

Perspectives on the determination of systematic uncertainties at HL-LHC

Simone Pagan Griso (LBNL) Meenakshi Narain (Brown U.)

on behalf of the ATLAS and CMS Collaborations

Workshop on the physics of HL-LHC, and perspectives at HE-LHC CERN, 19th Jun 2018

Outline

- Introduction
- YR18 approach
 - Guiding principles
 - How to apply systematics to projection studies
- Overview of main uncertainties
 - Theory and method
 - Jets and MET
 - Heavy-flavor tagging
 - Tau reconstruction & ID
 - Electrons and Photons
 - Muons
- Summary and outlook

S. Pagan Griso

M. Narain

Questions & Discussion

Importance of systematics

- The large HL-LHC dataset will enable accurate measurements and unprecedented sensitivity to very rare phenomena
- Necessarily the current understanding of systematic uncertainties will become a limiting factor for more and more analyses

- Simplest approaches for systematic uncertainties so far:
 - 1) assume the same uncertainties as in Run-2
 - 2) no systematic (i.e. statistical uncertainty only)

3

Types of systematic uncertainties

- Incredibly complex analyses
- Large variety of qualitatively-different sources of uncertainty
- Representative case: H → ττ
 - data and MC statistics
 - also for backgrounds when constrained in Control Regions
 - Theory normalization and modeling
 - both for signal and backgrounds
 - Method uncertainties
 - Experimental systematics
 - detector-driven, including simulation accuracy
 - Luminosity

