Rare decays: ATLAS / CMS

F. Tresoldi
on behalf on the ATLAS and CMS collaborations

HL-LHC workshop

18 June 2018
Outline

• why rare decays?
• HL-LHC studies from ATLAS and CMS
• ATLAS and CMS projections for $B(s) \rightarrow \mu^+\mu^-$
• conclusions
why study rare decays?

- B-physics rare and semi-rare processes are mediated by flavour changing neutral current (FCNC)

- suppressed SM amplitudes → sensitive to small effects from NP loop contributions
- We can indirectly search for new physics at scales beyond the reach of the LHC
- **sensitive probe for beyond standard model physics**

- HL-LHC will be a powerful test bench for B physics predictions
 - high collected luminosity → study rare processes at a sensitivity level never reached before
 - simple projection: 10^{15} $b\bar{b}$ pairs in 3000 fb$^{-1}$ (HL-LHC)
 - possibility to cover new interesting channels —> $B \rightarrow \tau\mu$, $B \rightarrow \mu e$, $B \rightarrow \tau\tau$
B \rightarrow K* $\mu^+\mu^-$ from ATLAS and CMS

- new physics entering the loop can be detected by looking at the angular distributions of the decay
- Run 1 ATLAS and CMS analysis public

ATLAS \rightarrow deviation in P_{4}' and P_{5}'
CMS \rightarrow in agreements with SM
LHCb \rightarrow deviation in P_{5}'

ATLAS and CMS show great potential in this hot topic

$B \rightarrow K^* \mu^+\mu^-$ \rightarrow expected HL-LHC studies from ATLAS and CMS
\[B(s) \rightarrow \mu^+\mu^- \text{ from ATLAS and CMS} \]

- \(B(s) \rightarrow \mu^+\mu^- \):
 - studies published from both ATLAS and CMS
 - use these processes as benchmark for flavour physics at HL-LHC
 - additional studies on effective lifetime estimate from CMS ongoing

- LHCb studies also available
 - see Christoph’s talk
$B_{(s)} \rightarrow \mu^+\mu^-$ state of the art

[Scholarpedia 11 (2016) 32643]
\(B(s) \to \mu^+\mu^- \) projections to Run 2/3 and HL-LHC

- similar strategy for ATLAS and CMS
 - studies based on latest published result \(\rightarrow \) Run1 analyses
 - do not consider improvements in analysis strategy \(\rightarrow \) conservative approach
 - maintain same PDFs and S/B ratio
 - scale yields with available statistics
 - modify PDFs parameters if needed
- common choices:
 - production X-section and signal BRs as predicted by the SM
- total collected luminosity:
 - Run 2:
 - ATLAS: 130 fb\(^{-1}\)
 - CMS: 100 f fb\(^{-1}\)
 - Run 3:
 - CMS: 300 fb\(^{-1}\)
 - HL-LHC: 3 ab\(^{-1}\) (3000 fb\(^{-1}\))

- trigger strategy
 - crucial in HL-LHC environment
 - different strategies from ATLAS and CMS \(\rightarrow \) next slides
ATLAS $B(s) \rightarrow \mu^+\mu^-$ studies

- assumptions:
 - σ_{bb} and BR based on SM predictions

- collected luminosity \rightarrow Run2 130 fb$^{-1}$, HL-LHC 3 ab$^{-1}$

- di-muon trigger efficiencies \rightarrow various scenarios

- Run2
 - admixtures of di-muon triggers with different thresholds
 - 2mu6, mu6_mu4, their topological variations

- HL-LHC
 - 3 scenarios studied:
 - 2mu6 \rightarrow high-yield
 - mu10_mu6 \rightarrow intermediate
 - 2mu10 \rightarrow conservative
ATLAS $B_{(s)} \rightarrow \mu^+\mu^-$ studies

• assumptions:
 • σ_{bb} and BR based on SM predictions
 • collected luminosity \rightarrow Run2 130 fb$^{-1}$, HL-LHC 3 ab$^{-1}$
 • di-muon trigger efficiencies \rightarrow various scenarios
 • dimuon mass resolution \rightarrow improvement in phase 2

