Search for collective phenomena in hadron interactions

E. Kokoulina, A. Kutov, V. Nikitin, Yu.Petukhov and V. Popov. For the SVD Collab.

Introduction

pp (pA) -> n,
$$n = n_{ch} + n_0$$

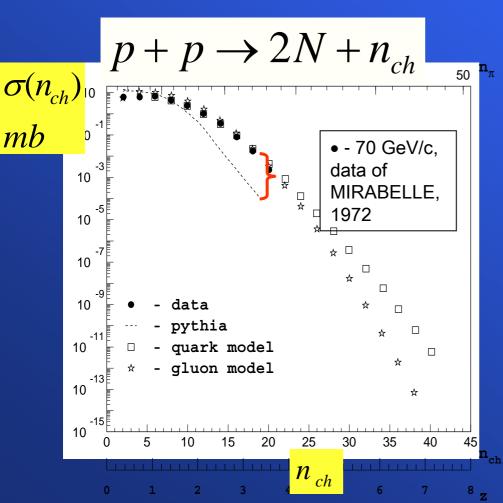
Experiment at U-70, IHEP, Protvino $E_{lab} = 50 - 70 \text{ GeV}$

mean multiplicity: $\langle n_{ch} \rangle \sim 5$, $\langle n_0 \rangle \sim 2$

extreme (high) multiplicity (EM): n >> <n>

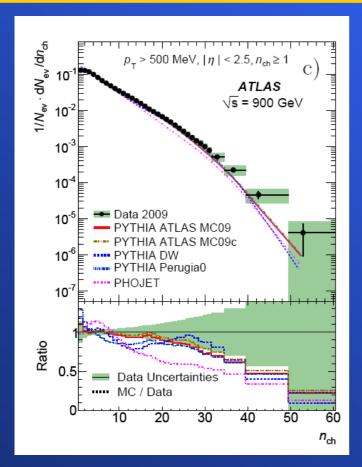
Is dense medium formed at the initial moment?

Introduction


We expect:

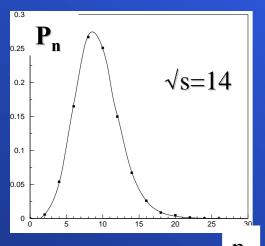
the collective behavior of secondary can be manifested at EM region.

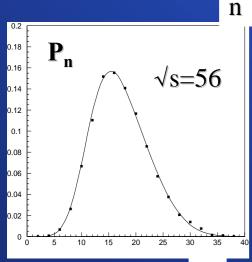
Outline


- Extreme multiplicity puzzles
- SVD-2 setup and data processing
- Search for Collective phenomena
- Gluon Dominance Model

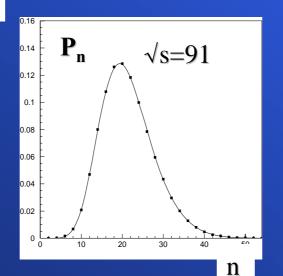
Outlook

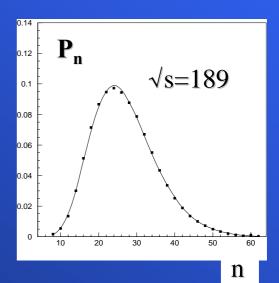
MC PHYPIA code has shown that standard generator predicts a value of the cross section at 70 GeV/c which is reasonably good agreement with data at small multiplicity, n_{ch} <10, but it underestimates the value $\sigma(n_{ch})$ by 2 orders of the magnitude at n_{ch} > 18.

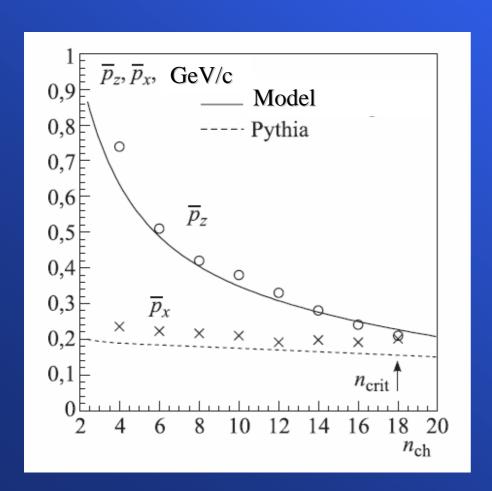

Mirabelle: at 70 (50) GeV/c max n_{ch} = 18 (16).


