Search for CLFV decays $\tau \rightarrow 3\mu$
with ATLAS and CMS Detectors

Andrey Korytov
University of Florida
(on behalf of the ATLAS and CMS Collaborations)
There are no fundamental symmetries explicitly forbidding CLFV processes

- In fact, in SM CLFV decays are possible via neutrino oscillations, e.g. $B(\tau \rightarrow 3\mu) \sim O(10^{-14})$
- In BSM, such decays can be “naturally” enhanced, e.g. $B(\tau \rightarrow 3\mu)$ can be as large as $O(10^{-8})$

Theoretical considerations in favor of $\tau \rightarrow 3\mu$:

- Tau lepton’s large mass means large phase space for decays
- couplings for new physics may be enhanced for heavy particles

Experimental considerations in favor of $\tau \rightarrow 3\mu$:

- there-muon signature is the cleanest at LHC (as opposed to $3e, \mu \mu e, \mu \gamma$, etc.)

Recent experimental limits (90% CL):

- Belle: 2.1×10^{-8} (expected $\sim 2.3 \times 10^{-8}$)
- BaBar: 3.3×10^{-8} (expected 4.0×10^{-8})
- LHCb (Run 1): 4.6×10^{-8} (expected 5.6×10^{-8})
 $\text{JHEP 02 (2015) 121}$
- ATLAS (Run 1, 8 TeV): 3.8×10^{-7} (expected 3.9×10^{-7})
- CMS (Run 2, 2016 dataset): coming soon

Presented in this talk:

- CMS Projections for HL-LHC $\text{Phase 2 Muon Upgrade TDR, CMS-TDR-016 (2017)}$
Tau production at HL-LHC (3000 fb⁻¹)

<table>
<thead>
<tr>
<th>Process</th>
<th># of taus</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>PYTHIA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(pp \rightarrow cc,)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(D \rightarrow \tau \nu)</td>
<td>(3.6 \times 10^{14})</td>
<td>95% (D_s), 5% (D^\pm)</td>
</tr>
<tr>
<td>(pp \rightarrow bb,)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(B \rightarrow \tau +...)</td>
<td>(1.4 \times 10^{14})</td>
<td>44% (B^\pm), 45% (B^0), 11% (B_s)</td>
</tr>
<tr>
<td>(B \rightarrow D(\tau \nu) +...)</td>
<td>(0.6 \times 10^{14})</td>
<td>98% (D_s), 2% (D^\pm)</td>
</tr>
<tr>
<td>NNLO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(pp \rightarrow W \rightarrow \tau \nu)</td>
<td>(6.0 \times 10^{10})</td>
<td></td>
</tr>
<tr>
<td>(pp \rightarrow Z \rightarrow \tau \tau)</td>
<td>(1.2 \times 10^{10})</td>
<td>(60 < m_{\tau \tau} < 120 , \text{GeV})</td>
</tr>
</tbody>
</table>

LHC is a prolific source of tau leptons: \(~ 6 \times 10^{14} \) at HL-LHC (3000 fb⁻¹)

- **Hadronic taus:** lots, but challenging (soft, forward, poor S/B)
- **W/Z taus:** \(~10^4\) fewer, but relatively easier
Run 1, 8 TeV dataset:
- $L = 20.3 \text{ fb}^{-1}$
- Expected number of $W \to \tau \nu$ events: 2.4×10^8

Main signal characteristics exploited:
- Three muons:
 - $Q = \pm 1$
 - $p_T(3\mu) \sim 20-50$ GeV
 - common vertex, displaced wrt PV
 - boosted topology (muons close together)
 - trimuon system is isolated
 - trimuon invariant mass peaks at m_τ – the final observable
- Missing transverse momentum
 - 20-50 GeV
 - opposite to $p_T(3\mu)$
- Transverse mass of $p_T(3\mu)$ and MET
 - Consistent with m_W
- Little hadronic activity in an event
Event selection (1)

Trigger:
- Five different multi-muon triggers
- One dimuon trigger + MET
- Trigger efficiency in fiducial acceptance is \(\sim 30\% \)

 \(\text{(fiducial signal acceptance: } p_T > 2.5 \text{ GeV, } |\eta| < 2.4) \)

Reconstruction and event selection:
- three high-quality muons, \(Q=1 \)
- \(m_{3\mu} < 2.5 \text{ GeV} \)
- common vertex \(V_{3\mu} \)
- Loose trimuon event selection cuts on:
 - \(V_{3\mu} \) – PV displacement significance
 - impact parameter formed by \(p_T(3\mu) \) vector
 - \(p_T(3\mu) \)
 - Isolation
 - MET
 - \(m_T \)

Total signal efficiency: 6.6%

BDT-training sideband [750; 1450] and [2110; 2500]: 4672 events
After the final selection, the signal sideband (SB) is expected to have too few or even no events.