Source of uncertainty Prefit Postfit (% τ_h energy scale 0.2–0.3 τ_h energy scale 1.2% in energy scale 0.2–0.3 e energy scale 1–2.5% in energy scale 0.2–0.5 e misidentified as τ_h energy scale 3% in energy scale 0.6–0.8 μ misidentified as τ_h energy scale Dependent upon p_T and η — p_T^{miss} energy scale Dependent upon p_T and η — τ_h ID & isolation 5% per τ_h 3.5 τ_h reconstruction per decay mode 5% per τ_h 3.5 τ_h reconstruction & trigger 2% — μ ID & isolation & trigger 2% — μ ID & isolation & trigger 2% — μ misidentified as τ_h rate 12% 5 μ misidentified as τ_h rate 25% 3–8 Jet misidentified as τ_h rate 20% per 100 GeV $\tau_h p_T$ 15 Z → $\tau \tau / \ell \ell$ estimation Normalization: $\tau_h \tau_h \tau_h \tau_h \tau_h t \ell \ell \ell$ 3–15 Uncertainty in $m_{\ell \ell} \tau_{\ell} p_T \ell \ell \ell$ — — W + jets estimation Normalization (eµ, $\tau_h \tau_h \tau_h \tau_h \tau_h \tau_h \tau_$,	
e energy scale e misidentified as τ_h energy scale μ misidentified as τ_h energy scale μ misidentified as τ_h energy scale Determine the energy scale Jet energy scale Determine the energy scale Determine the energy scale Dependent upon p_T and η Dependent	Source of uncertainty		Postfit (%)
e misidentified as τ_h energy scale μ Dependent upon μ and μ	$ au_{ m h}$ energy scale	1.2% in energy scale	0.2-0.3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1–2.5% in energy scale	0.2-0.5
Jet energy scale Dependent upon p_T and $η$ — p_T^{miss} energy scale Dependent upon p_T and $η$ — τ_h ID & isolation 5% per τ_h 3.5 τ_h trigger 5% per τ_h 3 τ_h reconstruction per decay mode 3% migration between decay modes 2 e ID & isolation & trigger 2% — μ ID & isolation & trigger 2% — e misidentified as τ_h rate 12% 5 μ misidentified as τ_h rate 25% 3-8 Jet misidentified as τ_h rate 20% per 100 GeV $\tau_h p_T$ 15 Z → $\tau\tau$ /ℓℓ estimation Normalization: 7-15% 3-15 Uncertainty in $m_{\ell\ell/\tau\tau}$, p_T ($\ell\ell/\tau\tau$), —— and m_B corrections W + jets estimation Normalization (eμ, $\tau_h \tau_h$): 4-20% — Unc. from CR (e τ_h , $\mu \tau_h$): 25-15 — Extrap, from high- m_T CR (e τ_h , $\mu \tau_h$): 5-10% — QCD multijet estimation Normalization (e μ): 10-20% 5-20% Linc, from CR (e τ_h , $\mu \tau_h$): 20% 7-10 Extrap, from anti-iso. CR (e τ_h , $\mu \tau_h$): 3-15% 3-10. Diboson normalization 5% —	e misidentified as $ au_{ m h}$ energy scale	3% in energy scale	0.6–0.8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	μ misidentified as $\tau_{\rm h}$ energy scale	1.5% in energy scale	0.3-1.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		Dependent upon p_T and η	_
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ec{p}_{ ext{T}}^{ ext{miss}}$ energy scale	Dependent upon p_{T} and η	_
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	τ _h ID & isolation	5% per $\tau_{\rm h}$	3.5
e ID & isolation & trigger μ ID & isolation & μ ID	$ au_{ m h}$ trigger	5% per $\tau_{\rm h}$	3
e ID & isolation & trigger μ in isidentified as τ_h rate μ in its identified as τ_h rate μ	$\tau_{\rm h}$ reconstruction per decay mode	3% migration between decay modes	2
e misidentified as $\tau_{\rm h}$ rate μ misidentified as $\tau_{\rm h}$ rate 25% 3–8 Jet misidentified as $\tau_{\rm h}$ rate 20% per $100{\rm GeV}\tau_{\rm h}p_{\rm T}$ 15 $Z \to \tau\tau/\ell\ell$ estimation Normalization: 7 – 15% 3–15 Uncertainty in $m_{\ell\ell/\tau\tau}$, $p_{\rm T}(\ell\ell/\tau\tau)$, — and $m_{\rm h}$ corrections W+ jets estimation Normalization (e μ , $\tau_{\rm h}\tau_{\rm h}$): 4 – 20% — Unc. from CR (e $\tau_{\rm h}$, $\mu\tau_{\rm h}$): 5 – 15 — Extrap, from high- $m_{\rm T}$ CR (e $\tau_{\rm h}$, $\mu\tau_{\rm h}$): 5 – 10% — OCD multijet estimation Normalization (e μ): 10 – 20% 5– 20% Line from CR (e $\tau_{\rm h}$, $\tau_{\rm h}\tau_{\rm h}$): ∞ 5– 15% — Extrap, from anti-iso. CR (e $\tau_{\rm h}$, $\mu\tau_{\rm h}$): 20% 7– 10 Extrap, from anti-iso. CR ($\tau_{\rm h}\tau_{\rm h}\tau_{\rm h}$): 3 – 15% 3– 10 . Diboson normalization 5% — Single top quark normalization 5% — Uncertainty on top quark $p_{\rm T}$ reweighting — Integrated luminosity 2.5% — Uncertainty on top quark $p_{\rm T}$ reweighting — Limited number of events Statistical uncertainty in individual bins —		2%	_
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	μ ID & isolation & trigger	2%	_
Jet misidentified as τ_b , rate 20% per 100 GeV τ_b p_T 15 $Z \rightarrow \tau \tau / \ell \ell$ estimation Normalization: 7-15% 3-15 Uncertainty in $m_{\ell \ell / \tau \tau}$, $p_T(\ell \ell / \tau \tau)$, and $m_{\tilde{b}}$ corrections — W + jets estimation Normalization (eμ, $\tau_b \tau_b$): 4-20% — Unc. from CR (eτ _b , μτ _b): 25-15 — Extrap. from high- m_T CR (eτ _b , μτ _b): 5-10% — QCD multijet estimation Normalization (eμ): 10-20% 5-20% Linc. from CR (eτ _b , μτ _b): α5-15% — Extrap. from anti-iso. CR (eτ _b , μτ _b): α5-15% — Extrap. from anti-iso. CR (τ _t , μτ _b): 3-15% 3-10 Diboson normalization 5% — Single top quark normalization 5% — It estimation Normalization from CR: ≃5% — Uncertainty on top quark p_T reweighting — Integrated luminosity 2.5% — Limited number of events Statistical uncertainty in individual bins —	e misidentified as $ au_{ m h}$ rate	12%	5
Jet misidentified as τ_b , rate 20% per 100 GeV τ_b p_T 15 $Z \rightarrow \tau \tau / \ell \ell$ estimation Normalization: 7-15% 3-15 Uncertainty in $m_{\ell \ell / \tau \tau}$, $p_T(\ell \ell / \tau \tau)$, and $m_{\tilde{b}}$ corrections — W + jets estimation Normalization (eμ, $\tau_b \tau_b$): 4-20% — Unc. from CR (eτ _b , μτ _b): 25-15 — Extrap. from high- m_T CR (eτ _b , μτ _b): 5-10% — QCD multijet estimation Normalization (eμ): 10-20% 5-20% Linc. from CR (eτ _b , μτ _b): α5-15% — Extrap. from anti-iso. CR (eτ _b , μτ _b): α5-15% — Extrap. from anti-iso. CR (τ _t , μτ _b): 3-15% 3-10 Diboson normalization 5% — Single top quark normalization 5% — It estimation Normalization from CR: ≃5% — Uncertainty on top quark p_T reweighting — Integrated luminosity 2.5% — Limited number of events Statistical uncertainty in individual bins —	μ misidentified as $\tau_{\rm h}$ rate	25%	3–8
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		20% per 100 GeV $ au_{ m h}$ $p_{ m T}$	15
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$Z \rightarrow \tau \tau / \ell \ell$ estimation	Normalization: 7–15%	3–15