The present-day models are very much sensitive in the EMI region for the multiplicity distributions (MD)

CERN-PH-EP/2010-004 March 15, 2010

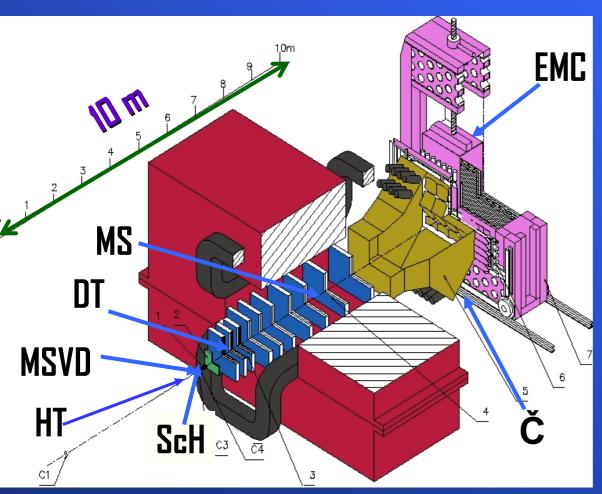

Charged-particle multiplicities in pp interactions at $\sqrt{s} = 900$ GeV measured with the ATLAS detector at the LHC




MD in e⁺e⁻ -annihilation at √s=14, 56, 91 and 189 GeV: data and GDM (based on QCD-cascade and hadronization model).

n

3 possible scenarios for $\langle p_{\parallel} \rangle$ and $\langle p_{T} \rangle$ at EM:


$$|| < p_{\parallel} > = < p_{\text{T}} >$$

$$|| \langle p_{\parallel} \rangle \rangle \langle p_{\perp} \rangle$$

$$| \langle p_{\parallel} \rangle \langle p_{\parallel} \rangle$$

SVD-2 setup and data processing

SVD-2 setup

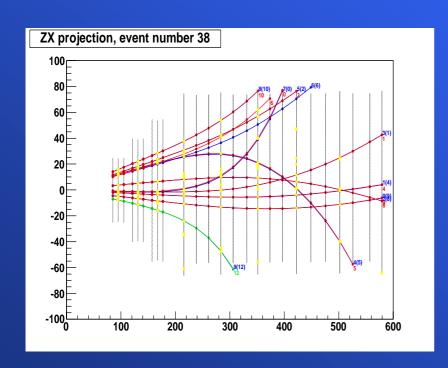
- Hydrogen Target (HT)
- MicroStrip VertexDetector (MSVI)
- Scintillator Hodoscope (ScH or HMTr)
- Drift Tube Tracker (UT)
- Magnetic Spectrometer(MS) with PC
- Cherenkov counter (Č)
- Electromagnetic Calorimeter (EML)

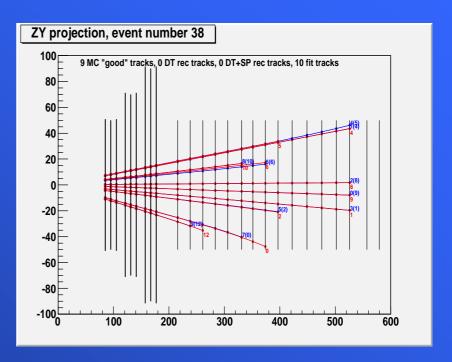
U-70 at IHEP, Protvino, E= 50 GeV. The ScH selects the rare events with the EM. The suppression factor of events with lower multiplicity amounts about 104. HT is a 7cm - thick. 25mm -diameter vessel.

