CKM metrology at HL-LHC

- * CKM metrology
- * present status

- * prospects in the hl-lhc era
- * theoretical issues
- * new opportunities

"Workshop on the physics of HL-LHC and perspective at HE-LHC" CERN - 18 June 2018

CKM metrology

Flavour- and CP-violating quark couplings in the SM:

$\mathcal{L}_Y^q = \bar{Q}_L Y_u u_R \tilde{\phi} + \bar{Q}_L Y_d d_R \phi + H.c.$

10 physical parameters:

 $Y_{u,d} \xrightarrow[\text{EWSB}]{} 6 \operatorname{masses} m_q, 3 \operatorname{mixing angles} \theta_{ij}, 1 \operatorname{CPV} \operatorname{phase} \delta$

quark masses + CKM matrix

 $V_{CKM} =$

 $\begin{pmatrix}
\cos\theta_{12}\cos\theta_{13} \\
-\sin\theta_{12}\cos\theta_{23} - \cos\theta_{12}\sin\theta_{13}\sin\theta_{23}e^{i\delta} \\
\sin\theta_{12}\sin\theta_{23} - \cos\theta_{12}\sin\theta_{13}\cos\theta_{23}e^{i\delta} \\
-\cos\theta_{12}\sin\theta_{13}\cos\theta_{23}e^{i\delta} \\
-\cos\theta_{12}\sin\theta_{13}\cos\theta_{23}e^{i\delta}
\end{pmatrix}$

 $\sin \theta_{12} \cos \theta_{13}$ $\cos \theta_{12} \cos \theta_{23} - \sin \theta_{12} \sin \theta_{13} \sin \theta_{23} e^{i\delta}$ $-\cos \theta_{12} \sin \theta_{23} - \sin \theta_{12} \sin \theta_{13} \cos \theta_{23} e^{i\delta}$

 $\cos\theta_{13}\sin\theta_{23}$

 $\cos\theta_{13}\cos\theta_{23}$

Page 2

Relevant facts for CKM metrology:

- 3-generation unitarity \rightarrow CPV from CPC measurements
- single CPV source \rightarrow all CPV observables correlated

In principle, all one needs are 4 measurements:

1. $0^+ \rightarrow 0^+ \beta$ decays (+ K_{ℓ_3}) $\rightarrow |V_{ud}|$ 2. semileptonic B decays with charm $\rightarrow |V_{cb}|$ 3. charmless semileptonic B decays $\rightarrow |V_{ub}|$

4.
$$B^{\pm} \rightarrow D^{(*)}K^{\pm} \rightarrow \gamma = \arg(-V_{ub}^{*}V_{ud} / V_{cb}^{*}V_{cd})$$

 $\sin \theta_{13} = |V_{ub}|, \quad \cos \theta_{13} = \sqrt{1 - \sin^2 \theta_{13}}, \\ \cos \theta_{12} = \frac{|V_{ud}|}{\cos \theta_{13}}, \quad \sin \theta_{12} = \sqrt{1 - \cos^2 \theta_{12}}, \quad \delta = 2 \arctan\left(\frac{1 \mp \sqrt{1 - (a^2 - 1)\tan^2 \gamma}}{(a - 1)\tan \gamma}\right), \quad a = \frac{\cos \theta_{12} \sin \theta_{13} \sin \theta_{23}}{\sin \theta_{12} \cos \theta_{23}}.$

These are all tree-level constraints. Additional measurements of (loop-induced) CKM-dependent processes can:

- → improve the CKM metrology <<<<<>>
 (assuming that the SM is valid also at the loop level)
- \rightarrow put upper bounds on NP contributions to loop processes \rightarrow EFT \rightarrow put lower bounds on the NP scale

Unitarity Triangle analysis

$$V_{ub}^{*}V_{ud} + V_{cb}^{*}V_{cd} + V_{tb}^{*}V_{td} = 0$$

Constraints are graphically represented in the complex plane, where the SM predicts them to meet in one point: the apex of the (rescaled) unitarity triangle

Marco Ciuchini

Workshop on the physics of HL-LHC and perspectives at HE-LHC - CERN - 18 June 2018

