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Initial Conditions in Hydrodynamic Approach

In hydrodynamic approach of nuclear collisions, it is assumed
that, after a complex process involving microscopic collisions of
nuclear constituents, at a certain early instant a hot and dense
matter is formed, which would be in local thermal equilibrium.
This state is characterized by some initial conditions (IC),

parametrized as smooth distributions of thermodynamic
quantities and four-velocity.
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Initial Conditions in Hydrodynamic Approach

In hydrodynamic approach of nuclear collisions, it is assumed
that, after a complex process involving microscopic collisions of
nuclear constituents, at a certain early instant a hot and dense
matter is formed, which would be in local thermal equilibrium.
This state is characterized by some initial conditions (IC),

parametrized as smooth distributions of thermodynamic
quantities and four-velocity.

@ However, since our systems are small,
are expected in real collisions.

@ Also, if the thermalization is verified at very early time, they
should be very bumpy.
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Previous Studies

In previous works, we introduced fluctuating IC in
hydrodynamics, by using NEXUS event generator (

), and showed important effects
on several observables:

@ pr distributions

@ n- and pr-dependences of v»
@ Fluctuations of v»

@ HBT radii
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NEXUS Fluctuating Initial Conditions
Energy density distribution (Au+Au at 200 A GeV)
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Previous Studies

What is expected from the hot tubes?

< l *, isotropic

exXpansion

v \ elliptic

expansion
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pr distribution
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Ridge in Hydrodynamic Approach

What is ridge effect?

@ Ridge Effect has been observed in
long-range two-particle correlation.

ptaSSOC>2 G eV
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Ridge in Hydrodynamic Approach

What is ridge effect?

@ Ridge Effect has been observed in
long-range two-particle correlation.

pEssc>2GeV @ The is a narrow
A¢ and wide An correlation around
the trigger.

@ There is also some
: one or two ridges.

@ Originally, the trigger was chosen a
high-pr particle, but
now data are available also for
low-pr trigger or no-trigger.
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Ridge Effect in Hydrodynamic Approach

Our recent research” seems to indicate that
event-by-event
fluctuating tubular initial conditions.

See also Rone Andrade’s talk (Friday, 24/09).
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Ridge Effect in Hydrodynamic Approach

In a previous work ( ), we
got the ridge structure in a purely hydrodynamic model.
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Y.H., R. Andrade, F.Grassi, W.Qian Fluctuating Initial Con s in Hydrodynamics



Which is the origin of ridges?
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Which is the origin of ridges?

Since each event in our model presents IC with many

high-energy tubes, one may associate these tubes +
transverse expansion with the ridge structure.
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Which is the origin of ridges?

Since each event in our model presents IC with many
high-energy tubes, one may associate these tubes +
transverse expansion with the ridge structure.

, the phenomenon is not so trivial.

Besides, why away-side ridges?
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Method of study: boost-invariant one-tube model
Results

Parameter dependence

Mechanism of ridge formation in hydrodynamics

Which is the origin of ridges?

Since each event in our model presents IC with many
high-energy tubes, one may associate these tubes +
transverse expansion with the ridge structure.

, the phenomenon is not so trivial.
Besides, why away-side ridges?

Considering mainly the we tried to understand
the origin of the ridge structure, especially the away-side one.

Y.H., R. Andrade, F.Grassi, W.Qian Fluctuating Initial Conditions in Hydrodynamics



Which is the origin of ridges?

Mechanism of ridge formation in hydrodynamics 'I\:%A:;:Tt: Ol Vel (BT EEHUED ik !

Parameter dependence

Outline
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Which is the origin of ridges?
Mechanism of ridge formation in hydrodynamics Method of study: boost-invariant one-tube model

Results
Parameter dependence

How we study the origin of the ridge s

NEXUS IC (Au+Au, 200 A GeV)

tau=1fm, b=0fm, n=0

22,00
2000 ——
8 18.00 ——
16.00
6 1400 ——
12.00
10.00
4 800 ——
6.00
2 4.00 —
- 2.00 ——
E o 1.00
= 0.50 ——
5 0.10
- 0.05 ——
0.01 ——
-4
6
-8

Andrade, F.Grassi, W.Qian Fluctuating Initial C



Which is the origin of ridges?

Method of study: boost-invariant one-tube model
Results

Parameter dependence

Mechanism of ridge formation in hydrodynamics

How we study the origin of the ridge structure

NEXUS IC (Au+Au, 200 A GeV) @ To study closely what
happens in the
0 {au=1fm, b-0fm, 1-0 neighborhood of a tube
' near the surface of the hot
matter.
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® & A v o NM » O ®

40 e
10 8 6 4 2 0 2 4 6 8 10
x[fm]

Y.H., R. Andrade, F.Grassi, W.Qian Fluctuating Initial Con s in Hydrodynamics



Which is the origin of ridges?

Method of study: boost-invariant one-tube model
Results

Parameter dependence

Mechanism of ridge formation in hydrodynamics

How we study the origin of the ridge structure

NEXUS IC (Au+Au, 200 A GeV) @ To study closely what
happens in the
0 {au=1fm, b-0fm, 1-0 neighborhood of a tube
' near the surface of the hot
matter.