SVD-2 setup

Scintillator hodoscope (camomile) for the EM event registration

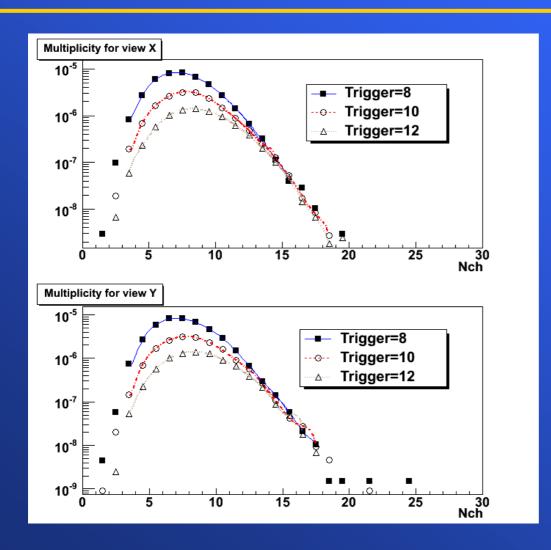
The liquid-hydrogen target

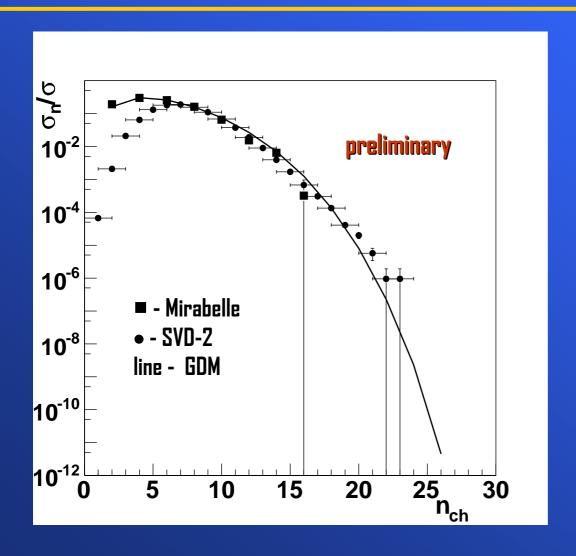

- MC event generator is designed for the setup element simulation;
- Data processing software;
- Alignment procedure;
- Track and vertex reconstruction...


Kalman Filter as Track Fitter for SVD

- 1. Drift tubes calibration from raw TDC time to drift distance.
- 2. Recognize track candidates find track-like groups of hits: pattern recognition.
- 3. Taking into account REALITY: alignment.
- 4. From track candidates to real track parameters: track fitting.
- 5. From tracks to vertexes: vertex fitting.

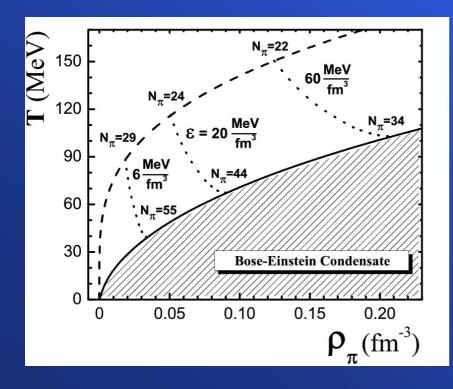
Analysis sequence (some details)

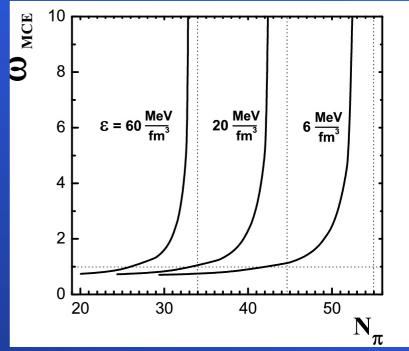

- 1. VD + MS reconstruction: track parameter determination; using of MS data for momentum estimation and vertex finding.
- 2. DT track candidate finding separately in U, Y and V planes, then build 3D tracks.
- 3. DT + MS track fitting: track parameters from 1 as initial values, hit list from 2, then Kalman Filtering procedure.
- 4. During fit taking into account non-uniform magnetic field, multiple scattering, energy losses.
- 5. Re-fit vertexes, if it is necessary.
- 6. Kinematical fit.