Marco Ciuchini

Workshop on the physics of HL-LHC and perspectives at HE-LHC – CERN – 18 June 2018

Summer 2018 - preliminary

- <u>SM</u> determination of the Unitarity Triangle
 - $R_{u} e^{i \gamma} + R_{+} e^{-i \beta} = 1$
 - $R_u = 0.380 \pm 0.011$
 - $R_{t} = 0.920 \pm 0.013$
 - γ = (66.8 ± 2.0)°
 - $\beta = (22.25 \pm 0.65)^{\circ}$

 $\alpha = (90.9 \pm 2.0)^{\circ}$

Marco Ciuchini

Workshop on the physics of HL-LHC and perspectives at HE-LHC – CERN – 18 June 2018

The CKM matrix in the SM

 $\begin{array}{cccc} 0.9743(1) & 0.2251(6) & 3.7(1) \cdot 10^{-3} e^{-i67(2)^{\circ}} \\ -0.2250(5) e^{i0.035(1)^{\circ}} & 0.9734(1) e^{-i0.00188(5)^{\circ}} & 4.24(7) \cdot 10^{-2} \\ 8.7(1) \cdot 10^{-3} e^{-i22.2(6)^{\circ}} & -4.12(6) \cdot 10^{-2} e^{i1.06(3)^{\circ}} & 0.99911(2) \end{array}$

Standard parametrization (PDG) $sin\Theta_{12}$ = 0.2250 ± 0.001 $sin\Theta_{23}$ = (4.20 ± 0.06)·10⁻² $sin\Theta_{13}$ = (3.68 ± 0.10)·10⁻³ δ = (66.9±2.0)°

Wolfenstein parametrization

 $\begin{array}{ll} \lambda = 0.2254 \pm 0.0007 & A = 0.826 \pm 0.012 \\ \rho = 0.152 \pm 0.014 & \eta = 0.357 \pm 0.010 \end{array}$

SM predictions

Measurement	%	Prediction	Pull(σ)
0.689±0.023	3.3	0.738±0.033	+1.2
(70.8±7.8)°	11	(65.8±2.2)°	< 1
(90.9±8.0)°	8.8	(91.1±2.2)°	< 1
(0.60±0.88)°	150	(1.06±0.03)°	< 1
40.5±1.1	2.7	42.4±0.7	+1.5
3.72±0.23	6.2	3.66±0.11	< 1
2.228±0.011	0.5	1.88±0.20	-1.5
17.757±0.021	0.1	17.25±0.85	< 1
	Measurement 0.689 ± 0.023 $(70.8\pm7.8)^{\circ}$ $(90.9\pm8.0)^{\circ}$ $(0.60\pm0.888)^{\circ}$ 40.5 ± 1.1 3.72 ± 0.23 2.228 ± 0.011 17.757 ± 0.021	Measurement% 0.689 ± 0.023 3.3 $(70.8\pm7.8)^{\circ}$ 11 $(90.9\pm8.0)^{\circ}$ 8.8 $(0.60\pm0.88)^{\circ}$ 150 40.5 ± 1.1 2.7 3.72 ± 0.23 6.2 2.228 ± 0.011 0.5 17.757 ± 0.021 0.1	Measurement%Prediction 0.689 ± 0.023 3.3 0.738 ± 0.033 $(70.8\pm7.8)^{\circ}$ 11 $(65.8\pm2.2)^{\circ}$ $(90.9\pm8.0)^{\circ}$ 8.8 $(91.1\pm2.2)^{\circ}$ $(0.60\pm0.88)^{\circ}$ 150 $(1.06\pm0.03)^{\circ}$ 40.5 ± 1.1 2.7 42.4 ± 0.7 3.72 ± 0.23 6.2 3.66 ± 0.11 2.228 ± 0.011 0.5 1.88 ± 0.20 17.757 ± 0.021 0.1 17.25 ± 0.85

