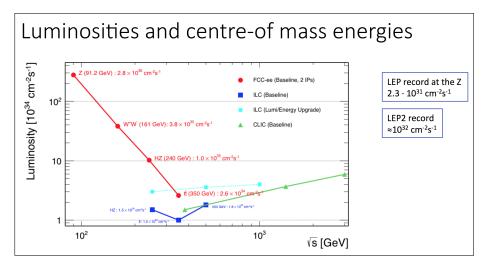
Interference effects in very precise measurement of muon charge asymmetry at FCCee

S. JADACH

in collaboration with S. Yost

Institute of Nuclear Physics PAN, Kraków, Poland

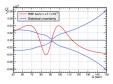

Partly supported by the grants of Narodowe Centrum Nauki 2016/23/B/ST2/03927 Prepared for FCCee meeting, CERN, Jan. 9-th, 2018

S. Jadach (IFJ PAN, Krakow)

QED effects in charge asymmetry near Z peak

CERN, Jan. 9-th, 2018 1 / 20

S. Jadach (IFJ PAN, Krakow)


INTRODUCTION

- \blacktriangleright $M_Z, G_F, \alpha_{QED}(0)$ outweigh other data in the "testing power" in the SM overall fit to experimental data
- ▶ However, $\alpha_{OFD}(Q^2 = 0)$ is ported to $\alpha_{OFD}(Q^2 = M_z^2)$ using low energy QCD data -> this limits its usefulness beyond LEP precision.
- Patrick Janot has proposed (arxiv:1512.05544) another observable, $A_{FB}(e^+e^- \rightarrow \mu^+\mu^-)$ at $\sqrt{s_+} = M_Z \pm 3.5 GeV$, with a similar "testing profile" in the SM overall fit as $\alpha_{QED}(M_7^2)$, but could be measured at high luminosity FCCee very precisely. (It is advertised as "determining $\alpha_{OED}(M_Z^2)$ " from $A_{FB}(\sqrt{s_+})$ ".)
- However, A_{FB} near $\sqrt{s_{\pm}}$ is varying very strongly, hence is prone to large QED corrections (for instance ISR).
- In particular A_{FB} away from Z peak gets also a direct sizable contributions from QED initial-final state interference, nickname IFI.
- It is therefore necessary to re-discuss how efficiently these trivial but large QED effects in A_{FB} can be controlled and/or eliminated.

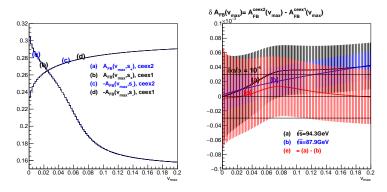
The aim is to reduce QED uncert. to $\delta A_{FB}(e^+e^- \rightarrow \mu^+\mu^-) < 3 \times 10^{-5}$

- ► Presently $\Delta \alpha_{QED}(M_Z)/\alpha_{QED} \simeq 1.1 \times 10^{-4}$ (using low energy e^+e^- data).
- ► Recent studies using the same method of dispersion relations are quoting possible improvements down to Δα/α ≃ (0.5 0.2) × 10⁻⁴.
- ► To be competitive A_{FB} has to provide $\Delta \alpha / \alpha < 10^{-4}$
- Using Fig.4 of arxiv:1512.05544 paper by Patrick Janot

$\Delta lpha / lpha < 10^{-4}$ translates into $\Delta A_{FB} < 3 imes 10^{-5}$

- ► LEP era estimate of QED uncertainty in A_{FB} outside Z peak was $\sim 2.5 \times 10^{-3}$, see "The LEP-2 MC Workshop 2000", arxiv:0007180.
- Its improvement by at least factor 200 sounds as a very ambitious goal!
- ► Encouraging precedent: for QED photonic corrs. to Z-lineshape (~ 30%), its uncertainty reduced down to $\delta\sigma/\sigma \simeq 3 \times 10^{-4}$, (Jadach,Skrzypek,Martinez, Phys.Lett.B280(1992)129)!

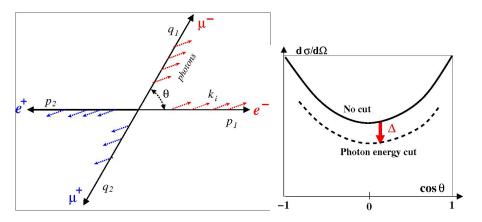
S. Jadach (IFJ PAN, Krakow)


QED (photonic) correction effects in $A_{FB}(e^+e^- \rightarrow \mu^+\mu^-)$ General features

- ► Pure ISR (initial state radiation) indirect influence due to reduction of √s. Non-soft h.o. missing corrs. under very good control, see next slide.
- Pure FSR (final state radiation) for sufficiently inclusive event selection (cut-offs) generally small, but cut-off dependence has to be controlled with high quality MC.
- Direct contribution of IFI (initial-final state interference) is suppressed at the peak but sizable off-peak.
- IFI effect comes from non-trivial matrix-element, even in the soft-photon approximation.
- KKMC Monte-Carlo program (J.S., Ward, Was, Phys.Rev. D63 (2000)) is the most sophisticated tool to calculate all the above effects.