MC simulation and reconstruction in DT and MS detectors

MSVD data

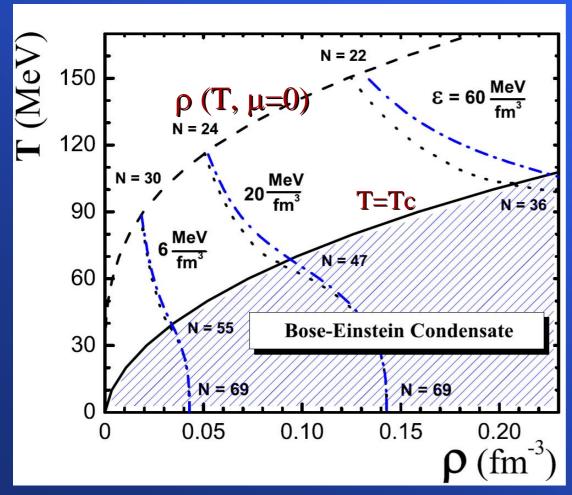
Multiplicity **Distributions** (MD) in pp interactions at the different trigger levels: 8, 10, 12. run 2008,PVD.


MSVD data and GDM



Run 2008, 50 GeV/c, MD in pp-interactions 8th trigger-level (8 x MIP)

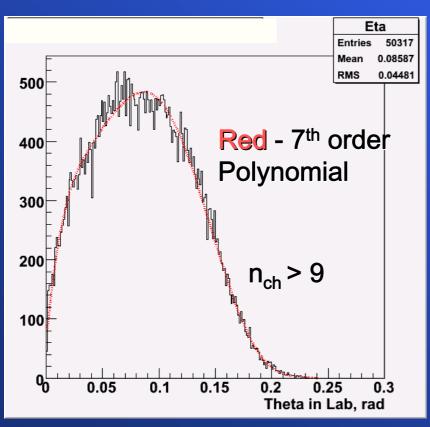
- 1. Bose-Einstein Condensation (BEC);
- 2. Cherenkov gluon emission;
- 3. Gluon Dominance Model (GDM);
- 4. Excess of soft photon (SP) yield;
- 5. Clusterization; turbulence phenomena

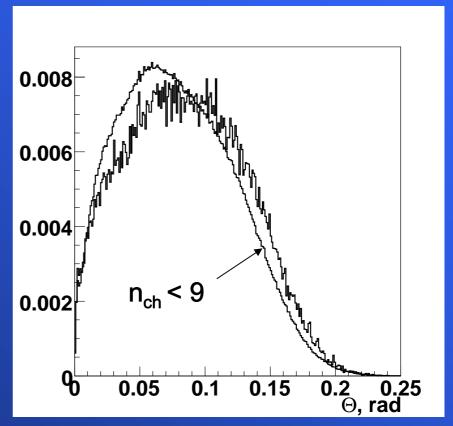

M. Gorenstein and V. Begun had predicted an abrupt and anomalous increase of the scaled variance ω^0 of neutral and charged pion number fluctuations in the vicinity of the BEC line [Phys.Lett.B651:114 (2007)].