$W + \text{jets estimation} \qquad \text{Normalization } (e\mu, \tau_h \tau_h): 4-20\% \qquad - \\ & \text{Unc. from CR } (e\tau_h, \mu\tau_h): \simeq 5-15 \qquad - \\ & \text{Extrap, from high-} m_{\text{T}} \text{ CR } (e\tau_h, \mu\tau_h): 5-10\% \qquad - \\ \\ Q\text{CD multijet estimation} \qquad \text{Normalization } (e\mu): 10-20\% \qquad 5-20\% \\ & \text{Linc. from CR } (e\tau_h, \mu\tau_h): \infty 5-15\% \qquad - \\ & \text{Extrap. from anti-iso. CR } (e\tau_h, \mu\tau_h): 20\% \qquad 7-10 \\ & \text{Extrap. from anti-iso. CR } (\tau_h\tau_h): 3-15\% \qquad 3-10. \\ \\ Diboson normalization \qquad 5\% \qquad \qquad - \\ \\ \text{Single top quark normalization} \qquad 5\% \qquad \qquad - \\ \\ \text{It estimation} \qquad \text{Normalization from CR: } \simeq 5\% \qquad - \\ \\ \text{Uncertainty on top quark } p_{\text{T}} \text{ reweighting} \qquad - \\ \\ \text{Integrated luminosity} \qquad 2.5\% \qquad - \\ \\ \text{Limited number of events} \qquad \text{Statistical uncertainty in individual bins} \qquad - \\ \\ \\ \text{Limited number of events} \qquad \text{Statistical uncertainty in individual bins} \qquad - \\ \\ \\ \text{Limited number of events} \qquad \text{Statistical uncertainty in individual bins} \qquad - \\ \\ \\ \text{Limited number of events} \qquad \text{Statistical uncertainty in individual bins} \qquad - \\ \\ \\ \text{Limited number of events} \qquad \text{Limited number of events} \qquad \text{Limited number of events} $		Uncertainty in $m_{\ell\ell/ au au}$, $p_{ m T}(\ell\ell/ au au)$,	_
Unc. from CR $(e\tau_h, \mu\tau_h)$: $\simeq 5-15$ — Extrap. from high- $m\tau$ CR $(e\tau_h, \mu\tau_h)$: $5-10\%$ — QCD multijet estimation Normalization $(e\mu)$: $10-20\%$ 5-20% Linc. from CR $(e\tau_h, \tau_h\tau_h)$: $\simeq 5-15\%$ Extrap. from anti-iso. CR $(e\tau_h, \mu\tau_h)$: 20% 7-10 Extrap. from anti-iso. CR $(\tau_h, \mu\tau_h)$: $3-15\%$ 3-10. Diboson normalization 5% — Single top quark normalization 5% — Uncertainty on top quark p_T reweighting — Uncertainty on top quark p_T reweighting — Integrated luminosity 2.5% — Uncertainty on top quark p_T reweighting — Limited number of events Statistical uncertainty in individual bins —		and $m_{ m j}$ corrections	
Unc. from CR $(e\tau_h, \mu\tau_h)$: $\simeq 5-15$ — Extrap. from high- $m\tau$ CR $(e\tau_h, \mu\tau_h)$: $5-10\%$ — QCD multijet estimation Normalization $(e\mu)$: $10-20\%$ 5-20% Linc. from CR $(e\tau_h, \tau_h\tau_h)$: $\simeq 5-15\%$ Extrap. from anti-iso. CR $(e\tau_h, \mu\tau_h)$: 20% 7-10 Extrap. from anti-iso. CR $(\tau_h, \mu\tau_h)$: $3-15\%$ 3-10. Diboson normalization 5% — Single top quark normalization 5% — Uncertainty on top quark p_T reweighting — Uncertainty on top quark p_T reweighting — Integrated luminosity 2.5% — Uncertainty on top quark p_T reweighting — Limited number of events Statistical uncertainty in individual bins —	$\mathrm{W}+\mathrm{jets}$ estimation	Normalization (e μ , $ au_{ m h} au_{ m h}$): 4–20%	_
QCD multijet estimation Normalization ($e\mu$): $10-20\%$ 5-20% Line, from CR ($e\tau_{th}, \tau_{th}\tau_{th}$): $\simeq 5-15\%$ 7-10 Extrap. from anti-iso. CR ($e\tau_{th}, \mu\tau_{th}$): 20% 7-10 Diboson normalization 5% — Single top quark normalization 5% — It estimation Normalization from CR: $\simeq 5\%$ — Uncertainty on top quark p_T reweighting — Integrated luminosity 2.5% — b-tagged jet rejection ($e\mu$) 35-5.0% — Limited number of events Statistical uncertainty in individual bins —		Unc. from CR ($e\tau_h$, $\mu\tau_h$): $\simeq 5$ –15	_
Line, from CR (6 τ_1 , τ_1 , τ_2 , $\mu \tau_1$): ~ 5 -15% Extrap. from anti-iso. CR ($\epsilon \tau_h$, $\mu \tau_h$): 20% 7–10 Extrap. from anti-iso. CR (τ_1 , τ_h): 3–15% 3–10. Diboson normalization 5% — Single top quark normalization 5% — It estimation Normalization from CR: $\simeq 5\%$ — Uncertainty on top quark p_T reweighting — Integrated luminosity 2.5% — b-tagged jet rejection ($\epsilon \mu$) 3.5–5.0% — Limited number of events Statistical uncertainty in individual bins —		Extrap. from high- m_T CR ($e\tau_h$, $\mu\tau_h$): 5–10%	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	QCD multijet estimation	Normalization (eµ): 10–20%	5–20%
Extrap. from anti-iso. CR (τ_{t}, τ_{t}): 3–15% 3–10. Diboson normalization 5% — Single top quark normalization 5% — It estimation Normalization from CR: ≈5% — Uncertainty on top quark p_T reweighting — Integrated luminosity 2.5% — b-tagged jet rejection ($e\mu$) 3.5–5.0% — Limited number of events Statistical uncertainty in individual bins —			
Diboson normalization 5% — Single top quark normalization 5% — It estimation Normalization from CR: \simeq 5% — Uncertainty on top quark p_T reweighting — Integrated luminosity 2.5% — b-tagged jet rejection (eµ) 3.5–5.0% — Limited number of events Statistical uncertainty in individual bins —			
Single top quark normalization 5% — $\frac{1}{1}$ testimation Normalization from CR: ≈5% — $\frac{1}{1}$ Uncertainty on top quark p_T reweighting — $\frac{1}{1}$ Integrated luminosity. 2.5% — $\frac{1}{1}$ b-tagged jet rejection (e y) 3.5–5.0% — $\frac{1}{1}$ Limited number of events Statistical uncertainty in individual bins —		Extrap. from anti-iso. CR $(\tau_{tr}\tau_{tr})$: 3-15%	3–10
tt estimation Normalization from CR: \simeq 5% — Uncertainty on top quark p_T reweighting — Integrated luminosity 2.5% — b-tagged jet rejection (e μ) 3.5–5.0% — Limited number of events Statistical uncertainty in individual bins —	Diboson normalization	5%	_
Uncertainty on top quark $p_{\rm T}$ reweighting — Integrated luminosity. 2.5% — b-tagged jet rejection (e μ) 3.5–5.0% — Limited number of events Statistical uncertainty in individual bins —	Single top quark normalization	5%	_
Integrated luminosity. 2.5%.———————————————————————————————————	tt estimation	Normalization from CR: ≃5%	_
Limited number of events Statistical uncertainty in individual bins —		Uncertainty on top quark p_T reweighting	—
Limited number of events Statistical uncertainty in individual bins —	Integrated luminocity	2.5%	
Limited number of events Statistical uncertainty in individual bins —		2 5 5 00/	-
\$		5.3-5.0 /0 Statistical uncertainty in individual bine	
Signal theoretical uncertainty Up to 20% —	Limited number of events	Statistical uncertainty in mulvicual bills	
	Signal theoretical uncertainty	Up to 20%	_

