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Importance of systematics

● The large HL-LHC dataset will enable accurate measurements and 
unprecedented sensitivity to very rare phenomena

● Necessarily the current understanding of systematic uncertainties 
will become a limiting factor for more and more analyses

with
syst.

HH → 4b

● Simplest approaches for systematic uncertainties so far:
1) assume the same uncertainties as in Run-2
2) no systematic (i.e. statistical uncertainty only)
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Types of systematic uncertainties

● Incredibly complex analyses
● Large variety of qualitatively-different sources of uncertainty

● Representative case: H → 
– data and MC statistics

● also for backgrounds when
constrained in Control Regions

– Theory normalization and
modeling

● both for signal and backgrounds
– Method uncertainties
– Experimental systematics

● detector-driven, including
simulation accuracy

– Luminosity
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Towards YR'18

● Synergy of ATLAS and CMS in many physics projection and 
complexity of the problem demands a common treatment

– build on top of previous discussions (e.g. ECFA efforts, …)
– dedicated discussions/meetings with performance groups

● Develop common set of guidelines / extrapolations
– discussions in many of the individual YR working groups

● e.g. Higgs: dedicated internal meeting (indico) and specific 
presentations (F. Caola, E. Scott, A. Calandri, ...)

– encourage dedicated analysis-specific meetings between analyzers

● Effort to produce a realistic projection
– Focus on systematics that are most important for the projection 

studies we need (can't be comprehensive!)
– Clearly we don't want to be over-conservative, nor over-optimistic

i.e. sometimes will be still pessimistic, sometimes may be optimistic

https://indico.cern.ch/event/726422/
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Dominant uncertainties

● Example above for a subset of Higgs projections
● Most “wanted”: Jet/ Energy Scale/Resolution, MET, B-tagging, Tau
● Theory uncertainties will be playing a prominent role

Thx to: S. Jezequel, M. Testa, M. Kado
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Common Guiding Principles

● Statistics-driven sources: data → √L, simulation → 0
– account for large statistics available
– assume will overcome limitations in generating large simulations

● Intrinsic detector limitations stay ~constant
– usage of full simulation tools for detailed analysis of expected 

performance, thanks to the large effort for TDRs preparation
– detector simulation advances and operational experience may 

compensate for e.g. detector aging

● Theory uncertainties tentatively halved
– applies to both normalization (x-sec) and modeling
– more dedicated discussions with inputs from theorists welcome!

● Extrapolation based mostly on methods available now
– challenges as pile-up compensated by algorithmic improvements
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YR'18 Approach

● Approach depends on specific projection sensitivity and readiness

● Whenever feasible present results as

value ± stat ± syst_exp ± syst_theory [± syst_lumi]

S1 S1+ S2 S2+

Data statistics Scaling of statistical uncertainty √L

Detector
improvements

Accounts for expected improvements of 
detector performance and degradation 
due to additional pile-up

Projection
of systematics

Accounts for expected systematic 
uncertainties achievable at HL-LHC

Implemented Strategy CMS PAS FTR-16-002

https://cds.cern.ch/record/2266165?ln=en
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Systematics in Run-2 extrapolations

● Usually based on existing statistical frameworks
– capture the full complexity of

multi-variables / multi-region analyses
● Account for expected performance

by scaling signal/backgrounds yields

● Systematics implemented as numerous
nuisance parameters

– consider/scale leading sources
for HL-LHC projections

– provide expected scaling for most
common leading uncertainties

● Profiling can lead to over-constraints
or loss of validity of correlation model

– scale uncertainty a-posteriori
when fit is not adequate

VH(ccbar)
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Systematics in “truth-based” projections

● Parametrized detector performance or delphes “reconstruction”
– more rarely full-simulation samples too
– allows re-optimization of selections and direct usage of 

parametrized performance of upgraded detector

● Consider leading systematic uncertainties if dominant over stat.
– Applied shifting “reconstructed” quantities and assessing impact

● Non-trivial extrapolation
to run-2 “inaccessible” 
regions/features
– detector capabilities

(timing, ...)
– kinematics 

(large  tracking, high p
T,
...)

