Kaon Physics: Theory View

Teppei Kitahara

Karlsruhe Institute of Technology (KIT)

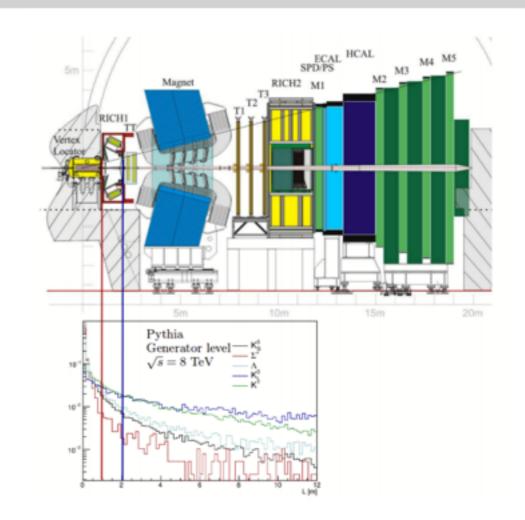
→ Technion (from Oct.)

Workshop on the physics of HL-LHC, and perspectives at HE-LHC

Karlsruhe Institute of Technology



Kaon In LHCb



- lacktriangle LHCb experiment has been designed for efficient reconstructions of $m{b}$ and $m{c}$
- Huge production of strangeness [$O(10^{13})$ /fb-1 K^0 s] is suppressed by its trigger efficiency [ϵ ~1-2%@LHC Run-I, ϵ ~18%@LHC Run-II]
- LHCb Upgrade (LS2=Phase I upgrade, LS4=Phase II upgrade) could realize high efficiency for K^0 s [ϵ ~90%@LHC Run-III] [M. R. Pernas, HL/HE LHC meeting, FNAL, 2018]
- In LHC Run-III and HL-LHC, we could probe the *ultra* rare decay $Br \sim O(10^{-11 \sim 12})$

collider search

Lattice perturbative calculations meson effective theory (ChPT)

 \mathcal{E} K and \mathcal{E}' K discrepancies?

 $K_I \rightarrow \pi\pi$

could give stronger constraints

> *CP*-violating **FCNC**

correlations

Yellow Report

> Understanding of ChPT

$$K_S \rightarrow \pi^0 \mu^+ \mu^ K_S \rightarrow \pi^+ \pi^- e^+ e^ K_S \rightarrow 4l$$

reduce th. error

 $K_I \rightarrow \pi^0 \nu \bar{\nu}$ NA62 & C

 $K_l \rightarrow \pi^0 l^+ l^-$

less sensitive because of LD contributions

$K^0 \rightarrow \pi\pi$

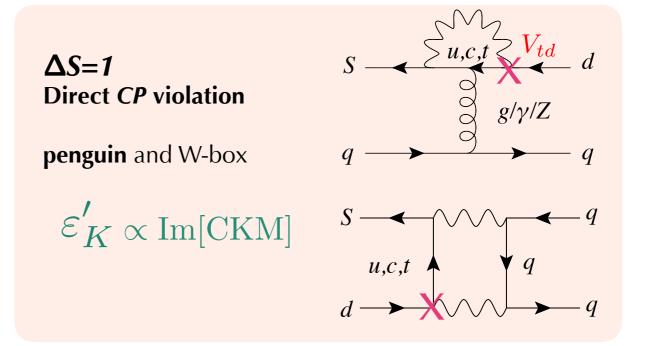
$$K_S$$
 CP even CPC indirect CPV direct CPV

$K^0 \rightarrow \pi\pi$ systems: two *CP* violations

Precise measurements for neutral kaon decay into two pions have revealed two types of *CP* violations: indirect CPV ε_K & direct CPV ε'_K :

$$\mathcal{A}\left(K_L \to \pi^+\pi^-\right) \propto \varepsilon_K + \varepsilon_K'$$
 with $\varepsilon_K = \mathcal{O}(10^{-3}) \neq 0$ [Christenson, Cronin, Fitch, Turlay '64 with Nobel prize] $\mathcal{A}\left(K_L \to \pi^0\pi^0\right) \propto \varepsilon_K - 2\varepsilon_K'$ $\varepsilon_K' = \mathcal{O}(10^{-6}) \neq 0$ [NA48/CERN and KTeV/FNAL '99]

$$\left(\frac{\varepsilon_K'}{\varepsilon_K} \right) = \frac{1}{6} \left[1 - \frac{\mathcal{B}(K_L \to \pi^0 \pi^0)}{\mathcal{B}(K_S \to \pi^0 \pi^0)} \frac{\mathcal{B}(K_S \to \pi^+ \pi^-)}{\mathcal{B}(K_L \to \pi^+ \pi^-)} \right] = \mathcal{O}(10^{-3})$$