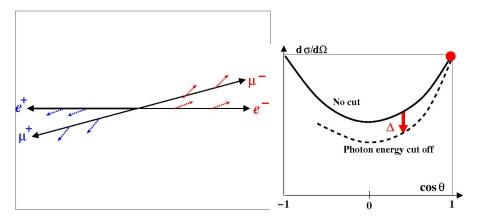
4

Estimate QED ISR uncertainty in A_{FB} at $\sqrt{s} \sim M_Z \pm 3 { m GeV}$


- Cut on energy of all photons $v < v_{max}$, $v \equiv 1 \frac{M_{\mu\mu}^2}{s} \simeq \sum_i \frac{2E_i^{\gamma}}{\sqrt{s}}$
- Examined downgrade non-soft of QED M.E. from CEEX2 to CEEX1
- For photon cut-off below $v_{\text{max}} = 0.06$ we get $\delta A_{FB} < 3 \cdot 10^{-4}$.
- Looks good, but to be x-checked, also using semianalytical KKsem.
- Important contribution from e⁺e⁻ soft pairs not included!!!
- Statistical errors overestimated (MC weight differences)

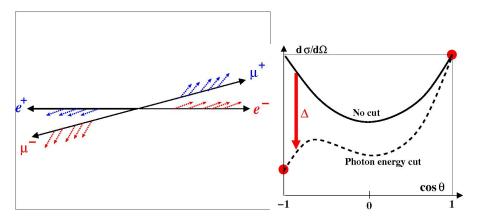
S. Jadach (IFJ PAN, Krakow)

A general understanding of the IFI


- In e[−]e⁺ → µ[−]µ⁺ not only e[−] gets annihilated, but also its accompanying elmgt. field of charge −1. New elmg. field of charge −1 is created along µ[−].
- At wide angles these two processes are independent sources of real photos. The effect of cut on photon energy is essentially θ-independent.

A general understanding of the IFI

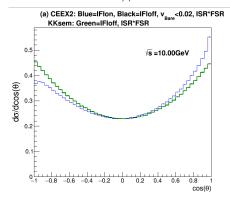
- In e⁻e⁺ → µ⁻µ⁺ not only e⁻ gets annihilated, but also its accompanying elmgt. field of charge −1. New elmg. field of charge −1 is created along µ⁻.
- ▶ μ^- close to initial e^- inherits part of e^- elmg. field → bremsstrahlung is weaker. Hence for $\theta \to 0$ zero effect due to cut on real photons!



S. Jadach (IFJ PAN, Krakow)

A general understanding of the IFI

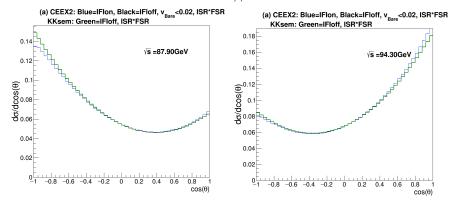
- In e⁻e⁺ → µ⁻µ⁺ not only e⁻ gets annihilated, but also its accompanying elmgt. field of charge −1. New elmg. field of charge −1 is created along µ⁻.
- ► In the **backward** direction, replacing field of charge -1 with that of +1 is "more violent", more real photons \rightarrow stronger effect of the cut, dip in $d\sigma/d\Omega$.



S. Jadach (IFJ PAN, Krakow)

IFI effect in the muon angular distri. at $\sqrt{s} = 10 GeV, \ M_Z \pm 3.5 GeV$

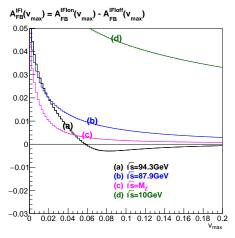
for total photon energy cut $v = 1 - M_{\mu\mu}^2/s < v_{max} = 0.02$ (KKMC)


- A few percent effect seen in the angular distribution.
- Good agreement of KKMC and semianalytical KKsem when IFI is off.
- (Inclusion of IFI in semianalytical KKsem is quite urgent!)