Towards YR'18

- Synergy of ATLAS and CMS in many physics projection and complexity of the problem demands a common treatment
 - build on top of previous discussions (e.g. ECFA efforts, ...)
 - dedicated discussions/meetings with performance groups
- Develop common set of guidelines / extrapolations
 - discussions in many of the individual YR working groups
 - e.g. Higgs: dedicated internal meeting (indico) and specific presentations (F. Caola, E. Scott, A. Calandri, ...)
 - encourage dedicated analysis-specific meetings between analyzers
- Effort to produce a realistic projection
 - Focus on systematics that are most important for the projection studies we need (can't be comprehensive!)
 - Clearly we don't want to be over-conservative, nor over-optimistic
 i.e. sometimes will be still pessimistic, sometimes may be optimistic

Dominant uncertainties

Thx to: S. Jezequel, M. Testa, M. Kado

Topic	Channel	Method (existing results)	Dominant systematic uncertainty
BSM	Charged taunu	-	
BSM	A/H tautau	-	Tau Fake estimates, and embedding of Z
Combination	Couplings	-	Signal modelling (production ggF, VBF, VH and ttH and their interplay in categories)
Combination	BSM	-	
Combination	HH trilinear	-	
Diboson	hyy	Parametrized comb.	Mostly Ph-ER (ES less important), JES/JER
Diboson	hWW	Parametrized comb.	WW modelling
Diboson	hZZ	Parametrized comb.	ggF:leptons, others:JES/JER
Differential	Hbb and STXS	-	
Differential	Hyy and STXS	Run2 extrapolation	Mostly Ph-ER (ES less important)
Differential	H41 and STXS	Parametrized old	
Fermion	VHbb	Partial par.	V+jets modelling, Jet/MET, BTag
Fermion	Htautau	Partial par.	H-pT modelling, Jet/MET, Tau
Non-resonant HH	bbyy		Small (Method)
Non-resonant HH	ttHH (bbbb)	Param etrized	
Non-resonant HH	bbbb	Run2 extrapolation	Multi-jet shape (TH)
Non-resonant HH	bbtautau	Run2 extrapolation	Tau fake
Rare decay	HZy	Param etrized	Background modelling
Rare decay	Hmumu	Param etrized	Drell-Yan modelling
Top yukawa	ttH (all channels)	-	tt+V modelling, JES/JER, BTag
Top yukawa	ttH (bb)	-	tt+HF modelling, BTag, JES/JER

- Example above for a subset of Higgs projections
- Most "wanted": Jet/γ Energy Scale/Resolution, MET, B-tagging, Tau
- Theory uncertainties will be playing a prominent role

Common Guiding Principles

- Statistics-driven sources: data $\rightarrow \sqrt{L}$, simulation \rightarrow 0
 - account for large statistics available
 - assume will overcome limitations in generating large simulations

Intrinsic detector limitations stay ~constant

- usage of full simulation tools for detailed analysis of expected performance, thanks to the large effort for TDRs preparation
- detector simulation advances and operational experience may compensate for e.g. detector aging

Theory uncertainties tentatively halved

- applies to both normalization (x-sec) and modeling
- more dedicated discussions with <u>inputs from theorists welcome</u>!