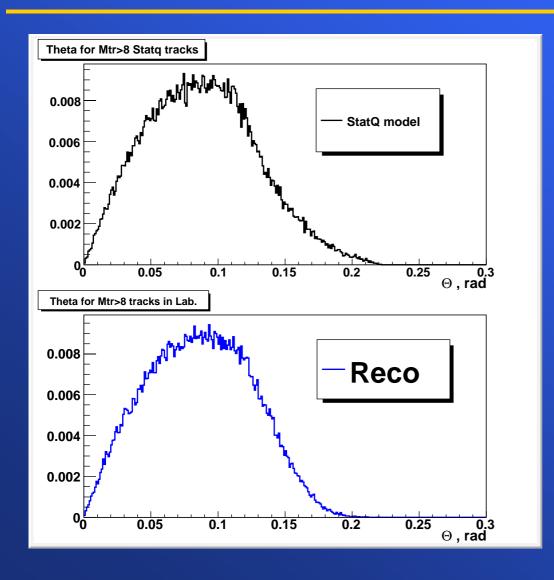
ω⁰ - scaled variance

$$\omega^0 = <\Delta n_0^2 > / < n_0 >$$

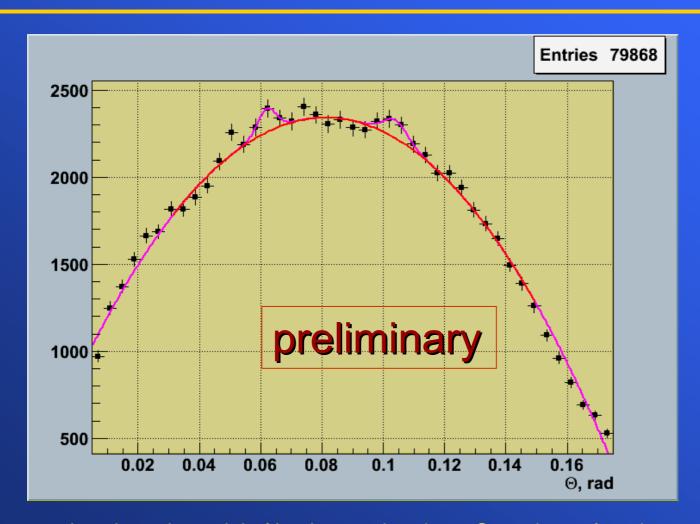
 $\Delta n_0^2 = (n_0 - < n_0 >)^2$


The phase diagram of the ideal pion gas with zero net electric charge.


The dashed-dotted lines present the trajectories in ρ-T plane with fixed energy density at 9.7GeV.


V.Begun and M.Gorenstein Phys.Rev.C77:064903,2008

n	n _{ch} = 2 4 6 8 10 12 14 16 18 19 20 21	<n<sub>0></n<sub>
3	1*8	1.00
4	2 *8 + 0 *198	0.08
5	3*8 +1*381	1.04
6	3*8 +1*381 4*2 +2*425+0*310 Preliminary,	1.16
7	5*1 +3*285+1*568	1.67
8	6*1 +4*191+2*583+0*751 WORK IN	1.27
9	7*1 +5*120+3*443+1*1369	1.71
10	6*56 +4*309+2*1491+ 0*434	1.99
11	7*24 +5*184+3*1222+ 1*835 Progress	2.47
12	8 *10 + 6 *78 + 4 *836 + 2 *928 + 0 *157	2.86
13	9*2 +7*43 +5*472 + 3*688 +1*305	3.34
14	10 *2 + 8 *10 + 6 *231 + 4 *469 + 2 *371+ 0 *84	3.52
15	11 *2 + 9 *9 + 7 *107 + 5 *265 + 3 *312+ 1 *157	3.83
16	12 *1 + 10 *2 + 8 *64 + 6 *127 + 4 *188+ 2 *159+ 0 *74	3.86
17	13 *1 + 9 *19 + 7 *49 + 5 *109+ 3 *127+ 1 *123	3.68
18	10*8 + 8*39 + 6*51 + 4*79 + 2*160 + 0*8	3.87
19	11 *5 + 9 *18 + 7 *28 + 5 *48 + 3 *109 + 1 *20 + 0 *3	4.33
20	12*3 +10*6 +8*16 +6*22 +4*70 +2*30 +1*11 +0*1	4.45
21	(lata Will 11*4 +9*8 +7*13 +5*53 +3*24 +2*8 +1*2 +0*2	4.93
22	12*1 +10*8 +8*7 +6*40 +4*16 +3*8 +2*7 +1*1	5.59
23	De accee 11*3 +9*3 +7*16 +5*11 +4*4 +3*1	6.47
24	14*1 +12*2 +10*3 +8*8 +6*6 +5*2 +4*3 +3*1	7.42
25	11*1 +9*8 +7*2 +6*2 +5*1	8.14
26	16 *1 + 14 *1 + 10 *2 + 8 *3 + 7 *1 + 5 *2	9.1
27	11 *5 + 9 *3 + 8 *1 + 7 *1	9.7
28	12* 2 + 10* 3 + 8* 1	10.33
29	13*1	13.
30	12* 1 + 10* 1	11.
ΣN_{ev}	29 1698 2539 6578 3865 1559 703 671 127 40 18 6	


Two-hump structure in pp at $n_{ch} > 9$ (2008 run)

Monte-Carlo simulation & track reconstruction $(n_{ch} \ge 9)$

Significance ~ 4 σ

3th order polynomial of background and two Gaussians of peaks

Ring events or shock waves?