S. Jadach (IFJ PAN, Krakow) QED effects in charge asymmetry near Z peak CERN, Jan. 9-th, 2018 8 / 20

IFI effect in the muon angular distri. at $\sqrt{s} = 10 GeV$, $M_Z \pm 3.5 GeV$

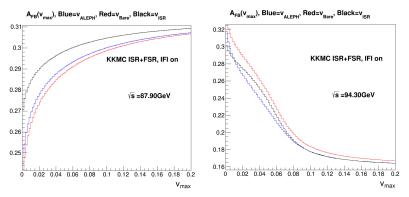
for total photon energy cut $v = 1 - M_{\mu\mu}^2/s < v_{max} = 0.02$ (KKMC)



- A few percent effect seen in the angular distribution.
- Good agreement of KKMC and semianalytical KKsem when IFI is off.
- (Inclusion of IFI in semianalytical KKsem is quite urgent!)

S. Jadach (IFJ PAN, Krakow)

Direct influence of IFI in $A_{FB}(e^+e^- ightarrow \mu^+\mu^-)$ at $\sqrt{s} \sim M_Z \pm 3 { m GeV}$



- FI suppression by $\sim \Gamma/M$ seen comparing $\sqrt{s} = 10$ GeV and 91GeV results.
- IFI effect is \sim 3% at s_{\pm} (\sim 1% when combined).
- IFI is huge, compared to the aimed precision $\delta A_{FB} \sim 10^{-5}$
- $\sim \Gamma/M$ suppression dies out for $v_{max} < 0.04$.

S. Jadach (IFJ PAN, Krakow)

How important is the type of kinematic cuts in A_{FB} ?

- ► v_{ALEPH} is FSR-inclusive, $v_{bare} = 1 M_{\mu\mu}^2 / s$ is FSR-sensitive and v_{ISR} from $M_{\mu\mu}^2$ after ISR before FSR (from MC).
- It matters a lot, > 1%, especially above Z!
- It does not seem to cancel between s₊ and s₋.
- MC like KKMC is mandatory to control/eliminate this effect.
- N.B. Effect of changing definition of muon cos θ is completely negligible!

S. Jadach (IFJ PAN, Krakow)

QED effects in charge asymmetry near Z peak

CERN, Jan. 9-th, 2018 10

Theoretical uncertainty of soft-resummed IFI contribution to resonant matrix element implemented in KKMC

- Basicaly, soft-resumed M.E. in KKMC looks perfect, but all resummed calculation are to some extent non-unique.
- Pioneering works in the soft-photon resummation for resonant e + e⁻ annihilation including IFI were done by Frascati group, (Greco et.at. Phys. Lett. B101 (1975) 234, Phys. Lett. B171 (1980) 118.)
- KKMC implements and extends this technique, see ref. [JWW-2001], Jadach, Ward, Was, Phys. Rev. D63(2001)113009
- What is badly needed is another calculation of comparable quality in order to test predictions of KKMC.

Multiphoton matrix element in KKMC

Neglecting for clarity non-soft parts it reads (see [JWW-2001]):

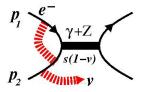
 $\sigma(s) = \frac{1}{flux(s)} \sum_{n=0}^{\infty} \frac{1}{n!} \int d\tau_{n+2} \prod_{i=1}^{n} \int \frac{d^3k_i}{2k_i^0} \mathcal{M}^{\mu_1,\mu_2,...,\mu_n}(k_1,...,k_n) \big[\mathcal{M}_{\mu_1,\mu_2,...,\mu_n}(k_1,...,k_n) \big]^*$

$$\mathfrak{M}^{\mu_{1},...,\mu_{n}}(k_{1},...,k_{n}) = \sum_{V=\gamma,Z} e^{\alpha B_{4}(p_{i},q_{j})+\alpha \Delta B_{4}^{\vee}(P-K_{l})} \sum_{\{l,F\}} \prod_{i \in I} j_{l}^{\mu_{i}}(k_{i}) \prod_{r \in F} j_{F}^{\mu_{r}}(k_{r}) \mathcal{M}_{V}^{(0)}(P-K_{l})$$

$$j_{l}^{\mu}(k) = \frac{e}{4\pi^{3/2}} \left(\frac{p_{1}^{\mu}}{p_{1}\cdot k} - \frac{p_{2}^{\mu}}{p_{2}\cdot k}\right), \quad j_{F}^{\mu}(k) = \frac{e}{4\pi^{3/2}} \left(\frac{q_{1}^{\mu}}{q_{1}\cdot k} - \frac{q_{2}^{\mu}}{q_{2}\cdot k}\right), \quad P = p_{1} + p_{2}, \quad K_{l} = \sum_{i \in I} k_{j}.$$

B₄(p_i, q_i) is YFS virtual formfactor. The additional αΔB^Z₄(P) = -2 α/π ln -t/s ln M²_Z-iM_Z (P-K₁)²/M_Z, ΔB^γ₄ = 0, (Greco et.al. 1974) is mandatory for real/virtual cancellations of ~ α/π ln T/M_Z. (To be improve further?).
 Almost complete O(α²) (except penta-boxes) QED virtual and real corrs. and EW O(α¹) (DIZET) are also included in KKMC.