EK discrepancy

SM prediction of the indirect CP violation $\varepsilon_{\rm K}$ is sensitive to $|V_{\rm cb}|$

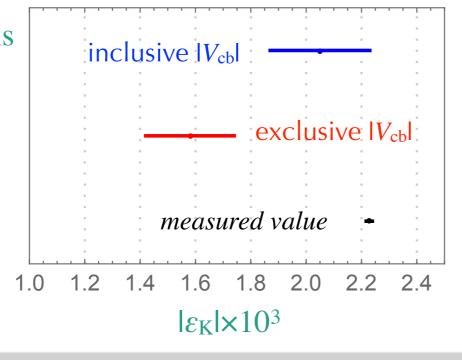
$$\varepsilon_K = \varepsilon_K(\mathrm{SD}) + \varepsilon_K(\mathrm{LD})$$
 \leftarrow $\varepsilon_K(\mathrm{LD}) = -3.6(2.0)\% \times \varepsilon_K(\mathrm{SD})_{\mathrm{SM}}$ [Buras, Guadagnoli, Isidori '10]

$$\varepsilon_K(SD) \propto Im \lambda_t \left[-Re \lambda_t \eta_{tt} S_0(x_t) + (Re \lambda_t - Re \lambda_c) \eta_{ct} S_0(x_c, x_t) + Re \lambda_c \eta_{cc} S_0(x_c) \right]$$

Wolfenstein $\rightharpoonup \simeq \bar{\eta} \lambda^2 |V_{cb}|^2 \left[|V_{cb}|^2 (1 - \bar{\rho}) \eta_{tt} S_0(x_t) + \eta_{ct} S_0(x_c, x_t) - \eta_{cc} S_0(x_c) \right]$ parametrization

Leading contribution is proportional to $|V_{cb}|^4$

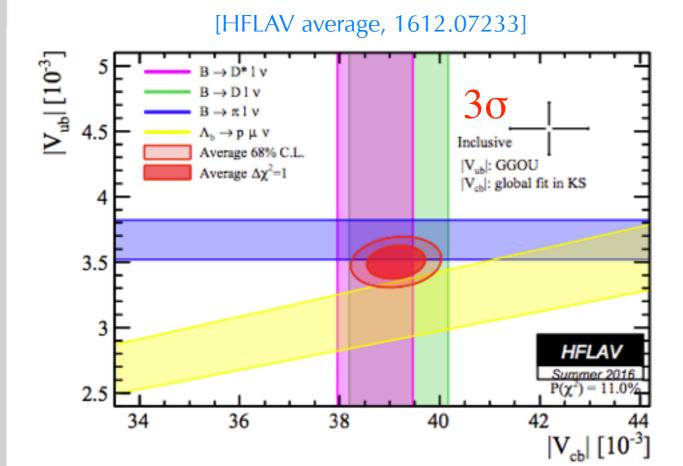
$|\varepsilon_{\rm K}|$ predictions (±1 σ error bar) errors are dominated by $|V_{\rm cb}|$, $\bar{\eta}$, $\eta_{\rm ct}$, $\eta_{\rm cc}$

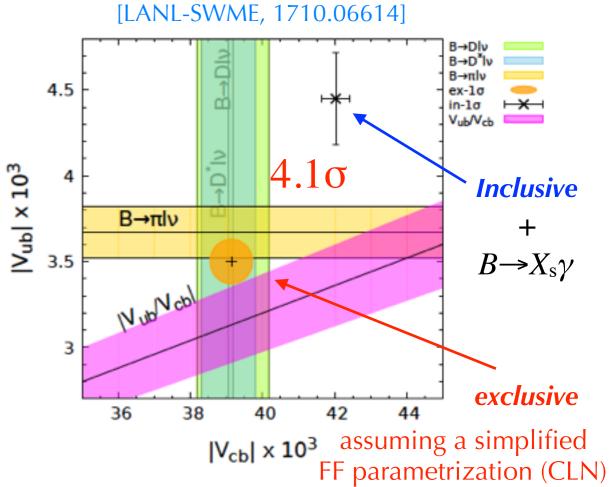


Theoretical prediction of $\varepsilon_{\rm K}$ with inclusive $|V_{\rm cb}|$ is consistent with the measured value, while there is 4.0σ tension in exclusive $|V_{\rm cb}|$ case