@ Replace the complex
background by a smooth
one (average IC).

y [fm]
® & A v o NM » O ®

40 e
10 8 6 4 2 0 2 4 6 8 10
x[fm]

Y.H., R. Andrade, F.Grassi, W.Qian Fluctuating Initial Con s in Hydrodynamics



Which is the origin of ridges?
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Results
Parameter dependence

How we study the origin of the ridge structure

NEXUS IC (Au+Au, 200 A GeV) @ To study closely what
happens in the
o fausim, o-0m. 10 o neighborhood of a tube
6 L — near the surface of the hot
° 78— matter.
e i — @ Replace the complex
< : e — background by a smooth
4 o one (average IC).
N @ one-tube model with

e boost-invariant longitudinal
-0 8 6 4 -2 0 2 4 6 8 10 .
xim) expansion.
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Method of study: boost-invariant one-tube model
Results

Parameter dependence

Mechanism of ridge formation in hydrodynamics

Time evolution of a tube + the average background
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Mechanism of ridge formation in hydrodynamics

Time evolution of a tube + the average background
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Time evolution of a tube + the average background
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Results

Parameter dependence

Mechanism of ridge formation in hydrodynamics

Time evolution of a tube + the average background

Energy density [GeV/im?], t=5.5im
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Method of study: boost-invariant one-tube model
Results

Parameter dependence

Mechanism of ridge formation in hydrodynamics

Time evolution of a tube + the average background
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Mechanism of ridge formation in hydrodynamics

Time evolution of a tube + the average background
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Mechanism of ridge formation in hydrodynamics

Time evolution of a tube + the average background
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Mechanism of ridge formation in hydrodynamics

Time evolution of a tube + the average background
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Method of study: boost-invariant one-tube model
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Mechanism of ridge formation in hydrodynamics

Time evolution of a tube + the average background
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Mechanism of ridge formation in hydrodynamics

Time evolution of a tube + the average background
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Which is the origin of ridges?

Method of study: boost-invariant one-tube model
Results

Parameter dependence

Mechanism of ridge formation in hydrodynamics

¢ distributions (left) and two-particle correlation (right)
produced by a tube + the average background
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Which is the origin of ridges?

Method of study: boost-invariant one-tube model
Results

Parameter dependence

Mechanism of ridge formation in hydrodynamics

Parameter dependence

In [

], we studied the dependence on several
parameters.
Some parameters seem to be of
while others are not.
In the following we show effects of two of the important
parameters. They are

@ energy of the tube ( € x r?);
@ position of the tube.
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Method of study: boost-invariant one-tube model
Results

Parameter dependence

Mechanism of ridge formation in hydrodynamics

meter dependence - tube energy
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Mechanism of ridge formation in hydrodynamics

Which is the origin of ridges?

Method of study: boost-invariant one-tube model
Results

Parameter dependence

Parameter dependence - tube position
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Here, it is seen that there is a
critical radial position above
which two-particle correlation
due to a tube is more or less
stable, and below which it
disappears quickly. Thus,
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@ The initial conditions in heavy-ion collisions should have
and also they should
be very bumpy.

@ Such bumpy IC affects several observables (pr
distributions, n- and pr-dependences of v», v, fluctuations,
etc.) in important amount.

@ Hydrodynamic expansion starting from fluctuating IC with
tubular structure produces in the 2-particle
correlation.
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Summary

Summary

@ The initial conditions in heavy-ion collisions should have

and also they should
be very bumpy.

@ Such bumpy IC affects several observables (pr
distributions, n- and pr-dependences of v», v, fluctuations,
etc.) in important amount.

@ Hydrodynamic expansion starting from fluctuating IC with
tubular structure produces in the 2-particle
correlation.

@ NeXSPheRIO code can reproduce several observed
characteristics of ridges.

Y.H., R. Andrade, F.Grassi, W.Qian Fluctuating Initial Conditions in Hydrodynamics
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Summary

@ A high-density tube, close to the surface of the hot matter,
causes flow with two maxima in azimuth, symmetrical with
respect to the tube position.
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@ Such a flow implies a and

in A¢ in the 2-particle
correlation, with respect to the high-pr trigger.
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Summary

Summary

@ A high-density tube, close to the surface of the hot matter,
causes flow with two maxima in azimuth, symmetrical with
respect to the tube position.

@ Such a flow implies a and

in A¢ in the 2-particle
correlation, with respect to the high-pr trigger.

@ The of 2-particle correlation curve is more or less
stable in a wide range of parameters.

@ The of the correlation depends strongly on the

of the tube and its

More details will be given in Rone Andrade (Friday,
24/09).

Y.H., R. Andrade, F.Grassi, W.Qian Fluctuating Initial Conditions in Hydrodynamics
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QOutlook - (2+1)-particle Correlations

These are also three-particle correlations, but the

For example,
in the centrality (30-40%) window, our result for the two-particle
correlation shows

What is this?

Y.H., R. Andrade, F.Grassi, W.Qian Fluctuating Initial Conditions in Hydrodynamics
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QOutlook - (2+1)-particle Correlations

(2+1)-particle correlation as function of A and Ay

Any < 0.2

Fluctuating Initial Coni s in Hydrodynamics
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Thermalized jets

Nexus produces jets, but they are thermalized together with the
bulk matter in SPheRio.
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Event-averaging effects

For realistic fluctuating events, any distribution has a rather
complicated aspect. Averaging over events cancels the
interference terms making it smooth.

Y.H., R. Andrade, F.Grassi, W.Qian Fluctuating Initial Conditions in Hydrodynamics
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PHENIX data

DIHADRON AZIMUTHAL CORRELATIONS IN Aut-Au . PIIYSICAL REVIEW C 78, 014901 (2008)
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FIG. 36. (Color online} Per-trigger yicld vs Ad for succossively increasing trigger and partner pr (7} ® pb) in g+ p (open circlos)

and 0-20% Au+Au (filled circles) collisions. Data are scaled to the vertical axes of the four left panels. Histograms indicate clliptic flow
wncertaintics for Au-+Au collisions,
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STAR data
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