S. Jadach (IFJ PAN, Krakow) QED effects in charge asymmetry near Z peak CE

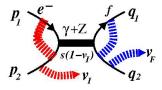

CERN, Jan. 9-th, 2018 12 / 20

High precision Z-lineshape QED ISR formula used at LEP

13/20

decades of work by: Yennie, Frautschi, Suura, Gribov Lipatov, Kuraev, Fadin, Greco, Pancherini, Srivastava, Jackson, Martin, Berends, Burgers, Jadach, Skrzypek, Ward,...

$$\sigma(s, v_{\max}) = \int_0^{v_{\max}} dv \ F(\gamma_l) \gamma_l v^{\gamma_l - 1} \ \sigma_B(s(1 - v)) \ [1 + \text{NIR}(v)],$$
$$F(\gamma) \equiv \frac{e^{-C_E \gamma}}{\Gamma(1 + \gamma)}, \quad \gamma_l = 2\frac{\alpha}{\pi} \Big(\ln \frac{s}{m_e^2} - 1 \Big)$$


- Non-infrared perturbative function NIR(ν), for δσ/σ ≃ 2 × 10⁻⁴ precision, to be found in J.S.+Skrzypek+Pietrzyk Phys.Lett.B280(1992)129.
- One can add Electroweak corrections to σ_B , 1st order FSR, generalize to $d\sigma/d\Omega$ etc. as it was done in ZFITTER.

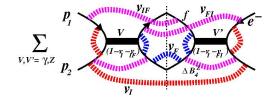
S. Jadach (IFJ PAN, Krakow) QED effects in charge asymmetry near Z peak CERN, Jan. 9-th, 2018

KKMC extensively tested with ISR+FSR (IFI off) formula

implemented in semianalytical program KKsem, part of KKMC distribution

$$\begin{split} \frac{d\sigma}{d\Omega}(s,\theta,v_{\text{max}}) &= \int dv_l \ dv_F \ \delta(v-v_l-v_F)\theta(v < v_{\text{max}}) \\ &\times F(\gamma_l)\gamma_l v_l^{\gamma_l-1} \ F(\gamma_F)\gamma_l v_F^{\gamma_F-1} \ \frac{d\sigma_0}{d\Omega} \left(s(1-v_l),\theta\right) \ \left[1 + \text{NIR}(v_I,v_F)\right], \\ v &= 1 - (q_1 + q_2)^2/s, \quad \gamma_F = 2\frac{\alpha}{\pi} \left(\ln\frac{s}{m_f^2} - 1\right) \end{split}$$

- In KKsem $d\sigma_0/d\Omega$ is decorated with EW corrections
- For $v_{\text{max}} < 0.2$ definition of θ is not essential.
- Non-IR function NIR(v_l, v_F) from analytical integration of the MC distributions.


►
$$\delta(v - v_l - v_F) \rightarrow \delta(1 - v - (1 - v_l)(1 - v_F))$$
 more realistic for hard emissions.

S. Jadach (IFJ PAN, Krakow)

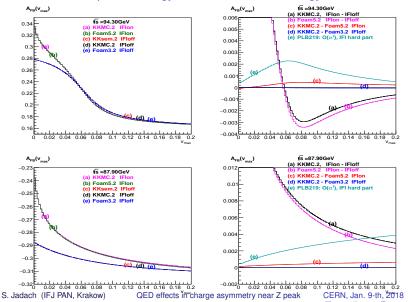
NEW formula for precision calibration of ISR+FSR+IFI