Extrapolation based mostly on methods available now

challenges as pile-up compensated by algorithmic improvements

YR'18 Approach

Approach depends on specific projection sensitivity and readiness

Implemented Strategy

CMS PAS FTR-16-002

	S1	S1+	S2	S2+	
Data statistics		\			Scaling of statistical uncertainty √L
Detector improvements					Accounts for expected improvements of detector performance and degradation due to additional pile-up
Projection of systematics					Accounts for expected systematic uncertainties achievable at HL-LHC

Whenever feasible present results as

value ± stat ± syst_exp ± syst_theory [± syst_lumi]

Systematics in Run-2 extrapolations

- Usually based on existing statistical frameworks
 - capture the full complexity of multi-variables / multi-region analyses
- Account for expected performance by scaling signal/backgrounds yields
- Systematics implemented as numerous nuisance parameters
 - consider/scale leading sources for HL-LHC projections
 - provide expected scaling for most common leading uncertainties
- Profiling can lead to over-constraints or loss of validity of correlation model
 - scale uncertainty a-posteriori when fit is not adequate

Systematics in "truth-based" projections

- Parametrized detector performance or delphes "reconstruction"
 - more rarely full-simulation samples too
 - allows re-optimization of selections and direct usage of parametrized performance of upgraded detector
- Consider leading systematic uncertainties if dominant over stat.
 - Applied shifting "reconstructed" quantities and assessing impact
- Non-trivial extrapolation to run-2 "inaccessible" regions/features
 - detector capabilities (timing, ...)
 - kinematics (large η tracking, high p_{τ,}...)_⅀

Theory uncertainties

- Signal/Background simulations rely on advances in x-section integrators and generators
- General guideline for normalization and modeling → halved
 - e.g. improvements in higher-order corrections and resummation
 - some observables may improve more (p_⊤(top)?) → theorists' input
- PDF uncertainties unlikely to improve as significantly

Method/Modeling uncertainties

- Expected background often constrained in dedicated control regions
- Extrapolation from control to signal region:
 - MC prediction → modeling uncertainty
 - entirely data-driven methods → check assumptions often in MC
- In both cases expect:
 - closure of method → harder to predict, keep same
 - statistics in control region → ~sqrt(L)
 - theory uncertainty critical → halved

• Theorists' input crucial on a case by case Jun 19th, 2018

1

Experimental: Jet Energy Scale

- Used as example of experimental systematic with various sources
- Starting point: latest run-2 public results
- Will go in a bit more detail for this important systematic to illustrate the type of process ongoing

Example: Anatomy of Jet energy scale

- Absolute "in-situ" JES
 - low-medium p_⊤ from Z+jets balance study
 - dominated by generator differences, pile-up rejection, radiation
 - overall expect improvements to balance challenges → keep same
 - high-p_τ dominated by photon energy scale in γ+jets balance
 - Expect better accuracy with large statistics → halved
 - Other components will be neglected, based on current experience

Example: Anatomy of Jet energy scale

- Flavor composition and response
 - mainly comes from how generators model gluon jet radiation
 - rely on fragmentation measurements and re-tuning of parton shower generators
 - Propose to have two scenarios:
 - Optimistic → halved
 - Baseline → keep same

Jet Energy Resolution / MET

- JER: expect to achieve run-1 performance, despite harsher conditions
 - → run-1 values

- MET systematics driven by object scale/resolution uncertainties
- Soft-term uncertainties are rarely dominant and hard to extrapolate
 - → keep same

discuss exceptions on a case-by-case

Electrons/Photons:

- Run 2 ATLAS: 0.5% e/γ
 - Reco and ID
- Run 2 CMS:
 - Reconstruction: 0.2-1% (depends on eta)
 - depends on the working point

HL-LHC:

- With higher statistics and upgraded detector, effects due to background modeling, ISR modeling, signal resolution may decrease
- However, effects due to pileup, especially for isolation may lead to increased systematics
- Current studies indicate a projected systematics for
- reco/ID: 0.5% for electrons (including isolation)

e/γ Energy Scale

ATLAS Run2
 0.1%(0.2%) to 0.3%(0.5%) for e (γ)

CMS Run 2

measured vs nominal peak position of Z

• propagate difference to H \rightarrow 4 μ (4e) leading to uncertainty of 0.04% (0.3%) for 4 μ (4e)

→ keep same for HL-LHC

- larger dataset will help in monitoring detector stability
- critical understanding of detector, seems difficult to go much further
- expect to be able to mitigate larger pile-up effects

e/γ Energy Resolution

- Detector dependent
- ATLAS HL-LHC:
 - Study resolution for different pileup
 - Increase due to pileup noise at low p_T

CMS HL-LHC

 Study energy resolution as a function of aging and PU

Table 9.3: Single photon energy resolutions for simulated photon gun samples with various detector conditions and photon categories.