The following analysis strategy is employed:

- Train BDT using:
 - signal MC
 - data from BDT-training sideband
- Apply BDT cut $x > x_0$
- Apply tight event selection
 - Use the signal sidebands to predict background in signal region $B_{SR}(\text{tight, } x > x_0)$
 - Use the BDT distribution to compute a reduction factor f for going from $x > x_0$ to $x > x_1$
- Apply BDT cut $x > x_1$

- Predicted background in the signal region SR

 $B_{SR}(\text{tight, } x > x_1) = B_{SR}(\text{tight, } x > x_0) \times f = 0.19 \text{ events}$

- Overall signal selection efficiency: 2.3%
Expected $W \rightarrow \tau \nu$ events: 2.4×10^8

Signal region:
- Signal A x eff = 0.023
- Background (how?) = 0.19 events
- Observed: 0 events

Exclusion limits on B at 90% CL
- Expected: 3.9×10^{-7}
- Observed: 3.8×10^{-7}

Side note: for $B = 2 \times 10^{-8}$, S/B ~ 1:2
My naïve extrapolation toward HL-LHC

If I naively assume (all faults are mine!)
- no deterioration due to high PU
- no improvements in the detector
- no changes in the analysis
- no systematic uncertainties whatsoever
- background event rate scales from 8 TeV to 14 TeV in sync with the W rate

Number of $W \rightarrow \tau \nu$ events:

$$\sigma_{14\text{TeV}}(W) \times B(W \rightarrow \tau \nu) \times L = (2 \times 10^8 \text{fb}) \times 0.11 \times (3000 \text{ fb}^{-1}) = 6 \times 10^{10}$$

Signal $A \times \text{eff} = 0.023$ (no changes)

Background in signal region: $(6 \times 10^{10} / 2.4 \times 10^8) \times 0.19 \sim 50 \text{ events}$

Such naïve extrapolation gives expected limit 9×10^{-9} at 90% CL
CMS: Search projection using hadronic taus

HL-LHC:
- 14 TeV
- PU = 200 \((L \sim 7.5 \times 10^{34} \text{ cm}^{-2}\text{s}^{-1}) \)
- \(L_{\text{int}} = 3000 \text{ fb}^{-1} \)
- Expected number of hadronic taus: \(5.6 \times 10^{14} \)
 (72% of which originate from \(D_s \to \tau \nu \))

CMS Upgrades most relevant for this analysis:
- Enhanced forward muon system:
 - improved momentum measurement at L1 Trigger
 - extended eta-coverage from 2.4 to 2.8
- Track-trigger capabilities for tracks with \(p_T > 2 \text{ GeV} \)
- Higher trigger bandwidth (100 kHz \(\to 750 \text{ kHz} \))

Main signal trimuon characteristics exploited:
- \(Q=1 \)
- common vertex, \(V_{3\mu} \)
- \(V \) – PV displacement
- collinearity of \(p(3\mu) \) and PV-\(V_{3\mu} \) vectors
- trimuon invariant mass peaks at \(m_\tau \) – the final observable
Event Selection (1)

Basic signal acceptance ($|\eta| < 2.8$, $p > 2.5$ GeV): 2.6%
factor of two gain due to extension of muon η-acceptance from 2.4 to 2.8

Muon reconstruction:
- Tracker-muons: Tracker track + at least one matching segment in Muon System
- Signal efficiency in acceptance is about 30%
- the gained events due to the Muon System extension have a **worse trimuon mass resolution**

Two event categories are introduced:
- Category 1: events reconstructed using the present muon chambers
- Category 2: events with at least one ME0-only muon

