Top FCNCs in extended Higgs sectors

Shankha Banerjee IPPP, Durham University

June 18, 2018

Based on arXiv:1806.02836

(with Mikael Chala and Michael Spannowsky)

イロト イポト イヨト イヨト

Introduction

- Many reasons to go beyond the SM, *viz.* gauge hierarchy, neutrino mass, dark matter, baryon asymmetry etc.
- Processes mediated via Flavour Changing Neutral Currents (FCNCs) are very rare within the SM \rightarrow any experimental signature \rightarrow evidence for new physics
- FCNCs in top production are lucrative → copious production of top quarks in high energy hadron colliders → large number of rare FCNC events expected despite small decay rate
- Large mass of top quark connects it to the EWSB sector where new physics may be lurking around

イロト 不得 トイヨト イヨト

Top FCNC searches

• Numerous searches:

- $\begin{array}{l} t \to \gamma c \; (u): \; \mathcal{B}(t \to \gamma c \; (u)) < 1.7 \; (0.13) \times 10^{-3} \; [8 \; \text{TeV}, \; \text{CMS}] \\ t \to g c \; (u): \; \mathcal{B}(t \to g c \; (u)) < 4.1 \; (0.2) \times 10^{-4} \; [7 + 8 \; \text{TeV}, \; \text{CMS}] \\ t \to Z c \; (u): \; \mathcal{B}(t \to Z c \; (u)) < 2.4 \; (1.7) \times 10^{-4} \; [13 \; \text{TeV}, \; \text{CMS} \; \text{and} \; \text{ATLAS}] \\ t \to h c \; (u): \; \mathcal{B}(t \to h c \; (u)) < 2.2 \; (2.4) \times 10^{-3} \; [13 \; \text{TeV}, \; \text{ATLAS}] \end{array}$
- All the above searches assume a Standard Model (SM) particle spectrum \rightarrow possibility of other particles lurking around the EW scale to which tops might decay \rightarrow Scalar singlets, *S*
- Production of such S strongly constrained → Near-precise Higgs couplings measurement and W-mass measurement
- $\bullet~{\rm For}~{\rm a}~{\rm mixing}~{\rm angle}~0.2<\sin\theta<0.35$ \rightarrow wide range of singlet mass allowed

Motivation for top FCNCs via scalars

- Scalar particles produced by well motivated models \rightarrow NMSSM, CHMs, xSM etc.
- Such scalars induce significantly larger FCNCs compared to the Higgs mediated FCNCs [Zhang, Maltoni, 2013]
 - top FCNCs mediated by new scalar singlets generally suppressed by one less power of heavy physics scale
 - Scalar singlet can have larger decay width into cleaner $\ell^+\ell^-$, $b\bar{b}$ and $\gamma\gamma \rightarrow$ model dependent statement
 - In models like CHMs, Higgs mediated FCNCs forbidden at the leading order [Agashe, Contino, 2009]
- Top FCNCs mediated by such singlet scalars may well be within the reach of the LHC

・ロト ・個ト ・ヨト ・ヨト

Flavour constraints

- Presently no constraints on $t \rightarrow qS$
- Possible to have strong constraints from $D^0 \bar{D}^0$ oscillations
- Constraints as products of two *S* Yukawas, *viz.*, Y_{ct} and Y_{ut} (also Y_{uc}) \rightarrow $|Y_{ut}Y_{ct}|$, $|Y_{tu}Y_{tc}| < 7.6 \times 10^{-3}$, $|Y_{tu}Y_{ct}| |Y_{ut}Y_{tc}| < 2.2 \times 10^{-3}$ and $\sqrt{|Y_{ut}Y_{tu}Y_{ct}Y_{tc}|} < 0.9 \times 10^{-3}$ [Harnik, Kopp, Zupan, 2012]
- To circumvent such issues \rightarrow fall back on scenarios where Y_{ut} is negligible \rightarrow model dependent