JHEP01 (2018) 126

https://doi.org/10.1007/JHEP01(2018)126
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Theory uncertainties
● Signal/Background simulations rely on advances in x-section 

integrators and generators
● General guideline for normalization and modeling → halved 

– e.g. improvements in higher-order corrections and resummation
– some observables may improve more (p

T
(top)?) → theorists' input

● PDF uncertainties unlikely to improve as significantly
 

CMS-PAS-FTR-17-001

http://cds.cern.ch/record/2294888?ln=en
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Method/Modeling uncertainties
● Expected background often constrained in dedicated control regions
● Extrapolation from control to signal region:

– MC prediction → modeling uncertainty
– entirely data-driven methods → check assumptions often in MC

● In both cases expect:
– closure of method → harder to predict, keep same
– statistics in control region → ~sqrt(L)
– theory uncertainty critical → halved
–

Var 2

Var 1 Signal
region

(D)

Control region
C

Control
region

A

Control 
region

B

D = C * A / B

● Theorists' input crucial on a case by case
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Experimental: Jet Energy Scale

● Used as example of experimental systematic with various sources

● Starting point: latest run-2 public results

● Will go in a bit more detail for this important systematic to illustrate 
the type of process ongoing
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● Absolute “in-situ” JES
– low-medium p

T
 from Z+jets balance study

● dominated by generator differences, pile-up rejection, radiation
● overall expect improvements to balance challenges → keep same

– high-p
T
 dominated by photon energy scale in +jets balance

● Expect better accuracy with large statistics → halved
– Other components will be neglected, based on current experience

Example: Anatomy of Jet energy scale
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● Flavor composition and response
– mainly comes from how generators model gluon jet radiation
– rely on fragmentation measurements and re-tuning of parton 

shower generators
– Propose to have two scenarios:

● Optimistic → halved
● Baseline → keep same

Example: Anatomy of Jet energy scale
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Jet Energy Resolution / MET

● JER: expect to achieve run-1
performance, despite harsher
conditions
→ run-1 values

● MET systematics driven by object scale/resolution uncertainties
● Soft-term uncertainties are rarely dominant and hard to extrapolate

→ keep same
– discuss exceptions on a case-by-case



Electrons/Photons:
• Run 2 ATLAS: 0.5% e/𝛾

• Reco and ID
• Run 2 CMS: 

• Reconstruction: 0.2-1%  (depends on eta)
• depends on the working point 

• HL-LHC:
• With higher statistics and upgraded detector, effects due to background 

modeling, ISR modeling, signal resolution may decrease
• However, effects due to pileup, especially for isolation may lead to 

increased systematics
• Current studies indicate a projected systematics for 
• reco/ID: 0.5% for electrons (including isolation)

6/19/18 17



e/𝛾 Energy Scale
• ATLAS Run2

0.1%(0.2%) to 0.3%(0.5%) for e (𝛾) 

• CMS Run 2
• measured vs nominal peak position of Z 
• propagate difference to H → 4µ (4e) leading 

to uncertainty of 0.04% (0.3%) for 4µ (4e) 

→ keep same for HL-LHC
• larger dataset will help in monitoring detector 

stability
• critical understanding of detector, seems 

difficult to go much further
• expect to be able to mitigate larger pile-up 

effects

6/19/18 18



e/𝛾 Energy Resolution
• Detector dependent 
• ATLAS HL-LHC:

• Study resolution for different pileup
• Increase due to pileup noise at low pT

• CMS HL-LHC 
• Study energy resolution as a 
function of aging and PU

6/19/18 19



Muons:
• Run 2 ATLAS:  0.1% (reco & ID)
• Run 2 CMS: ~0.1-0.5% 

• Reco: 0.1-0.4% muons (depends on eta)
• Identification & isolation: 0.4% muons
• depends on the working point 

• HL-LHC:
• With higher statistics and upgraded detector, effects 

due to background modeling may decrease
• In general robust against pileup
• However, isolation dependence on PU may lead to 

increased systematics
• Projected systematics for 
• reco/ID and isolation: 0.1-0.4% for muons 

• (depends on working point and eta)
• Scale and resolution also well measured

6/19/18 20



Di-Muon Mass Resolutions
• Tracker upgrade improvements in the dimuon/4µ mass 

resolution needs to be folded in the projections based on Run2

6/19/18 21
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• Tau ID efficiency systematics:
• Run2 uncertainty : ~5% (ATLAS and CMS)

• Simulation 𝜏 modeling 
• Tracking eff. systematics (CMS: 3.5% for low pT)

• Expect to improve with new tracker 
• Fake backgrounds j → τh multiplicity of charged hadrons in 

hadronization of q/g jets
• For HL-LHC 
• Use Run2 floor of 4-7% (depending on decay mode).

• Effect of pileup on isolation possibly dominates
• Under discussion pT > 250 GeV
• Improvements can be expected from further developments 

e.g. advanced machine learning for ID & pileup mitigation. 
• In case the analysis has a high impact from this  

uncertainty, we recommend to also quote the result with 
half the uncertainty.

• Tau Energy Scale systematics:
• Expect floor of ~ 1.5-3% (depending on eta)

• Theory modeling, detector, in-situ
• advancement in methods may further reduce the in-situ unc. 