Prospects for the HL-LHC era

Observable	Current LHCb	LHCb 2025	Belle II	Upgrade II	GPDs Phase II
<u>CKM tests</u>					
γ , with $B_s^0 \to D_s^+ K^-$	$\binom{+17}{-22}^{\circ}$ [123]	4°	_	1°	-
γ , all modes	$\binom{+5.0}{-5.8}^{\circ}$ [152]	1.5°	1.5°	0.35°	_
$\sin 2\beta$, with $B^0 \to J/\psi K_{\rm s}^0$	0.04 [569]	0.011	0.005	0.003	_
ϕ_s , with $B_s^0 \to J/\psi\phi$	49 mrad [32]	$14 \mathrm{\ mrad}$	-	$4 \mathrm{mrad}$	22 mrad [570]
ϕ_s , with $B_s^0 \to D_s^+ D_s^-$	170 mrad [37]	$35 \mathrm{\ mrad}$	_	$9 \mathrm{mrad}$	_
$\phi_s^{s\bar{s}s}$, with $B_s^0 \to \phi\phi$	150 mrad [571]	$60 \mathrm{\ mrad}$	-	$17 \mathrm{\ mrad}$	Under study [572]
a_{sl}^s	33×10^{-4} [193]	10×10^{-4}	-	$3 imes 10^{-4}$	_
$ V_{ub} / V_{cb} $	$6\% \ [186]$	3%	1%	1%	-
$B^0_s, B^0{ ightarrow}\mu^+\mu^-$					
$\overline{\mathcal{B}(B^0 \to \mu^+ \mu^-)} / \mathcal{B}(B^0_s \to \mu^+ \mu^-)$	$90\% \ [244]$	34%	_	10%	21% [573]

Parameter			Error		
	Now	$50/\mathrm{fb}$	$300/\mathrm{fb}$	$1000/\mathrm{fb}$	$3000/\mathrm{fb}$
$\Delta M_d \; [\mathrm{ps}^{-1}]$	0.002	0.0005	0.0002	0.0001	0.00006
$\Delta M_s [\mathrm{ps}^{-1}]$	0.021	0.005	0.002	0.001	0.0006
α [°]	5.5	1	Belle II		
V_{cb}	2.7%	1%	Belle II		
V_{ub}	10%	1%	Belle II		
$\alpha_s(M_Z)$	0.0005	0.0002			
m_t	$760 { m ~MeV}$	$250 { m ~MeV}$	theory li	nited	
m_b	$50 { m MeV}$	$10 { m MeV}$			

Tarantino, What next - CSN1

Hadronic Parameter	What Next Era (2025)
$f_+^{K\pi}(0)$	0.1%
B_K	0.1 - 0.5%
f_{B_s}	0.5%
f_{B_s}/f_B	0.5%
B_{B_s}	0.5 - 1%
B_{B_s}/B_B	0.5 - 1%
$F_{D^{*}}(1)$	0.5%
$B \to \pi$	$\geq 1\%$

Marco Ciuchini Workshop on the physics of HL-LHC and perspectives at HE-LHC – CERN – 18 June 2018

Tree-level constraints

Marco Ciuchini

Workshop on the physics of HL-LHC and perspectives at HE-LHC – CERN – 18 June 2018

Marco Ciuchini

Workshop on the physics of HL-LHC and perspectives at HE-LHC – CERN – 18 June 2018

Marco Ciuchini

Workshop on the physics of HL-LHC and perspectives at HE-LHC – CERN – 18 June 2018

Theoretical issues

QUITE A FEW!

- In the sub-percent era, many solid approximations used so far to compute hadronic amplitudes can't be relied on anymore (e.g. isospin symmetry, no QED corrections, no subleading amplitudes, no higher-dimensional operators, etc.)
- <u>Good news</u>: the tree-level determination of γ from $B \rightarrow DK$ (GLW, ADS, GGSZ) safely extrapolates to the high precision. D mixing is manageble and EW corrections are still negligible Brod, Zupan, arXiv:1308.5663 Marco Ciuchini Page 13

The other tree-level constraints from semileptonic B decays are in less good shape: the long-standing disagreement between incl. and excl. measurements is still there, but there are promising new developments

CLN parametrization of the $B \rightarrow D^*$ FF's uses HQ relations which may be responsible for the $|V_{cb}|$ discrepancy. Still inconclusive, but...