[ATLAS Simulation $\sqrt{s} = 14$ TeV $B_s \rightarrow \mu\mu$, ID/ITk tracks]

[CERN-LHCC-2017-021, ATLAS-TDR-030]
ATLAS $B(s) \rightarrow \mu^+\mu^-$ studies

• assumptions:
 • $\sigma_{b\bar{b}}$ and BR based on SM predictions

• collected luminosity \rightarrow Run2 130 fb$^{-1}$, HL-LHC 3 ab$^{-1}$

• di-muon trigger efficiencies \rightarrow various scenarios

• dimuon mass resolution \rightarrow improvement in phase 2

• systematics \rightarrow conservative approach

• external systematics:
 • e.g. f_s/f_d, BR($B^\pm \rightarrow J/\psi K^\pm$)
 • same as Run1

• internal systematics:
 • e.g. data-MC discrepancies, triggering modelling, background extrapolation, …
 • scale with statistics
ATLAS Run 2

• test of extrapolation procedure with Full Run 2 statistics prediction
• projected Run2 statistics: ~x7 Run1 statistics

• stat+syst contours based on 2D Neyman belt construction
• depending on statistical regime:
 • “low statistics”: full-fledged Neyman belt approach
 • asymptotically: likelihood contours
• Neyman contours close to likelihood ones already for expected run 2 statistics —> approximate HL extrapolations with likelihood

[ATL-PHYS-PUB-2018-005]
ATLAS HL-LHC

- 3 trigger scenarios:
 - 2mu10
 - conservative: ~x15 Run1 stat
 - mu6_mu10
 - intermediate: ~x60 Run1 stat
 - 2mu6
 - high yield: ~x75 Run1 stat
- profiled likelihood contours
 - red: stat only
 - blue: stat + syst
- dominant systematic on BR(Bs): f_s/f_d

ATLAS Simulation Preliminary
$B^0_{(s)} \rightarrow \mu^+\mu^-$
working point x15 Run1 statistics

ATLAS Simulation Preliminary
$B^0_{(s)} \rightarrow \mu^+\mu^-$
working point x60 Run1 statistics

ATLAS Simulation Preliminary
$B^0_{(s)} \rightarrow \mu^+\mu^-$
working point x75 Run1 statistics

[ATL-PHYS-PUB-2018-005]
CMS $B_s \rightarrow \mu^+\mu^-$ studies

- assumptions:
 - \(\sigma_{bb} \) and BR based on SM predictions

- **collected luminosity** —> Run2 100 fb\(^{-1}\), Run3 300 fb\(^{-1}\), HL-LHC 3 ab\(^{-1}\)

- **di-muon trigger** —> L1 track trigger for Phase 2

- Phase I: standard di-muon trigger
- Phase 2: L1 track trigger
 - invariant mass resolution at L1: 70 MeV
 - preliminary rate estimates: few hundred Hz at L1

CMS Simulation

Scaled to L = 3000 fb\(^{-1}\)

- 10^8
- 10^7
- 10^6
- 10^5
- 10^4
- 10^3
- 10^2
- 10
- 1

Events / (0.02 GeV)

\(m_{\mu\mu} \) (GeV)

- L1TrkMu (PhaseII) Trigger
 - \(p_T(\mu) > 3 \) GeV
 - \(|h_l(\mu)| < 2 \)
 - \(p_T(\mu\mu) > 4 \) GeV
 - \(|h_{(\mu\mu)}| < 2 \)
 - \(|\Delta \cdot d_{(\mu\mu)}| < 1 \) cm
 - \(3.9 < m(\mu\mu) < 6.9 \) GeV

- \(B_s \rightarrow \mu^+\mu^- \)
- \(B_d \rightarrow \mu^+\mu^- \)
- Background
- Total signal

[CMS-PAS-FTR-14-015]