Detector conditions	Photon category	$\frac{\sigma_{\text{eff}}(E)/E}{p_{\text{T}}^{\gamma} = 50 \text{GeV}} p_{\text{T}}^{\gamma} = 100 \text{GeV}$		
	F22	$p_{\rm T} = 50 {\rm GeV}$	$p_{\rm T} = 100 {\rm GeV}$	
	max15, all photons	2.5%	1.6%	
Pileup 200, 1000 fb ⁻¹ ageing	E3×3, unconverted photons	2.1%	1.6%	
Fileup 200, 1000 ib - ageing	max15, all photons	2.7%	1.7%	
	E2 v2 unconverted photons	2.00/	ງ ງ 0/	
1 , 0 0	max15, all photons	4.8%	2.5%	
Pileup 200, 4500 fb ⁻¹ ageing	E3×3, unconverted photons	3.9%	2.8%	
	max15, all photons	6.0%	3.6%	

19

Muons:

- Run 2 ATLAS: 0.1% (reco & ID)
- Run 2 CMS: ~0.1-0.5%
 - Reco: 0.1-0.4% muons (depends on eta)
 - Identification & isolation: 0.4% muons
 - depends on the working point
- HL-LHC:
 - With higher statistics and upgraded detector, effects due to background modeling may decrease
 - In general robust against pileup
 - However, isolation dependence on PU may lead to increased systematics
- Projected systematics for
- reco/ID and isolation: 0.1-0.4% for muons
 - (depends on working point and eta)
- Scale and resolution also well measured

Di-Muon Mass Resolutions

 Tracker upgrade improvements in the dimuon/4µ mass resolution needs to be folded in the projections based on Run2

Taus

- Tau ID efficiency systematics:
- Run2 uncertainty: ~5% (ATLAS and CMS)
 - Simulation τ modeling
 - Tracking eff. systematics (CMS: 3.5% for low p_T)
 - Expect to improve with new tracker
 - Fake backgrounds j → τ_h multiplicity of charged hadrons in hadronization of q/g jets
- For HL-LHC
- Use Run2 floor of 4-7% (depending on decay mode).
 - Effect of pileup on isolation possibly dominates
 - Under discussion p_T > 250 GeV
 - Improvements can be expected from further developments e.g. advanced machine learning for ID & pileup mitigation.
- In case the analysis has a high impact from this uncertainty, we recommend to also quote the result with half the uncertainty.
- Tau Energy Scale systematics:
- Expect floor of ~ 1.5-3% (depending on eta)
 - Theory modeling, detector, in-situ
 - advancement in methods may further reduce the in-situ unc.

Run2 Tau reco/ID

Run2 Tau energy scale

Flavor tagging

 Goal: systematic uncertainties for b-, c-, light & PU jets parameterized vs jet p_T/η

Run 2 systematics:

6/19/18

b-jet tagging

- b jet tagging efficiency and systematics in Run2:
- ATLAS and CMS:
 - measurements from data rely on ttbar events for jet pT range: 30-300 GeV
- CMS:
 - Multijets with muon from semileptonic b hadron decays cover pT range 20-1000 GeV
- Several methods are used for each sample.
 - Their combination allows to reduce the overall uncertainty.

b-jet tagging systematics in Run2

- Common or partially common in both sets of methods:
 - b quark fragmentation, branching fractions of b and c hadrons, jet energy scale and resolution, pileup modeling.

Systematics specific to the ttbar methods:

- Factorization & renormalization scales
- Modeling ttbar generator & simulation
- physics background yield
- tagging of non-b jets
- missing ET modeling
- ID/isolation of lepton from W decay

- fraction of gluon splitting into b quark pair

 - muon selection
 - calibration and contribution from non-b jets
 - b jet template

b-jet tagging systematics for HL-LHC

CMS Run2:

- ttbar & muon-jet methods provide compatible b jet tagging efficiencies within a precision of 1% (20-300 GeV)
 - Probably due to intrinsic difference in b jets with or without a muonic decay
- systematic uncertainty rises from 2--6% between 400-1000 GeV

ATLAS:

- main systematic contribution is due to the ttbar simulation modeling
- with introduction of non-ttbar based b-tagging calibration methods, able reduce the uncertainties for jet p_T >300 GeV to values similar to CMS

• For HL-LHC:

- assume that all systematic uncertainties on
- the b jet tagging efficiency will be
- reduced by a factor of two.
- A parametrization of the overall uncertainty is derived as a function of the b jet p_T, with a minimum set at 1% around 100 GeV.

c-jet tagging systematics for HL-LHC

- ATLAS and CMS: measurements from the data in Run 2 rely on single lepton ttbar events and on W+c events
- Common or partially common in both methods:

 parton distribution function, factorization and renormalization scales, c quark fragmentation, W-lepton ID/isolation, jet energy scale and resolution, pileup modeling.