Grinstein, Kobach, arXiv:1703.08170 Bigi, Gambino, Schacht, arXiv:1703.0612

New attempts at computing $\frac{1}{104}$ FF's on the lattice at small q^2

Martinelli et al., in progress

Loop-level constraints: th. prospects

- $\rightarrow \Delta m_d$ and Δm_s : decay constants and B parameters @1% call for QED corrections
- $\rightarrow \epsilon_{\kappa}$: QED corrections, long-distance contributions, RBC-UKQCD dimension-8 operators need to be controlled MC et al., in progress Gronau, Zupan, hep-ph/0502139 $\rightarrow \alpha$: isospin breaking

Charles et al., arXiv:1705.02981

- $\rightarrow \beta$: subleading amplitude $A(B^0 \rightarrow J/\psi K) = V_{cb}^* V_{cs} T + V_{ub}^* V_{us} P$ bound using SU(3)-related b $\rightarrow d$ decays $B_{\rm S} \rightarrow J/\psi K_{\rm S}$ and $B \rightarrow J/\psi \pi^0$ where the 2nd term is not Cabibbo suppressed Fleischer, hep-ph/9903455 th. error scales with the ones on control MC et al., hep-ph/0507290, ... channels & matches the measurement accuracy De Bruyn, Fleischer,
- $\rightarrow \beta_s$: same as β , but trickier (larger effect, ϕ is not a pure De Bruyn, Fleischer, octet, ...). Still likely controllable arXiv:1412.6834

Marco Ciuchini Workshop on the physics of HL-LHC and perspectives at HE-LHC – CERN – 18 June 2018

New opportunities

High statistics and high precision also provide new opportunities for CKM metrology

 $B^0 \to D^{\mp} \pi^{\pm}$

 $300 \, {\rm fb}^{-1}$

Page 16

 $23\,{
m fb}^{-1}$

 $B_s^0 \to D_s^{\mp} K^{\pm}$

 $300\,{
m fb}^{-1}$

 $23\,{
m fb}^{-1}$

Parameters

For example:

- * β from $2\beta+\gamma$ and γ less precise than β from $B \rightarrow J/\psi$ K, but free from subdominant penguin amplitudes and $\Delta F=1$ NP
- * $|V_{ts}|/|V_{td}|$ from BR(B_s $\rightarrow \mu\mu$) / BR(B_d $\rightarrow \mu\mu$) less effective than Δm_s / Δm_d , but affected by different NP, Δ F=1 instead of Δ F=2

Conclusions

- CKM metrology still has a bright future ahead: tree-level constraints alone can provide a sub-percent determination of the CKM matrix, unleashing the full NP-constraining power of the loop observables
- * Hadronic uncertainties seem controllable at the required level in many cases, but we need to revamp our toolbox and possibly develop some new tool: we are on the way, yet the devil is in the details...

A hard work, but hopefully rewarding, is ahead of both theorists and experimentalists

Marco Ciuchini Workshop on the physics of HL-LHC and perspectives at HE-LHC – CERN – 18 June 2018 Page 17

CPV in D mixing: today

 From a global analysis of D mixing data we extract the mixing parameters:

> $|M_{12}| = (4 \pm 2)/fs, |\Gamma_{12}| = (14 \pm 1)/fs$ and $\Phi_{12} = (0 \pm 3)^{\circ}$ ([-6,9]° @ 95% prob.)