University of Sussex
CMS \(B(s) \rightarrow \mu^+\mu^-\) studies

- assumptions:
 - \(\sigma_{bb} \) and BR based on SM predictions
 - collected luminosity \(\rightarrow\) Run2 100 fb\(^{-1}\), Run3 300 fb\(^{-1}\), HL-LHC 3 ab\(^{-1}\)
 - di-muon trigger \(\rightarrow\) L1 track trigger for Phase 2
 - pile-up effects \(\rightarrow\) impact on discriminating variables

- due to high HL-LHC luminosity
- efficiency loss in discriminating variables due to pile-up
- tighter \(\mu\) cuts to maintain fake rate as Run1
- overall efficiency loss: 30%
- conservative estimation
CMS $B_{(s)} \rightarrow \mu^+\mu^-$ studies

- assumptions:
 - σ_{bb} and BR based on SM predictions
 - collected luminosity \rightarrow Run2 100 fb$^{-1}$, Run3 300 fb$^{-1}$, HL-LHC 3 ab$^{-1}$
 - di-muon trigger \rightarrow L1 track trigger for Phase 2
 - pile-up effects \rightarrow impact on discriminating variables
 - dimuon mass resolution \rightarrow improvement in phase 2

- improve bkg rejection and B_s-B_d separation
CMS $B_{(s)} \rightarrow \mu^+\mu^-$ studies

- assumptions:
 - $\sigma_{b\bar{b}}$ and BR based on SM predictions
 - **collected luminosity** \rightarrow Run2 100 fb$^{-1}$, Run3 300 fb$^{-1}$, HL-LHC 3 ab$^{-1}$
 - **di-muon trigger** \rightarrow L1 track trigger for Phase 2
 - **pile-up effects** \rightarrow impact on discriminating variables
 - **dimuon mass resolution** \rightarrow improvement in phase 2
 - **systematics** \rightarrow scale with statistics

<table>
<thead>
<tr>
<th></th>
<th>Run I</th>
<th>Phase I</th>
<th>Phase II</th>
</tr>
</thead>
<tbody>
<tr>
<td>f_s/f_d</td>
<td>9%</td>
<td>5%</td>
<td>5%</td>
</tr>
<tr>
<td>norm yield</td>
<td>5%</td>
<td>5%</td>
<td>3%</td>
</tr>
<tr>
<td>peaking bkg</td>
<td>60%</td>
<td>20%</td>
<td>10%</td>
</tr>
<tr>
<td>semileptonic decays</td>
<td>50%</td>
<td>25%</td>
<td>20%</td>
</tr>
</tbody>
</table>
CMS Run 3 and HL-LHC

[Scaled to L = 300 fb⁻¹]

Uncertainty on BRs

<table>
<thead>
<tr>
<th>(\mathcal{L}) (fb⁻¹)</th>
<th>(\delta \text{BR}(B_s))</th>
<th>(\delta \text{BR}(B_d))</th>
<th>BR((B_d)) sign.</th>
<th>(\delta [\text{BR}(B_s) / \text{BR}(B_d)])</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>14%</td>
<td>63%</td>
<td>0.6-2.5σ</td>
<td>66%</td>
</tr>
<tr>
<td>300</td>
<td>12%</td>
<td>41%</td>
<td>1.5-3.5σ</td>
<td>43%</td>
</tr>
<tr>
<td>300 (barrel)</td>
<td>13%</td>
<td>48%</td>
<td>1.2-3.3σ</td>
<td>50%</td>
</tr>
<tr>
<td>3000 (barrel)</td>
<td>11%</td>
<td>18%</td>
<td>5.6-8.0σ</td>
<td>21%</td>
</tr>
</tbody>
</table>

uncertainty on BRs

BR\((B_d) \) statistical significance

uncertainty on BRs ratio
ATLAS - CMS comparison at HL-LHC

- compare ATLAS and CMS expected uncertainties on signal BRs
 - ATLAS uncertainties from: ATL-PHYS-PUB-2018-005
 - CMS uncertainties derived from: CMS-PAS-FTR-14-015
 - including systematics