Trigger:
- Category 1:
 - At least two tracker-muons ($p_T > 2$ GeV, $\delta p_T/p_T \sim 2$–3%)
 - One station-1 ME0-CSC segment ($\delta p_T/p_T \sim 20\%$)
 - Trimuon mass < 3 GeV
 - Efficiency wrt reconstructed/selected trimuon events: ~80%
- Category 2:
 - At least one tracker-muon
 - Two station-1 segments, allowing for **ME0-only** segments ($\delta p_T/p_T \sim 40\%$)
 - Trimuon mass < 3 GeV
 - Trigger efficiency for reconstructed/selected trimuon events: ~50%
Loose cuts on variables to mitigate pile-up background

- $Q = \pm 1$
- minimum trimuon vertex χ^2
- minimum transverse displacement of the trimuon vertex
- maximum ΔR distance between the three muons

This basic event selection

- has signal efficiency $\sim 30\%$ for events with all three muons reconstructed
- and practically eliminates pile-up background

Remaining background is mostly due to B production with

- two muons from B cascade decays
- and one “fake” muon from π/K-decays in flight accidental “alignment” of a track in the Tracker stub found in a muon chamber
Event Selection (3)

Observables used to build the final S/B log-likelihood ratio, $\ln Q$, where $Q = \prod \frac{pdf_s(x_i)}{pdf_b(x_i)}$
- trimuon vertex χ^2
- transverse displacement of the trimuon vertex
- decay collinearity angle α
- minimum ΔR distance between between dimuon pairs
- highest and lowest muon momentum
- number of b-jets in the event
- …

A cut on $\ln Q$ is then imposed
The final overall signal efficiency $\sim 0.06\%$

Andrey Korytov (UF)
Final mass distributions and sensitivity

Number of background events	Category 1	Category 2
Number of signal events \((B = 2 \times 10^{-8})\) | \(4580\) | \(3640\) |
Trimuon mass resolution | \(18\) MeV | \(31\) MeV |
\(B(\tau \rightarrow 3\mu)\) limit per event category | \(4.3 \times 10^{-9}\) | \(7.0 \times 10^{-9}\) |
\(B(\tau \rightarrow 3\mu)\) 90\% C.L. limit | \(3.7 \times 10^{-9}\) |
\(B(\tau \rightarrow 3\mu)\) for 3\(\sigma\)-evidence | \(6.7 \times 10^{-9}\) |
\(B(\tau \rightarrow 3\mu)\) for 5\(\sigma\)-observation | \(1.1 \times 10^{-8}\) |
Conclusions

The present best limit on $\tau \to 3\mu$ decays:

$\mathcal{B}(\tau \to 3\mu) < 2.1 \times 10^{-8}$ at 90% CL

Belle-II projection for 50 ab$^{-1}$ [PoS FPCP2015 (2015) 049]:

4×10^{-10} at 90% CL

HL-LHC is a prolific source of tau leptons: $\sigma(pp \to \tau + X) \sim 2 \times 10^{11}$ fb

- Both **hadronic** and **electroweak** ($\sigma \sim 2 \times 10^7$ fb) taus can be exploited for the $\tau \to 3\mu$ search; each branch is being explored by both ATLAS and CMS

- **HL-LHC Projections** (limit at 90% CL) **based on the three public results available so far:**

<table>
<thead>
<tr>
<th></th>
<th>Luminosity</th>
<th>Tau source</th>
<th>Source of projection</th>
<th>Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATLAS</td>
<td>3000 fb$^{-1}$</td>
<td>$W \to \tau \nu$</td>
<td>My naïve extrapolation from the Run 1 (8 TeV, 20.3 fb$^{-1}$) results (slide 8)</td>
<td>9×10^{-9}</td>
</tr>
<tr>
<td>CMS</td>
<td>3000 fb$^{-1}$</td>
<td>Hadronic</td>
<td>Simulated analysis for the Upgraded CMS at HL-LHC</td>
<td>4×10^{-9}</td>
</tr>
<tr>
<td>LHCb</td>
<td>300 fb$^{-1}$</td>
<td>Hadronic</td>
<td>My naïve $1/\sqrt{N}$ extrapolation from the Run 1 (8 TeV, 3 fb$^{-1}$) results</td>
<td>6×10^{-9}</td>
</tr>
</tbody>
</table>

- LHC analyses are not limited by the number of taus, but rather by how well one can separate signal from large background – **plenty of opportunities for further optimization.** The actual results will be for sure better than the presented simplified/naïve projections (e.g., compare the earlier projections and the actual results for ttH, $H \to bb$, $VBF H \to$ invisible)