Workshop on the physics of HL-LHC and perspectives at HE-LHC - CERN - 18 June 2018 Page 19

CPV in D mixing: extrapolation

CPV contributions to $\Gamma_{\rm 12}$ enhanced by 1/2:

$$\lambda_{s}^{2} \varepsilon^{2} + \lambda_{s} \lambda_{b} \varepsilon$$

can go beyond the "real SM" approximation by adding one universal phase $\varphi_{_{\Gamma12}}$ and fitting for $\varphi_{_{M12}}$ and $\varphi_{_{\Gamma12}}$

w. 300/fb expect $\delta x \sim 5 \ 10^{-5}$, $\delta y \sim 3 \ 10^{-5}$, $\delta |q/p| \sim 3 \ 10^{-3}$, $\delta \phi \sim 1^{\circ}$, $\delta A_{\Gamma} \sim 10^{-5}$

get
$$\delta \Phi_{M12}$$
 ~0.1° and $\delta \Phi_{\Gamma12}$ ~0.4°

W

]	BGL Fit:	Data + lattice	Data + lattice + LCSR	Data + lattice	Data + lattice + LCSR
1	unitarity	weak	weak	strong	strong
	$\chi^2/{ m dof}$	28.2/33	32.0/36	29.6/33	33.1/36
	$ V_{cb} $	0.0424(18)	0.0413(14)	0.0415(13)	$0.0406 \begin{pmatrix} +12\\ -13 \end{pmatrix}$
_	$a_0^{A_1}$	0.01218(16)	0.01218(16)	0.01218(16)	0.01218(16)
	$a_1^{A_1}$	$-0.053 \begin{pmatrix} +56\\ -44 \end{pmatrix}$	$-0.052 \begin{pmatrix} +25\\ -14 \end{pmatrix}$	$-0.046(^{+34}_{-18})$	$-0.029(^{+21}_{-13})$
	$a_2^{A_1}$	$0.2 \begin{pmatrix} +8\\ -12 \end{pmatrix}$	$0.99\binom{+0}{-46}$	$0.48(^{+2}_{-92})$	$0.5(^{+0}_{-3})$
	$a_1^{A_5}$	$-0.0101\left(^{+59}_{-55} ight)$	$-0.0072 \begin{pmatrix} +52\\ -50 \end{pmatrix}$	$-0.0063(^{+36}_{-11})$	$-0.0051(^{+49}_{-13})$
	$a_{2}^{A_{5}}$	0.12(10)	$0.092 \begin{pmatrix} +92\\ -95 \end{pmatrix}$	$0.062(^{+4}_{-64})$	$0.065 \begin{pmatrix} +9\\ -89 \end{pmatrix}$
	$a_0^{V_4}$	$0.011 \begin{pmatrix} +10 \\ -8 \end{pmatrix}$	$0.0286 \begin{pmatrix} +55\\ -36 \end{pmatrix}$	$0.0209(^{+44}_{-0})$	$0.0299(^{+53}_{-35})$
	$a_{1}^{V_{4}}$	$0.7 \binom{+3}{-4}$	$0.08 \binom{+8}{-22}$	$0.33(^{+4}_{-17})$	$0.04(^{+7}_{-20})$
	$a_{2}^{V_{4}}$	$0.7 \begin{pmatrix} +2\\ -17 \end{pmatrix}$	$-1.0\left(^{+20}_{-0} ight)$	$0.6(^{+2}_{-13})$	$-0.9(^{+18}_{-0})$

Marco Ciuchini Workshop on the physics of HL-LHC and perspectives at HE-LHC – CERN – 18 June 2018

EXTRAPOLATING LATTICE

Sector	$\varepsilon = 1\%$	$\varepsilon = 0.5\%$	$\varepsilon = 0.1\%$
π/K	0.5	15	$4 \cdot 10^4$
D	20	$7\cdot 10^2$	$2\cdot 10^6$
D_s	0.2	2	$5\cdot 10^2$
B	10^{3}	-	-
B_s	20	$4\cdot 10^2$	$3\cdot 10^5$

Hadronic Parameter	What Next Era (2025)
$f_{+}^{K\pi}(0)$	0.1%
B_K	0.1 - 0.5%
f_{B_s}	0.5%
f_{B_s}/f_B	0.5%
B_{B_s}	0.5 - 1%
B_{B_s}/B_B	0.5 - 1%
$F_{D^{*}}(1)$	0.5%
$B \to \pi$	$\geq 1\%$

- Estimate the computational cost in Pflops*years of a given accuracy in LQCD
- Predict the accuracy in 2025 assuming that 100/500 Pflops*years will be available