Model independent framework: Effective Lagrangian

- In this talk \rightarrow scrutinise reach of HL-LHC for top FCNCs in top-pair produced events
- We consider one of the tops to have standard leptonic decay and the other to decay as t → Sc, S → bb̄ (γγ)
- Current experimental searches tailored for the SM-like 125 GeV Higgs → new searches needed for varying scalar masses → careful treatment of backgrounds
- We consider a scenario where SM is augmented by a gauge singlet, S having a mass m_S in the EW regime
- At low energies, the relevant Yukawa Lagrangian is

$$\mathcal{L} = -\overline{\mathbf{q}_{\mathsf{L}}} \left(\mathbf{Y} + \mathbf{Y}' \frac{|\mathcal{H}|^2}{f^2} + \mathbf{\tilde{Y}} \frac{S}{f} \right) \tilde{\mathcal{H}} \mathbf{u}_{\mathsf{R}} + \text{h.c.}$$

 $H = [\phi^+, (h + \phi^0)/\sqrt{2}]^t \rightarrow \text{SM-like Higgs doublet, } \mathbf{q}_{\mathsf{L}}(\mathbf{u}_{\mathsf{R}}) \rightarrow \text{left- (right-)}$ handed) quarks, \mathbf{Y}, \mathbf{Y}' , and $\mathbf{\tilde{Y}} \rightarrow \text{arbitrary flavour matrices, } \mathbf{f} \gtrsim \mathcal{O}(\text{TeV}) \rightarrow \text{heavy physics scale}$

Shankha Banerjee (IPPP, Durham)

Summarising possible models

- In the absence of effective operators
 - $Sf\bar{f}$ negligible and occurs at one-loop if S isn't a pseudoscalar
 - In such cases, Sff coupling proportional to the vev of S → mixing with SM-like Higgs → severe constraints from current Higgs measurements
 - FCNC currents further suppressed by GIM mechanism $\rightarrow \mathcal{B}(t \rightarrow Sc)$ expected to be orders of magnitude smaller than $\mathcal{B}(t \rightarrow hc)$ which is predicted to be smaller than 10^{-13} [Mele, Petraca, Soddu, 1998]
- We are looking at scenarios with S being around the EW scale and also have heavier new states
 - In CHMs, S is a pNGB, whereas f refers to the scale of the strong sector
 - In NMSSM, S serves as the bosonic sector of the additional singlet, whereas f refers to the other SUSY resonances
 - In models with strong EW phase transitions, S is a new scalar with mass around the EW scale, for the phase transition to occur, whereas f is the scale

with the new sources for CP violation

Shankha Banerjee (IPPP, Durham)

HE-HL-LHC workshop, CERN, 18-20 June

- 34

イロト イポト イヨト イヨト

Summarising possible models (continued)

Field	Relevant Lagrangian	Diagram	$\mathbf{ ilde{Y}}_{ij}/f^2$
$Q = (1, 2)_{1/6}$	$L_Q = -m_Q \overline{Q} Q + (\alpha_i^Q \overline{Q} S q_L^i)$		$\frac{\alpha_i^Q \tilde{\alpha}_j^Q}{m}$
	$+ ilde{lpha}_{j}^{\mathcal{Q}}\overline{\mathcal{Q}} ilde{\mathcal{H}}u_{R}^{j}+ ext{h.c.})$		ΠQ
$U = (1, 1)_{2/3}$	$L_U = -m_U \overline{U}U + (\alpha_i^U \overline{U} H q_L^i)$		$\underline{\alpha_i^U \tilde{\alpha}_j^U}$
	$+ ilde{lpha}_{j}^{U}\overline{U}\mathcal{S}u_{R}^{j}+ ext{h.c.})$		m_U
$\Phi=(1,2)_{1/2}$	$L_{\Phi} = -rac{1}{2}m_{\Phi}^2\Phi^2 + (lpha_{ij}^{\Phi}\overline{q_L^i}\tilde{\Phi}u_R^j)$		$\frac{\alpha_{ij}^{\Phi}\kappa}{2}$
	$+\kappa S \Phi^{\dagger} H + { m h.c.})$	" "	m_{Φ}^2

Table : Single field extensions of the SM supplemented with S that induce the FCNC of interest at low energy at tree level. The numbers in parenthesis and the subscript denote the $SU(3)_c$ and $SU(2)_L$ representations and the hypercharge, respectively. From the top left and clockwise, the different diagram legs represent q_i^I , $t_{R'}^J$, H and S, respectively.

