm

Expanding ring

Particle production is close to the light-cone

$p. 63$
Integrating over \(r \), "Boomerang" shape

\[\tau = 0.01 \text{ fm} \]

Expanding ring

Particle production is close to the light-cone
Integrating over r, "Boomerang" shape

Integrating over z, $\tau = 0.01 \text{ fm}$, $\tau = 0.02 \text{ fm}$, $\tau = 0.04 \text{ fm}$, $\tau = 0.07 \text{ fm}$, $\tau = 0.15 \text{ fm}$.

Particle production is close to the light-cone p. 63
Integrating over r, "Boomerang" shape

$\tau = 0.04 \text{ fm}$

Expanding ring

Particle production is close to the light-cone
Integrating over \(r \), "Boomerang" shape

\[\tau = 0.01 \text{ fm} \]

\[\tau = 0.02 \text{ fm} \]

\[\tau = 0.04 \text{ fm} \]

\[\tau = 0.07 \text{ fm} \]

\[\tau = 0.15 \text{ fm} \]

Particle production is close to the light-cone
Integrating over r, "Boomerang" shape

Integrating over z, $\tau = 0.01$ fm

$\tau = 0.02$ fm

$\tau = 0.04$ fm

$\tau = 0.07$ fm

$\tau = 0.15$ fm

Particle production is close to the light-cone

p. 63
Integrating over r, “Boomerang” shape

Integrating over z,

Expanding ring

Particle production is close to the light-cone
Integrating over z, "Boomerang" shape

Integrating over r, Expanding ring

Particle production is close to the light-cone

\[\tau = 0.01 \text{ fm} \]

\[\tau = 0.02 \text{ fm} \]

\[\tau = 0.04 \text{ fm} \]

\[\tau = 0.07 \text{ fm} \]

\[\tau = 0.15 \text{ fm} \]
Integrating over z,

"Boomerang" shape

Integrating over r,

Expanding ring

Particle production is close to the light-cone
Integrating over r, "Boomerang" shape

Integrating over z, $\tau = 0.01 \text{ fm}$

$\tau = 0.02 \text{ fm}$

$\tau = 0.04 \text{ fm}$

$\tau = 0.07 \text{ fm}$

$\tau = 0.15 \text{ fm}$

Expanding ring

Particle production is close to the light-cone