- Systematics specific to ttbar method:
 - cross-section of the simulated processes
 - integrated luminosity
 - tagging of light flavour jets & b jets
- Systematics specific to W+c method:
 - D $\rightarrow \mu$ branching fraction
 - soft muon requirement
 - number of tracks in the jet
 - background estimate, missing ET modeling

 For HL-LHC: assume that the systematic uncertainties on the c jet tagging efficiency will be reduced by a factor of two at HL-LHC.

Light-jet tagging systematics for HL-LHC

- ATLAS & CMS rely on the negative tag method
- ATLAS also applies an adjustment of the Monte Carlo simulation to the data in order to estimate the mistag rate.
- Main systematics of the negative tag method:
 - sign flip probability
 - fraction of b and c jets in multijet sample
- Other systematic uncertainties are due to
 - fraction of gluon jets in the multijet sample
 - contribution from K⁰_S and λ decays
 - secondary interactions in the detector material
 - fraction of mismeasured tracks
 - event sample dependence
 - pileup modeling.
- ATLAS MC adjustment method:
 - the main systematics on the are due to track uncertainties (impact parameter resolution, mismeasured tracks)
- The most significant systematics can be directly estimated from data measurements
- Assume that they will be reduced by a factor two at HL-LHC and is estimated to be 5%, 10%, 15% uncertainty for the operating points with 10%, 1%, and 0.1% mistag rates

CMS

35.9 fb⁻¹ (13 TeV, 2016)

Boosted jets:

- A caveat: The boosted jets effort continue to benefit from advanced ML/AI techniques. Currently such improvements are underway, but too early in the study to derive their impact for projected systematics
- For now, we use uncertainties same as Run 2
 - Jet mass scale uncertainty: 1%
 - Jet mass resolution: 10%
 - W tagging efficiency: 10% (governed by Herwig vs Pythia)
- Higgs tagging values x2 improvement compared to Run2 (CMS)
 - H jet mass scale and resolution: 1%
 - H jet τ_{21} selection: 13%
 - H-tagging correction factor: 3.5%

Summary of Experimental Uncertainties*

Source	YR2018 Uncertainties
Luminosity	1-1.5%
Muon efficiency (ID, iso)	0.1-0.4%
Electron Efficiency (ID, iso)	0.5%
Tau efficiency (ID, trigger, iso)	5% (if dominant use 2.5%)
Photon efficiency (ID, trigger, iso)	2%
Jet Energy Scale	1-2.5% #
Jet Energy Resolution	1-3% #
b-jet tagging efficiency	1%
c-jet tagging efficiency	2%
light-jet mistag rate	5% (@10% mistag rate) #

[#] Note: factor of 2 improvement compared to Run 2

^{*} Note: These uncertainties are representative values. The dependence for example of p_T and eta and the operating points, if applicable, need to be taken into account.

Summary and outlook - 1/2

- Systematics play an important role in assessing HL-LHC potential
 - Effort to ensure coherence of CMS/ATLAS approaches
- Good agreement over common general guidelines:
 - statistics-driven sources: data $\rightarrow \sqrt{L}$, simulation \rightarrow 0
 - intrinsic detector limitations stay ~constant
 - often new methods are expected to compensate pile-up effects
 - theory normalization/modeling → ½
- "Floor" of systematics & scaling of nuisance parameters ~finalized
 - is 1% luminosity uncertainty suitable for YR projections?
 - some experimental systematics still on the conservative side, but if dominant could test more aggressive scenarios and compare
 - Caution has to be taken in not over-constraining systematics

a-posteriori error scaling for such cases?

Summary and outlook - 2/2

- Theory uncertainties "ansatz":
 - Clear need of specific inputs from theorists beyond the general ½ guideline
 - especially for modeling uncertainties, discussions within each working group and analyses are extremely beneficial
 - common processes as ttbar, V+Jets, dibosons, ...?
 - PDF uncertainties won't likely be reduced by ½ by end of HL-LHC
 Alternative proposals?
- Uncertainties on methods that are continuously improving
 - some cases accounted for as extra pile-up mitigation
 - some others will go beyond what is foreseeable right now
 - new calibration techniques
 - new background estimation methods
 - new measurements
 - new detectors (e.g. timing, ...)
 - ...
 - inherently conservative in this realm

A huge thank you to the many colleagues inside ATLAS and CMS who made this possible!

Time is short...

we need everyone's help and input to finalize this now

Backup

Example: Anatomy of Jet energy scale

Relative "in-situ" JES

- dominated by statistics and simulation modeling
- in this case it was felt advances in modeling can be substantial

Expect it will become negligible → 0

Example: Anatomy of Jet energy scale

- Pile-up
 - Current method bring an increase uncertainty with pile-up
 - Expect new methods will be developed to at least compensate
 - Two scenarios:
 - Baseline → keep same

Punch-through, high-pT

- single particle response but kicks in when we run out of statistics in the multijet balance
- expect large statistics will allow us to make this negligible ightarrow **0**