<table>
<thead>
<tr>
<th></th>
<th>$\sigma(\text{BR}(B_s))$ [10^{-9}]</th>
<th>$\sigma(\text{BR}(B_d))$ [10^{-9}]</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMS</td>
<td>0.40</td>
<td>0.019</td>
</tr>
<tr>
<td>ATLAS high-yield</td>
<td>0.46</td>
<td>0.028</td>
</tr>
<tr>
<td>ATLAS intermediate</td>
<td>0.47</td>
<td>0.031</td>
</tr>
<tr>
<td>ATLAS conservative</td>
<td>0.55</td>
<td>0.054</td>
</tr>
</tbody>
</table>

SM predictions: $\text{BR}(B_s) = (3.65 \pm 0.23) \times 10^{-9}$, $\text{BR}(B_d) = (1.06 \pm 0.09) \times 10^{-10}$

- on B_s CMS slightly better than ATLAS intermediate and high-yield
 - ATLAS systematics conservatively over-estimated

- on B_d CMS shows smaller uncertainty than ATLAS

- both experiments have great potential
 - possibility to measure both BRs at 5 sigma
conclusions

• HL-LHC will be a powerful test bench for B physics predictions
• ongoing HL-LHC studies on several processes
 • $B \to K^* \mu^+\mu^-$ (P5' parameter)
 • $B_{(s)} \to \mu^+\mu^-$ studies ready
• projections to Run2/3 and HL-LHC performed by ATLAS and CMS
 • rather conservative assumptions
 • increment in luminosity and B production X-section
 • major detector improvements considered
• both ATLAS and CMS show great potential
 • possibility to measure $BR(B_{(s)} \rightarrow \mu^+\mu^-)$ at 5 sigma
BACKUP
ATLAS - CMS comparison at HL-LHC

- compare ATLAS and CMS expected uncertainties on signal BRs
- ATLAS uncertainties from: ATL-PHYS-PUB-2018-005
- CMS uncertainties calculated from: CMS-PAS-FTR-14-015

<table>
<thead>
<tr>
<th></th>
<th>(\sigma) BR((B_s)) [10^{-9}]</th>
<th>(\sigma) BR((B_d)) [10^{-9}]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>stat+sys</td>
<td>stat only</td>
</tr>
<tr>
<td>CMS</td>
<td>0.40</td>
<td>0.019</td>
</tr>
<tr>
<td>ATLAS high-yield</td>
<td>0.46</td>
<td>0.18</td>
</tr>
<tr>
<td>ATLAS intermediate</td>
<td>0.47</td>
<td>0.19</td>
</tr>
<tr>
<td>ATLAS conservative</td>
<td>0.55</td>
<td>0.32</td>
</tr>
</tbody>
</table>

SM predictions: \(BR(B_s) = (3.65 \pm 0.23) \times 10^{-9} \), \(BR(B_d) = (1.06 \pm 0.09) \times 10^{-10} \)
ATLAS di-muon trigger yields

- Run 1/2 baseline offline cuts applied

- separation of muons by either
 $|\Delta \eta(\mu^+,\mu^-)| > 0.2 \text{ rad}$ or
 $|\Delta \phi(\mu^+,\mu^-)| > 0.2 \text{ rad}$
 (typical L1 muon trigger granularity)

- normalized to $p_T(\mu_1) > 6 \text{ GeV} \& p_T(\mu_2) > 6 \text{ GeV}$ (lowest unprescaled di-\(\mu\) trigger in Run 2)

- work ongoing to improve trigger acceptance for near-by muons
Comparison of the 68.3% (solid), 95.5% (dashed) and 99.7% (dotted) stat.+syst. confidence regions for the extrapolated Run 2 statistics. Red contours are obtained exploiting the 2D Neyman belt construction based on pseudo-MC experiments, while blue contours are drawn at constant $\Delta \log L$ in the gaussian maximum approximation. The Run 2 pseudo-MCs reproduce the expected signal mass resolution and have been scaled with respect to their Run 1 counterpart according to the triggers available in Run 2, the different integrated luminosity and the different B production cross section. The black point shows the SM theoretical prediction and its uncertainty.