イロン イロン イモン イモン 一日

Model independent framework: Effective Lagrangian

- The flavour matrices from the Effective Lagrangian are not aligned in general
 → FCNCs can occur in the EW phase
- Various new physics effects come about → top flavour-violating effects, viz., t → hc and t → Sc → latter dominates as former is further suppressed by 1/f and in many UV-complete models, Y, Y' are approximately aligned
 After EWSB

$$\mathcal{L} = -\frac{v}{\sqrt{2}} \left[\overline{\mathbf{q}_{\mathsf{L}}} \mathbf{Y} \left(1 + \frac{h}{v} \right) \mathbf{u}_{\mathsf{R}} + \frac{S}{f} \overline{\mathbf{q}_{\mathsf{L}}} \widetilde{\mathbf{Y}} \mathbf{u}_{\mathsf{R}} + \mathcal{O} \left(\frac{1}{f^2} \right) \right] \supset \widetilde{g} \frac{m_t}{f} \overline{t_L} S c_{\mathsf{R}} + \text{h.c.},$$

 $m_t \sim 173$ GeV and \tilde{g} is $\mathcal{O}(1)$.

・ロト ・回ト ・ヨト ・ヨト

Branching ratios

One obtains

$$\Gamma(t
ightarrow Sc) = rac{ ilde{g}^2}{32\pi} rac{v^2}{f^2} m_t igg(1-rac{m_S^2}{m_t^2}igg)^2$$

For a benchmark point with $f \sim 1$ TeV and \tilde{g} is $\mathcal{O}(1)$, one obtains $\mathcal{B}(t \to Sc) \sim \Gamma(t \to Sc) / \Gamma_t^{SM} \sim 0.03$ with $\Gamma_t^{SM} \sim 1.4$ GeV

• Final rate also depends on the decay of S to SM particles \rightarrow motivated by CHMs, we consider the following couplings of S to fermions and photons $\frac{m_{\psi}}{f}S\bar{\psi}\psi$ and $\frac{c_{\gamma}\alpha}{4\pi f}SF_{\mu\nu}\tilde{F}^{\mu\nu}$, c_{γ} is $\mathcal{O}(1)$

• In the regime $m_S \gg m_\psi$, one obtains

$$\Gamma(S \to \psi \psi) = \frac{N_c}{8\pi} \frac{m_{\psi}^2}{f^2} m_S \text{ and } \Gamma(S \to \gamma \gamma) = \frac{c_{\gamma}^2 \alpha^2}{64\pi^3 f^2} m_S^3$$

• Thus, $\mathcal{B}(S o \gamma \gamma) / \mathcal{B}(S o \overline{\psi} \psi) \sim rac{lpha^2}{\pi^2} (m_S / m_\psi)^2$

- Suppression factor driven by α can be partially compensated by m_S
- Contrary to $\mathcal{B}(h \to \gamma \gamma) \sim 2 \times 10^{-3}$ in SM, $\mathcal{B}(S \to \gamma \gamma)$ is model-dependent and can

be much larger

Shankha Banerjee (IPPP, Durham)

3

イロト 不得 トイヨト イヨト

Three Benchmark Points (BP), each including $m_S = 20, 50, 80, 100, 120, 150$ GeV

$$BP 1: \quad \tilde{g} = 1.0, \quad f = 2 \text{ TeV} \implies \mathcal{B}(t \rightarrow Sc) \sim 10^{-3} - 10^{-2};$$

$$BP 2: \quad \tilde{g} = 1.0, \quad f = 10 \text{ TeV} \implies \mathcal{B}(t \rightarrow Sc) \sim 10^{-4} - 10^{-3};$$

$$BP 3: \quad \tilde{g} = 0.1, \quad f = 2 \text{ TeV} \implies \mathcal{B}(t \rightarrow Sc) \sim 10^{-5} - 10^{-4};$$

$$\int_{t=1}^{t} \int_{t=1}^{t} \int_{t=1}^{$$

- $t\overline{t}$ production with one top decaying leptonically and the other as $t \rightarrow Sc, S \rightarrow b\overline{b}$
- *b*-tagging efficiency chosen as 70%, $c(\ell) \rightarrow b$ mistag rate has been taken as 10% (1%)
- Demanding final state: 3 *b*-tagged jets, at least one additional jet and one isolated lepton
- Basic cuts: $p_T(j) > 30$ GeV, $p_T(\ell) > 10$ GeV and Lepton isolation: total

hadronic activity around lepton with cone radius 0:2; less than 10% of its pro Shankha Banerjee (IPPP, Durham) HE-HL-LHC workshop, CERN, 18-20 June 11 / 19