 $_{Jun\ 19th,\ 2018}$ Optimistic \rightarrow halved

Jet Energy Scale

37

Jet Energy Resolution

Tau

- Most important components:
 - ID efficiency
 - Tau Energy Scale
 - others less important
 → neglected
- Tau ID
 - Mostly limited by systematics
 - Simulation τ modeling
 - Fakes background
 - Expect "floor" of ~ 5%
 - Under discussion p_⊤ > 250 GeV
- Tau Energy Scale
 - Theory modeling, detector, in-situ
 - Expect "floor" of ~ 2-3%
 - Under discussion for high pT

$HH \rightarrow 4b$

Jun 19th, 2018 40

Theory/Method uncertainties

- Signal/Background simulations
 - Rely on advances in x-section integrators and generators
 - General guideline for normalization and modeling → halved
- Data-driven backgrounds limited by
 - statistics in control region → will get better with ~sqrt(L)
 - closure of method → harder to predict, keep same

• Both require some judgments on a case by case, but guidelines above could still be useful

Jun 19th, 2018 4

Summary: CMS Projections for JET Energy Scale

Source	Current	Proposal	Description
Absolute Scale	0.5%	0.1% - 0.2%	Scales with Z(->mumu)+jet statistics, update methods to avoid low pT inefficiencies at high PU
Relative Scale	0.1% - 3%	0.1% - 0.5%	Improvements in ECAL modelling will reduce pT dependence and its uncertainty, and Z+jet and γ+jet will help constraint low pT response
Pile up	0% - 2%	0% - 2%	With updated methods, effect of additional pileup could be mitigated, the uncertainty can be kept the same
Method & Sample	0.5% - 5%	0%	difference between derivation methods and channels - likely to be understood and removed
Jet Flavor	1.5%	0.75%	Halved by taking Pythia/Herwig mixture as baseline, further with improved tunes and data-based methods
Time Stability	0.2%	0%	Assuming stability of data taking, and detector conditions, this can be removed
TOTAL	2% - 5%	1%-2.5%	

b-jet tagging systematics (ATLAS LH method)

LH Method								
$p_{\rm T}$ interval [GeV]	20-30	30–60	60–90	90–140	140-200	200–300		
Scale factor	1.013	1.035	1.029	1.019	0.984	0.964		
Total uncertainty	0.123	0.030	0.018	0.022	0.026	0.037		
Statistical uncertainty	0.012	0.003	0.004	0.004	0.010	0.018		
Systematic uncertainty	0.123	0.030	0.018	0.021	0.024	0.032		
Systematic Uncertainties [%]								
Matrix element modelling $(t\bar{t})$	3.2	0.3	0.9	1.1	1.1	0.7		
Parton shower / Hadronisation $(t\bar{t})$	9.0	1.5	0.3	1.0	1.4	2.2		
NNLO top $p_{\rm T}$, $t\bar{t}$ $p_{\rm T}$ reweighting $(t\bar{t})$	0.1	0.1	0.1	0.3	0.5	0.9		
PDF reweighting $(t\bar{t})$	0.9	0.2	0.2	0.3	0.4	0.4		
More / less parton radiation $(t\bar{t})$	1.7	0.9	0.4	0.3	0.6	0.4		
Matrix element modelling (single top)	0.5	0.2	0.2	0.2	0.3	0.1		
Parton shower / Hadronisation (single top)	1.1	0.1	0.1	0.0	0.1	0.2		
More / less parton radiation (single top)	0.0	0.0	0.0	0.1	0.1	0.1		
DR vs. DS (single top)	0.1	0.1	0.1	0.1	0.1	0.2		
Modelling $(Z+jets)$	0.6	0.5	0.5	0.9	0.6	1.2		
$p_{\rm T}$ reweighting $(Z+{\rm jets})$	0.0	0.1	0.0	0.1	0.1	0.1		
MC non-closure	1.2	0.0	0.0	0.0	0.0	0.0		
Normalisation single top	0.2	0.1	0.0	0.1	0.1	0.1		
Normalisation Z +jets	1.8	0.5	0.5	0.4	0.5	0.5		
Normalisation $Z + b/c$	0.4	0.1	0.1	0.0	0.0	0.0		
Normalisation diboson	1.6	1.1	0.7	0.6	0.7	0.8		
Normalisation misid. leptons	0.7	0.7	0.6	0.6	0.5	0.5		
Pile-up reweighting	0.3	0.0	0.0	0.2	0.3	0.6		
Electron efficiency/resolution/scale/trigger	0.1	0.0	0.0	0.0	0.0	0.0		
Muon efficiency/resolution/scale/trigger	0.1	0.0	0.0	0.0	0.2	0.2		
$E_{ m T}^{ m miss}$	0.1	0.0	0.0	0.0	0.1	0.1		
m J m V T	0.1	0.0	0.1	0.1	0.0	0.1		
Jet energy scale (JES)	6.8	1.4	0.5	0.4	0.5	0.7		
Jet energy resolution (JER)	0.0	1.3	0.3	0.1	0.3	0.4		
Light-flavour jet mis-tag rate	0.6	0.1	0.0	0.0	0.0	0.0		
<i>c</i> -jet mis-tag rate	0.6	0.1	0.1	0.0	0.0	0.0		
Luminosity	0.2	0.1	0.1	0.1	0.1	0.1		