6/19/18 22

Run2 Tau energy scale
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Flavor tagging
• Goal: systematic uncertainties for b-, c-, light & PU jets 

parameterized vs jet pT/η
• Run 2 systematics:

6/19/18 23

ATLAS
b-jet

light-jet

light-jet

b-jet

c-jet



b-jet tagging
• b jet tagging efficiency and systematics in Run2: 
• ATLAS and CMS: 

• measurements from data rely on ttbar events for jet pT range: 30-300 GeV
• CMS: 

• Multijets with muon from semileptonic b hadron decays cover pT range 20-1000 
GeV

• Several methods are used for each sample.
• Their combination allows to reduce the overall uncertainty. 

6/19/18 24



b-jet tagging systematics in Run2
• Common or partially common in both sets of methods: 

• b quark fragmentation, branching fractions of b and c hadrons, jet 
energy scale and resolution, pileup modeling. 

• Systematics specific to the ttbar methods:
•

6/19/18 25

• Factorization & renormalization scales
• Modeling ttbar generator & simulation 
• physics background yield
• tagging of non-b jets 
• missing ET modeling
• ID/isolation of lepton from W decay

• Systematics specific to muon-jet methods: 
• fraction of gluon splitting into b quark pair
• muon selection
• calibration and contribution from non-b jets
• b jet template



b-jet tagging systematics for HL-LHC
• CMS Run2: 

• ttbar & muon-jet methods provide compatible b jet tagging efficiencies within 
a precision of 1% (20-300 GeV)
• Probably due to intrinsic difference in b jets with or without a muonic decay 

• systematic uncertainty rises from  2--6% between 400-1000 GeV 
• ATLAS: 

• main systematic contribution is due to the ttbar simulation modeling
• with introduction of non-ttbar based b-tagging calibration methods, able 

reduce the uncertainties for jet pT >300 GeV to values similar to CMS 

6/19/18 26

• For HL-LHC:
• assume that all systematic uncertainties on 
• the b jet tagging efficiency will be 
• reduced by a factor of two. 

• A parametrization of the overall uncertainty is 
derived as a function of the b jet pT, with a 
minimum set at 1% around 100 GeV. 



c-jet tagging systematics for HL-LHC
• ATLAS and CMS: measurements from the data in Run 2 rely on single 

lepton ttbar events and on W+c events
• Common or partially common in both methods: 

• parton distribution function, factorization and renormalization scales, c quark 
fragmentation, W-lepton ID/isolation,jet energy scale and resolution, pileup 
modeling. 

• Systematics specific to ttbar method: 
• cross-section of the simulated processes 
• integrated luminosity
• tagging of light flavour jets & b jets

• Systematics specific to W+c method: 
• D →𝜇 branching fraction
• soft muon requirement
• number of tracks in the jet 
• background estimate, missing ET modeling

• The overall systematic uncertainty on the tagging efficiency is typically a 
factor two to three larger for c jets than for b jets. 

• For HL-LHC: assume that the systematic uncertainties on the c jet tagging 
efficiency will be reduced by a factor of two at HL-LHC.

6/19/18 27



Light-jet tagging systematics for HL-LHC
• ATLAS & CMS rely on the negative tag method
• ATLAS also applies an adjustment of the Monte Carlo simulation to the 

data in order to estimate the mistag rate. 
• Main systematics of the negative tag method: 

• sign flip probability 
• fraction of b and c jets in multijet sample

• Other systematic uncertainties are due to 
• fraction of gluon jets in the multijet sample 
• contribution from K0

S and λ decays 
• secondary interactions in the detector material 
• fraction of mismeasured tracks 
• event sample dependence 
• pileup modeling.

• ATLAS MC adjustment method:
• the main systematics on the are due to track uncertainties (impact parameter resolution, 

mismeasured tracks)
• The most significant systematics can be directly estimated from data 

measurements 
• Assume that they will be reduced by a factor two at HL-LHC and is 

estimated to be 5%, 10%, 15% uncertainty for the operating points with  
10%, 1%, and 0.1% mistag rates

6/19/18 28



Boosted jets:
• A caveat: The boosted jets effort continue to  benefit from 

advanced ML/AI techniques. Currently such improvements 
are underway, but too early in the study to derive their impact 
for projected systematics  

• For now, we use uncertainties same as Run 2
• Jet mass scale uncertainty: 1%
• Jet mass resolution: 10% 
• W tagging efficiency: 10% (governed by Herwig vs Pythia) 

• Higgs tagging – values x2 improvement compared to Run2 
(CMS)
• H jet mass scale and resolution: 1% 
• H jet 𝜏21 selection: 13%
• H-tagging correction factor : 3.5%

6/19/18 29



Summary of Experimental Uncertainties* 
Source YR2018 Uncertainties
Luminosity 1-1.5% 
Muon efficiency (ID, iso) 0.1-0.4% 
Electron Efficiency (ID, iso) 0.5% 
Tau efficiency (ID, trigger, iso) 5% (if dominant use 2.5%) 
Photon efficiency (ID, trigger, iso) 2%  
Jet Energy Scale 1-2.5% # 