[LANL-SWME, 1710.06614] Wolfenstein parameters are determined by the angle-only fit

$\varepsilon_{\rm K}$ discrepancy ~ $|V_{\rm cb}|$ discrepancy





Recent progress on exclusive $|V_{cb}|$ in $B \rightarrow D^*$ transition

 $B \to D^* \ell \bar{\nu}$ [Belle, 1702.01521]

Model independent form factors parametrization [Boyd-Grinstein-Lebed (BGL) '97]

$$|V_{cb}|_{\mathrm{BGL}}^{\mathrm{excl.}} = (40.6^{+1.2}_{-1.3}) \times 10^{-3}$$
 [Bigi, Gambino, Schacht '17]

error will be reduced by future lattice result

+ Similar recent progress [Grinstein, Kobach '17, Bernlochner, Ligeti, Papucci, Robinson '17]

Direct *CP* violation in $K^0 \rightarrow \pi\pi$

Further strong suppression of $\varepsilon'_{\rm K}$ comes from the smallness of the $\Delta I = 3/2$ amplitude (i.e. $\Delta I = 1/2$ rule) and an accidental cancellation between the SM penguins

pion = isospin triplet

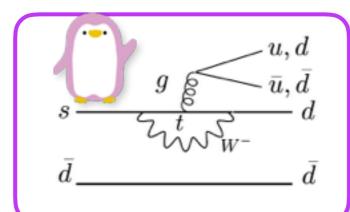
$$\frac{\varepsilon_K'}{\varepsilon_K} = \frac{1}{\sqrt{2}|\epsilon_K| \text{Re} A_0} \frac{\text{Re} A_2}{\text{Re} A_0} \left(-\text{Im} A_0 + \frac{\text{Re} A_0}{\text{Re} A_2} \text{Im} A_2 \right)$$

sensitive

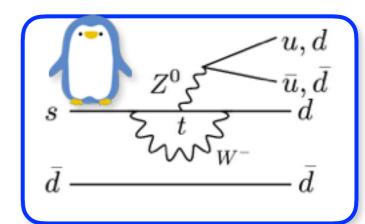
 $\Delta I = 1/2$ rule: factor = 0.04

Accidental cancellation

$$\mathcal{O}(\alpha_s) \stackrel{!}{\sim} \frac{1}{\omega} \mathcal{O}(\alpha)$$
where $\frac{1}{\omega} \equiv \frac{\text{Re}A_0}{\text{Re}A_2} = 22.46 \text{ (exp.)}$



~ Im [QCD penguin] ~ Im [EW penguin]



Progress on RG evolution

Analytic solution of f=3 QCD-NLO RG evolution has a unphysical singularity [Ciuchini,Franco,Martinelli,Reina '93, '94, Buras,Jamin,Lautenbacher '93]

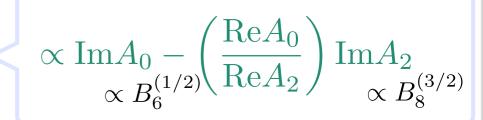
$$\hat{J}_{s} - \left[\hat{J}_{s}, \frac{\hat{\gamma}_{s}^{(0)T}}{2\beta_{0}}\right] = \frac{\beta_{1}}{\beta_{0}} \frac{\hat{\gamma}_{s}^{(0)T}}{2\beta_{0}} - \frac{\hat{\gamma}_{s}^{(1)T}}{2\beta_{0}}, \qquad \left(\hat{V}^{-1}\hat{J}_{s} \ \hat{V}\right)_{ij} = \frac{\cdots}{2\beta_{0} \mp \left((\hat{\gamma}_{s,D}^{(0)T})_{jj} - (\hat{\gamma}_{s,D}^{(0)T})_{ii}\right)}.$$