- Most dominant background: semi-leptonic $t\bar{t}b\bar{b}$ production
- Other background: leptonic $t\bar{t}b\bar{b}$ production
- Fake backgrounds: semi-leptonic (leptonic) tt
 t t merged up to one extra matrix element (ME) parton, Wbb
 and Zbb
 merged up to two extra ME partons, W/Z decaying leptonically → Flat NLO K-factors included for signal and backgrounds
- We look for closest pair (in ΔR) of *b*-tagged jets and reconstruct top mass $(m_t^{\Delta R})$ with the additional hardest jet
- Transverse mass reconstructed with the remaining *b*-tagged jet

Cuts	20 GeV	50 GeV	80 GeV	100 GeV	120 GeV	150 GeV
Basic	0.014	0.050	0.051	0.056	0.063	0.063
$ \eta_{(b,\ell,j)} < 2.5$	0.83	0.88	0.86	0.87	0.86	0.82
$\Delta R(\text{all pairs}) > 0.4$	0.96	0.94	0.93	0.93	0.94	0.94
$ m_t^{\Delta R} - m_t < 50 \text{ GeV}$	0.29	0.63	0.57	0.55	0.49	0.41
m_T $<$ 200 GeV	0.72	0.56	0.87	0.85	0.83	0.74

Table : Efficiency after each cut for the six signal benchmark points.

Cuts	tī (SL)	tī (LL)	Wbb	Zbb	tītbīb (SL)	tītbīb (LL)
Basic	0.0038	0.0016	0.00032	0.00016	0.11	0.073
$ \eta_{(b,\ell,j)} < 2.5$	0.78	0.69	0.74	0.71	0.90	0.85
$\Delta R(\text{all pairs}) > 0.4$	0.95	0.94	0.95	0.95	0.96	0.91
$ m_t^{\Delta R} - m_t < 50 \text{ GeV}$	0.49	0.32	0.27	0.33	0.31	0.28
$m_T~<~200~{ m GeV}$	0.80	0.58	0.56	0.70	0.63	0.53

Table : Efficiency after each cut for the six dominant backgrounds. SL (LL) denotes semi (di)-leptonic decays.

・ロン ・四 と ・ ヨ と ・ ヨ と

Final cut: $0.8 m_S < m_S^{\Delta R} < m_S + 10 \text{ GeV}$

<i>m</i> ₅ [GeV]	Signal	tī (SL)	tīt (LL)	Wbb	Zbb	tītbb (SL)	tītbb (LL)
20	8.2	0.12	0.037	0.017	0.0094	4.0	1.5
50	110	1.8	0.35	0.093	0.056	37	17
80	140	3.4	0.60	0.080	0.070	51	24
100	120	3.7	0.59	0.066	0.062	49	24
120	96	3.1	0.47	0.052	0.042	41	19
150	51	1.4	0.23	0.025	0.019	22	11

Table : Efficiencies $(\times 10^4)$ after the final cut.

Figure : Left) Branching ratios that can be tested in the $b\overline{b}$ channel. Superimposed are the theoretical expectations in the three BPs. Right) Luminosity required to test $\mathcal{B}(t \to St, S \to b\overline{b}) = 10^{-4}$. Superimposed are $\mathcal{L} = 300 \text{ fb}^{-1}$ and 3000 fb^{-1} .

< □ > < ^[] >

- E - N

LHC prospects for $t \rightarrow Sc, S \rightarrow \gamma \gamma$

- Final state: at least two jets with one being *b*-tagged, one isolated lepton and two isolated photons (same isolation criteria used for photons)
- Photons required to have $p_T > 10 \, GeV$ and $|\eta| < 2.5$
- Dominant backgrounds: semi-leptonic (di-leptonic) $t\bar{t}h$ and the QCD-QED $t\bar{t}\gamma\gamma$
- $W\gamma\gamma$ merged up to two hard ME partons, also considered \rightarrow despite having O(1) pb cross-section, it reduces drastically after all cuts
- Selection cuts up to the transverse mass are almost identical but for the final cut, due to the much sharper di-photon resolution, we demand a narrow window of 3 GeV around the scalar mass

LHC prospects for $t \rightarrow Sc, S \rightarrow \gamma \gamma$

Figure : Left) The reconstructed top mass from the hardest two photons and the hardest jet. Right) The transverse mass m_T .