Our experiment: $\cos \Theta_{Ch} = 1/\beta n$, $\beta = p/E$,

n - the index of the refraction,

$$\theta_{Ch} = 0.065 \pm 0.005$$
, n = 1.0023 ± 0.0003

Dremin theory:

n (p) = 1+Δn (p) = 1+3
$$m_{pr}^{3}$$
σ(p) V_{h} ρ(p) / 8π p_{pr} , V_{h} – the number of scatters, ρ = Re F/ Im F, Δn (p) = 3 m_{p}^{3} Re F / 2 p^{2} = 0.0005 * Re F, at Re F =4.6 GeV (0.92 fm)

Dremin stresses (arXiv:0910.0099 [hep-ph]) RHIC and cosmic rays data were fitted with different values of the refraction index close to 3 and 1, correspondingly. He explains this distinction via the difference in values x and Q²:

- ✓ The large x and Q² are related to the dilute parton system (our case)
- √The low x and Q² correspondents to a more dense system (RHIC).

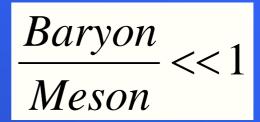
$$e^+e^- \rightarrow \gamma(Z^0) \rightarrow q\overline{q} \rightarrow (q,g) \rightarrow ? \rightarrow hadrons$$

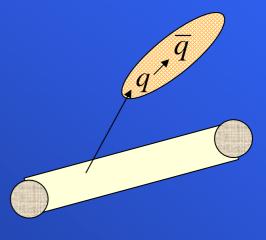
First stage (cascade):
a) gluon fission; b) quark
bremsstrahlung; c) quark pair
creation; NBD.

Second stage (hadronization): BD

$$Q_p^H = \left[1 + \frac{\overline{n}_p^h}{N_p}(z-1)\right]^{N_p}.$$

$$P_{m} = \frac{k_{p}(k_{p}+1)...(k_{p}+m-1)}{m!} \left(\frac{\overline{m}}{\overline{m}+k_{p}}\right)^{m} \left(\frac{k_{p}}{\overline{m}+k_{p}}\right)^{k_{p}}.$$

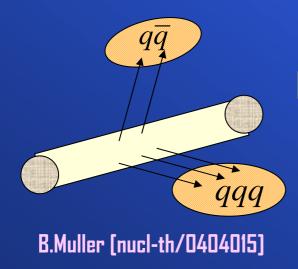

A.Giovannini. NP, B161 (1979).


Convolution of two stages.

GDM for e+e-:

the mean hadron multiplicity formed from gluon, $\langle n^h_g \rangle$, while its passing through the hadronization stage is remained constant $\langle n^h_g \rangle \sim 1$ (14 -189 GeV).

Fragmentation mechanism: 1 parton → 1 hadron.



B.Muller (nucl-th/0404015)

GDM had shown: quarks of initial protons are staying in leading particles (from U-70 up to ISR). Multiparticle production is realized by active gluons.

Two schemes: with/without gluon branch. Convolution gluon (Poisson/Farry) & hadron (PBD) MDs.

The recombination mechanism of hadronization: the increase of $< n_g^h > from 1.6$ at 70 GeV (U-70) up to 3.3 at 60 GeV (ISR) in pp-interactions.

RHIC, in central AA-interactions:

GDM and Soft Photons (SP)

Experiment

$$p_t \le 0.1 GeV/c, x \le 0.01$$

SP rate is 5-8 times more for charged and~15-25 times more for neutrals in comparison with the QED predictions. DELPHI Collab. Eur.Phys.J.C67,343, 2010.

Assumption:

Parton system or excited new formed hadrons set in almost equilibrium state during a short period (we use the black body emission spectrum):

$$\sigma_{\gamma} \approx 4mb$$
, $\sigma_{in} \approx 40mb$, $\sigma_{\gamma} \approx n_{\gamma}(T) \cdot \sigma_{in} \rightarrow n_{\gamma} \approx 0.1$

Estimations of SP emission region: <~ 4 fm.

Outlook

- ✓ The continuation of the search for the collective phenomena in pp (pA) interactions at the EM region: BEC, ring events (dense groups in angle distributions), clusterization, turbulence ...
- ✓ Soft photon studies at the EM
- ✓ Autumn 2010 run. Carbon-nucleus program (~34 GeV/N) at U-70 in IHEP, Protvino