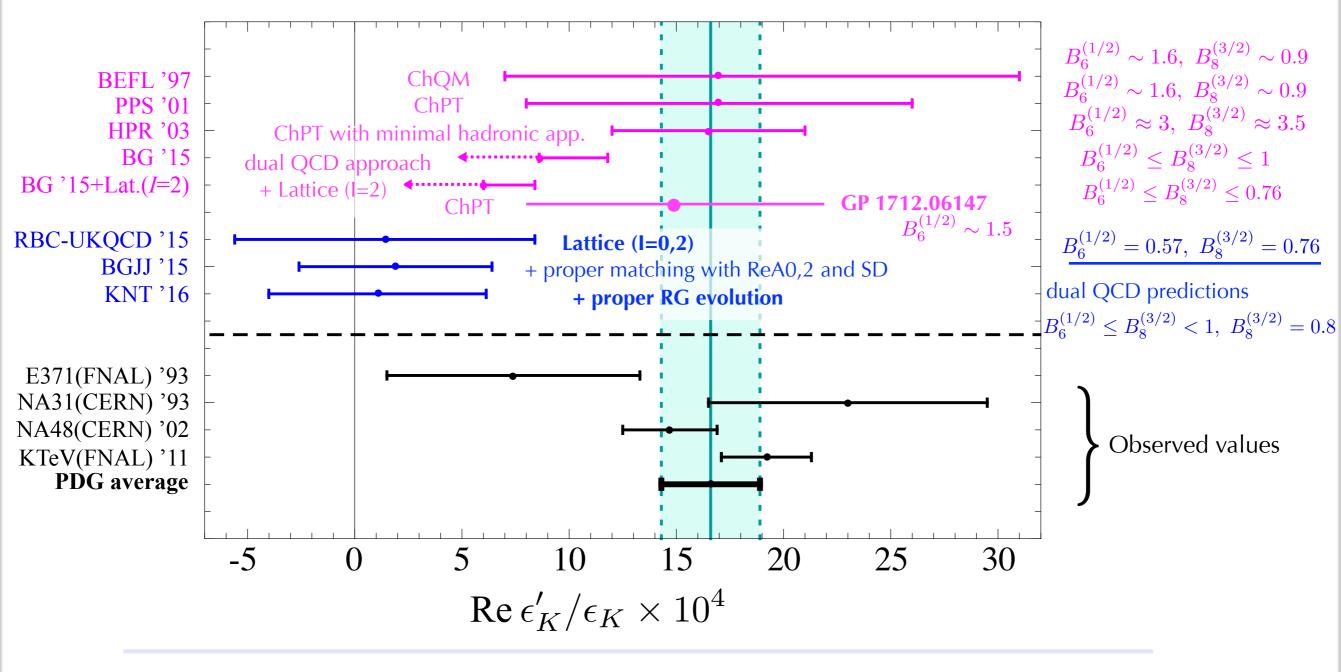
10x10 matrix \hat{J}_s is a solution of the f=3 QCD-NLO RG evolution

 $2\beta_0 = 18, \ \hat{\gamma}_{s,D}^{(0)T} \supset +2, -16$ leads to singularity, which requires a regulator in ADM $\hat{\gamma}_s^{(0)}$

- Similar singularities exist in QED-NLO and QCD-QED-NLO RG evolutions
- Singularity-free analytic solutions are obtained using more generalized ansatz for the NLO evolution matrices [TK, Nierste, Tremper, JHEP '16]
 - $\ln \alpha_s(\mu_2)/\alpha_s(\mu_1)$ terms are added compared to the previous solution
 - Contribution of order α^2/α_s^2 is also included for the first time and we find it is numerically irrelevant in the SM \rightarrow good perturbation