Jet Energy Resolution 1-3% # 

b-jet tagging efficiency 1% 
c-jet tagging efficiency 2% 
light-jet mistag rate 5% (@10% mistag rate) # 

6/19/18 30

* Note: These uncertainties are representative values. The dependence for example of 
pT and eta and the operating points, if applicable, need to be taken into account.
# Note: factor of 2 improvement compared to Run 2
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Summary and outlook – 1/2

● Systematics play an important role in assessing HL-LHC potential
– Effort to ensure coherence of CMS/ATLAS approaches

● Good agreement over common general guidelines:
– statistics-driven sources: data → √L, simulation → 0
– intrinsic detector limitations stay ~constant

● often new methods are expected to compensate pile-up effects
– theory normalization/modeling → ½

● “Floor” of systematics & scaling of nuisance parameters ~finalized
– is 1% luminosity uncertainty suitable for YR projections?
– some experimental systematics still on the conservative side, but if 

dominant could test more aggressive scenarios and compare
– Caution has to be taken in not over-constraining systematics

● a-posteriori error scaling for such cases?
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Summary and outlook – 2/2
● Theory uncertainties “ansatz”:

– Clear need of specific inputs from theorists beyond the
general ½ guideline

● especially for modeling uncertainties, discussions within each 
working group and analyses are extremely beneficial

● common processes as ttbar, V+Jets, dibosons, … ?
– PDF uncertainties won't likely be reduced by ½ by end of HL-LHC

Alternative proposals?

● Uncertainties on methods that are continuously improving
– some cases accounted for as extra pile-up mitigation
– some others will go beyond what is foreseeable right now

● new calibration techniques
● new background estimation methods
● new measurements
● new detectors (e.g. timing, …)
● …

– inherently conservative in this realm
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A huge thank you to the many colleagues inside 
ATLAS and CMS who made this possible!

Time is short…

we need everyone's help and input
to finalize this now
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Backup
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● Relative “in-situ” JES
– dominated by statistics and simulation modeling
– in this case it was felt advances in modeling can be substantial
– Expect it will become negligible → 0

Example: Anatomy of Jet energy scale
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● Pile-up
– Current method bring an increase 

uncertainty with pile-up
– Expect new methods will be 

developed to at least compensate
– Two scenarios:

● Baseline → keep same
● Optimistic → halved

● Punch-through, high-pT
– single particle response but kicks 

in when we run out of statistics 
in the multijet balance

– expect large statistics will allow 
us to make this negligible → 0

Example: Anatomy of Jet energy scale
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Jet Energy Scale



38Jun 19th, 2018

Jet Energy Resolution

ATL-PHYS-PUB-2015-015
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Tau

● Most important components:
– ID efficiency
– Tau Energy Scale
– others less important 

→ neglected
● Tau ID

– Mostly limited by systematics
● Simulation  modeling
● Fakes background

– Expect “floor” of ~ 5%
– Under discussion p

T
 > 250 GeV

● Tau Energy Scale
– Theory modeling, detector, in-situ
– Expect “floor” of ~ 2-3%
– Under discussion for high pT

Run-2

Run-2
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HH  4b→
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Theory/Method uncertainties
● Signal/Background simulations

– Rely on advances in x-section integrators and generators
– General guideline for normalization  and modeling → halved  

● Data-driven backgrounds limited by
– statistics in control region → will get better with ~sqrt(L)
– closure of method → harder to predict, keep same

Var 2

Var 1 Signal
region

(D)

Control region
C

Control
region

A

Control 
region

B

D = C * A / B

● Both require some judgments on
a case by case, but guidelines above could still be useful



Source Current Proposal Description

Absolute Scale 0.5% 0.1% - 0.2% Scales with Z(->mumu)+jet statistics, update 
methods to avoid low pT inefficiencies at high PU

Relative Scale 0.1% - 3% 0.1% - 0.5% Improvements in ECAL modelling will reduce pT 
dependence and its uncertainty, and Z+jet and γ+jet 

will help constraint low pT response

Pile up 0% - 2% 0% - 2% With updated methods, effect of additional pileup 
could be mitigated, the uncertainty can be kept the 

same

Method & Sample 0.5% - 5% 0% difference between derivation methods and 
channels - likely to be understood and removed

Jet Flavor 1.5% 0.75% Halved by taking Pythia/Herwig mixture as baseline, 
further with improved tunes and data-based 

methods

Time Stability 0.2% 0% Assuming stability of data taking, and detector 
conditions, this can be removed

TOTAL 2% - 5% 1%-2.5%

Summary: CMS Projections for JET Energy Scale



b-jet tagging systematics (ATLAS LH method)
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