Eq.(90) in [JWW2001] and in older Frascati works, implemented recently in KKsem

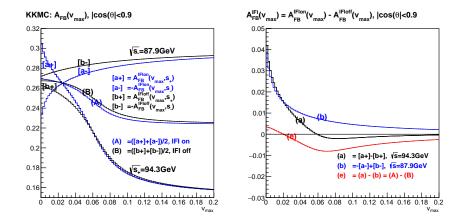
$$\frac{d\sigma}{d\Omega}(s,\theta,v_{\text{max}}) = \sum_{V,V'=\gamma,Z} \int dv \, dv_I \, dv_F \, dv_{IF} \, dv_{FI} \, \delta(v-v_I-v_F-v_{IF}-v_{FI})\theta(v < v_{\text{max}}) \\ \times F(\gamma_I)\gamma_I v_I^{\gamma_I-1} F(\gamma_F)\gamma_I v_F^{\gamma_F-1} F(\gamma_{IF})\gamma_{IF} v_{IF}^{\gamma_{IF}-1} F(\gamma_{FI})\gamma_{FI} v_{IF}^{\gamma_{FI}-1} \\ \times e^{2\alpha\Delta B_4^V} \mathcal{M}_V^{(0)}(s(1-v_I-v_{IF}),\theta) \left[e^{2\alpha\Delta B_4^{V'}} \mathcal{M}_{V'}^{(0)}(s(1-v_I-v_{FI}),\theta) \right]^* \left[1 + \text{NIR}(v_I,v_F) \right],$$

- Convolution of four radiator functions (instead of two)!
- Extra virtual formfactor ΔB_4^Z due to IFI for resonant contrib.

$$\blacktriangleright \gamma_I = Q_{\theta}^2 \frac{\alpha}{\pi} [\frac{s}{m_{\theta}^2} - 1], \quad \gamma_{IF} = \gamma_{FI} = Q_{\theta} Q_f \frac{\alpha}{\pi} \ln \frac{1 - \cos \theta}{1 + \cos \theta}, \quad F(\gamma) = \frac{e^{-C_E \gamma}}{\Gamma(1 + \gamma)}$$

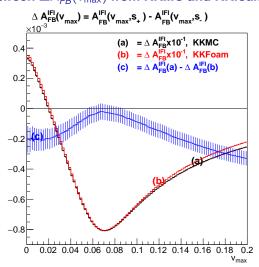

S. Jadach (IFJ PAN, Krakow)

IFI from KKMC tested using new KKfoam at the $\delta A_{FB} \sim 10^{-4}$ level



16/20

 v_{max} = cutoff on total photon energy in units of the beam energy

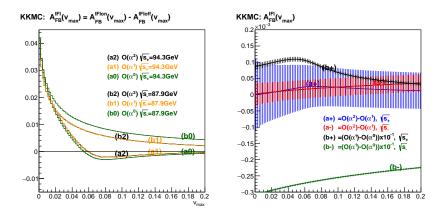

 $A_{FB}(v_{\max}, s_{\pm})$ from KKMC with $\mathcal{O}_{exp.}(\alpha^2)$ ISR+FSR and $\mathcal{O}_{exp.}(\alpha^1)$ IFI.

Results from KKfoam look the same. Let us chack the differences KKMC-KKfoam. See next slide.

S. Jadach (IFJ PAN, Krakow)

Differences between $\Delta A_{FB}^{|F|}(v_{max})$ from KKMC and KKfoam $\sim 2 \cdot 10^{-4}$.

More work needed on the improvement of KKfoam: inclusion of complete $O(\alpha^1)$ hard non-soft IFI component.


S. Jadach (IFJ PAN, Krakow)

QED effects in charge asymmetry near Z peak

CERN, Jan. 9-th, 2018 18 / 20

IFI component in $A_{FB}(s_{\pm})$ from KKMC

IFI component in $A_{FB}(s_{\pm})$ obtained using KKMC program with three types of the increasingly sophisticated QED matrix element, $\mathcal{O}_{exp.}(\alpha^{i})$, i = 0, 1, 2. Precision $\delta A_{FB}^{IFI} \sim 3 \cdot 10^{-3}$ seems to be within reach...

S. Jadach (IFJ PAN, Krakow)

Summary

- The influence of IFI on A_{FB} is huge, as compared to precision scale aimed at FCCee.
- Strong \sqrt{s} dependence of A_{FB} near $M_Z \pm 3.5 GeV$ matters (ISR).
- However, IFI could be calculated in perturbative QED very precisely, thanks to power of the semi-soft photon resummation, similarly as huge QED correction to Z lineshape.
- IFI effect is strongly dependent on the type and strength of kinematic cuts – good quality MC implementation is mandatory.
- KKMC simulates soft (hard) real photons including IFI in an almost perfect way.
- ► New encouraging results from KKfoam/KKMC comparisons.
- More work needed to cross-check KKMC and get more/better quantitative results down to δA_{FB} ∼ 10⁻⁵ needed for FCCee.