Current situation of $\varepsilon'_{\rm K}/\varepsilon_{\rm K}$





$$\Delta I = 1/2 \text{ rule } \left(\frac{\text{Re}A_0}{\text{Re}A_2}\right)$$

Exp. 22.45 ± 0.05

ChPT

 ~ 14

dual QCD

 16.0 ± 1.5

Lattice

 31.0 ± 11.1

ε'_K/ε_K discrepancy

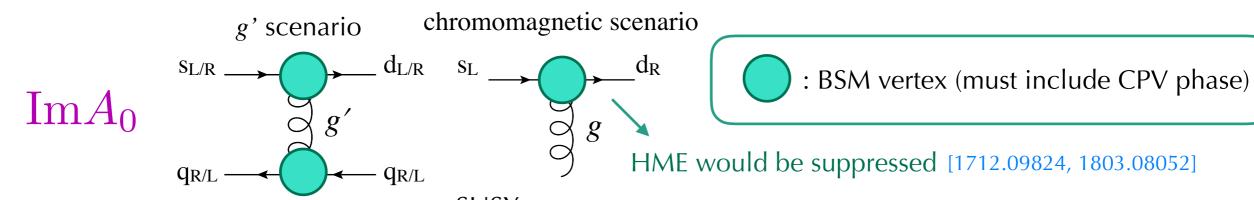
- Lattice result with recent progress on the short-distance physics predicts $\varepsilon'_{\rm K}/\varepsilon_{\rm K}=O(10^{-4})$ which is below the experimental average at 2.8-2.9 σ level NNLO QCD in progress [Cerdà-Sevilla, Gorbahn, Jäger, Kokulu]
- A large- N_c analysis (dual QCD method) including final-state interaction (FSI) is consistent with lattice results [Buras, Gerard, '15, '17]
- ChPT including FSI predicts $\varepsilon'_{\rm K}/\varepsilon_{\rm K} = O(10^{-3})$ with large error which is consistent with measured values [Gisbert, Pich 1712.06147]
- Main difference comes from $B_6^{(1/2)} = 0.6$ (lattice) vs 1.5 (ChPT)
- The lattice simulation includes FSI as the Lellouch-Lüscher finite-volume correction and explained ΔI =1/2 rule for the first time. But, the strong phase of I=0 is smaller than a phenomenological expectation at 2.7 σ level [Colangelo, Passemar, Stoffer '15]
- For *I*=2 decay, lattice/dual QCD/ChPT give well consistent results

Lattice simulation with improved methods and higher statistics is on-going [1711.05648]

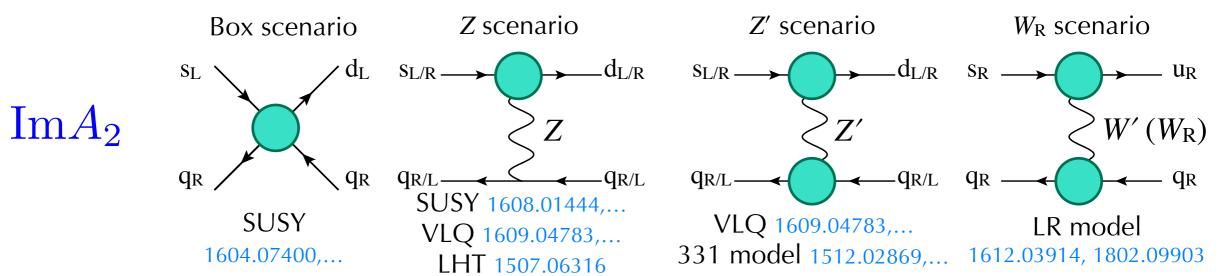
$\varepsilon'_{\rm K}/\varepsilon_{\rm K}$ in the BSM

Several types of BSM can explain $\varepsilon'_{K}/\varepsilon_{K}$ discrepancy

$$\frac{\varepsilon_K'}{\varepsilon_K} = \frac{1}{\sqrt{2}|\epsilon_K| \text{Re} A_0} \frac{\text{Re} A_2}{\text{Re} A_0} \left(-\text{Im} A_0 + \frac{\text{Re} A_0}{\text{Re} A_2} \text{Im} A_2 \right) \frac{\text{Re} A_0}{\text{Re} A_2} = 22.46 \text{ (exp.)}$$

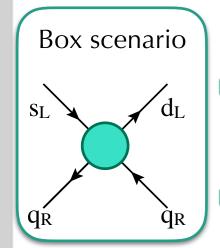


RS model 1404.3824 Type-III 2HDM chiral-flavorful vector 1806.02312 T805.07522



Kaon Physics: Theory View

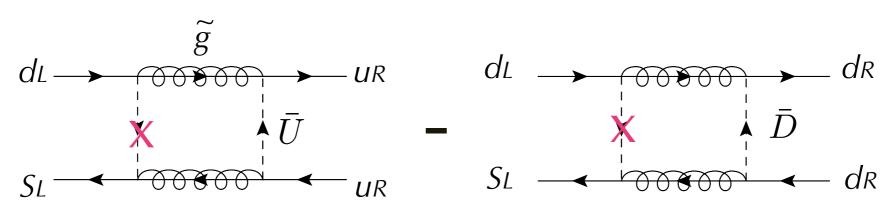
Gluino-box contribution



[Kagan, Neubert, PRL '99, Grossman, Kagan, Neubert, JHEP '99, TK, Nierste, Tremper, PRL '16]

In the supersymmetric models, the gluino box can significantly contribute to $\varepsilon'_{\rm K}/\varepsilon_{\rm K}$