<i>m⁵</i> [GeV]	Signal	$t\bar{t}\gamma\gamma$ (SL)	$t\bar{t}\gamma\gamma$ (LL)	tīth (SL)	tīth (LL)
20	760	13	5.5	0.15	0.20
50	1100	27	9.9	0.40	0.25
80	1000	19	6.8	0.45	0.35
100	940	13	5.0	0.20	0.25
120	740	6.4	3.5	0.25	0.35
125	660	5.0	2.6	570	240
150	280	2.3	1.1	0.00	0.00

Shankha Banerjee (IPPP, Durham)

HE-HL-LHC workshop, CERN, 18-20 June

LHC prospects for $t \rightarrow Sc, S \rightarrow \gamma \gamma$

Figure : Left) Branching ratios that can be tested in the $\gamma\gamma$ channel. Superimposed are the theoretical expectations in the three BPs. Right) Luminosity required to test $\mathcal{B}(t \to St, S \to \gamma\gamma) = 10^{-6}$. Superimposed are $\mathcal{L} = 300 \text{ fb}^{-1}$ and 3000 fb^{-1} .

The kink shows the regime for $m_S = m_h = 125$ GeV. Here the SM backgrounds are much larger and hence a larger integrated luminosity is required to probe the same BR

(日) (同) (三) (三)

HE-LHC prospects for $t \rightarrow Sc, S \rightarrow \gamma \gamma$

- The increase in cross-section for the dominant background $t\bar{t}\gamma\gamma$ at the 27 TeV (100 TeV) collider is ~ 4 (~ 40) times that from the 14 TeV numbers.
- Similar factors hold for the signal cross-section
- Assuming 10 ab⁻¹ of luminosity and similar efficiencies, one expects an increase in significance by $4/\sqrt{4} \times \sqrt{10/3} \sim 3.7 \ (40/\sqrt{40} \times \sqrt{10/3} \sim 11.5)$ for the 27 TeV (100 TeV) collider \rightarrow An order of magnitude improvement in the bound of $\mathcal{B}(t \rightarrow Sc, S \rightarrow \gamma\gamma)$
- Similar improvements should hold for $\mathcal{B}(t \to Sc, S \to b\bar{b})$

Summary and conclusions

- Flavour violating top decays into singlet scalars mediated by heavy physics at scales
 f ≥ O(TeV) dominate over the ones involving SM-like Higgs → Latter (former) proceeds
 via dimension 6 (5) operators and are hence suppressed by 1/*f*² (1/*f*) → Also S can be
 much lighter than Higgs and corresponding top decay can be kinematically enhanced
- We studied top-pair production with one top decaying leptonically and the other decaying via $t \rightarrow Sc, S \rightarrow b\bar{b} (\gamma \gamma)$ with 20 GeV $< m_S < 150$ GeV
- For $S \rightarrow b\bar{b}$ we have the best bound at $m_S \sim 80$ GeV, being able to probe $\mathcal{B}(t \rightarrow Sc, S \rightarrow b\bar{b})$ at 95% CL with 3 ab⁻¹ luminosity \rightarrow reach smaller than about a factor of 5 for lower masses because at much lower masses the two *b*-jets might not be fully resolved and one might have to resort to fat jets in the boosted regimes \rightarrow For heavier masses the closest *b*-tagged jets might not peak exactly around m_S (wrong pairing)
- For the $t \to Sc, S \to \gamma\gamma$ analysis, one can probe $\mathcal{B}(t \to Sc, S \to \gamma\gamma) \gtrsim 10^{-7}$ at 95% CL with same integrated luminosity
- In models where $\mathcal{B}(S o \gamma \gamma) \sim 1$, one can probe a heavy new physics scale of \sim 50 TeV
- An order of magnitude improvement in the bound for B(t → Sc, S → γγ) upon going to 100 TeV colliders with 10 ab⁻¹ luminosity