In spite of QCD correction, gluino box **can** break isospin symmetry through mass difference between right-handed up and down squarks, which contributes **Im**A₂

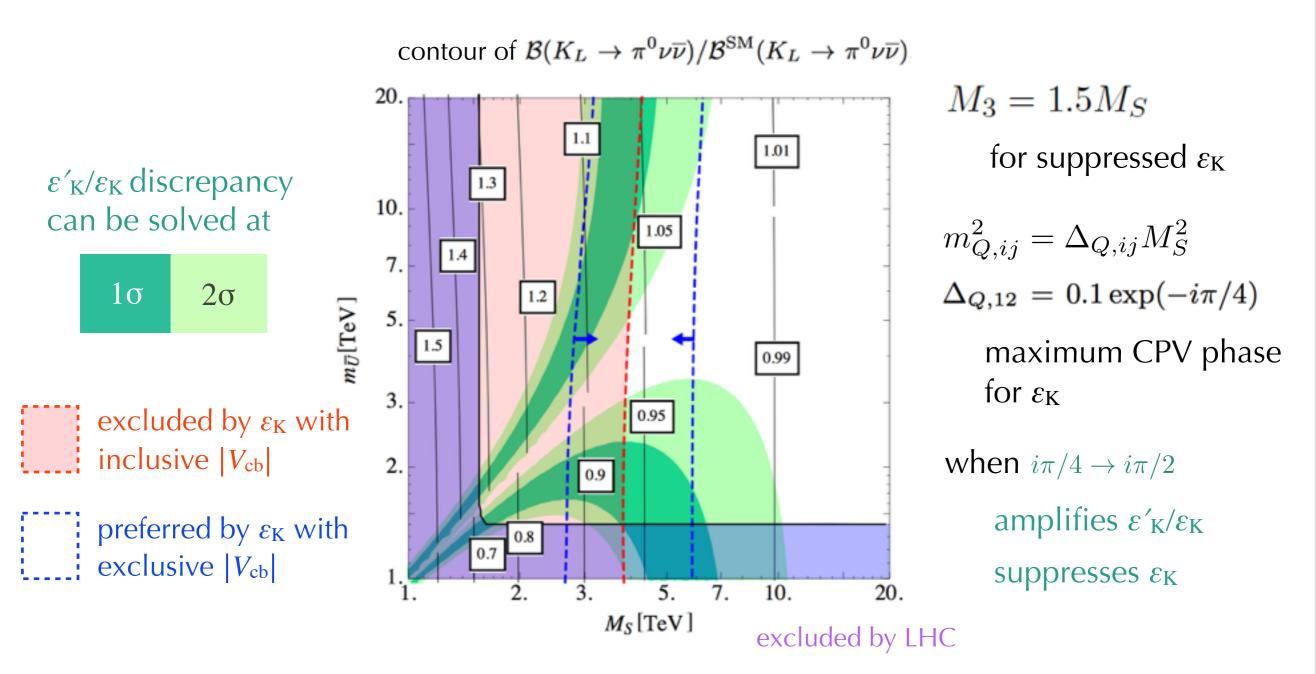


$$m_{\bar{U}} \neq m_{\bar{D}} \stackrel{\text{RGE}}{\longrightarrow}$$
 EW penguin operator Q_8 is generated at the low energy scale

SUSY contributions to $\varepsilon'_{\rm K}/\varepsilon_{\rm K}$

[TK, Nierste, Tremper, PRL '16] [Crivellin, D'Ambrosio, TK, Nierste '17]

• We take universal SUSY mass (M_S) without gaugino masses (M_S) and right-handed up-type squark mass $(m_{\overline{U}})$



$$K^0 \rightarrow \mu^+\mu^-$$

$$K_S$$
 CP even indirect CPV $CPC + direct$ CPV
 $CPC + direct$ CPV
 $CPC + direct$ CPV

$K^0 \rightarrow \mu^+ \mu^-$ systems

SM predictions: [Ecker, Pich '91, Isidori, Unterdorfer '04, TK, D'Ambrosio '17]

$$\mathcal{B}(K_L \to \mu^+ \mu^-)_{\text{SM}} = \begin{cases} (6.85 \pm 0.80 \pm 0.06) \times 10^{-9} (+) & \text{An unknown sign ambiguity} \\ (8.11 \pm 1.49 \pm 0.13) \times 10^{-9} (-) & \pm = \text{sgn} \left[\frac{\mathcal{A}(K_L \to \gamma \gamma)}{\mathcal{A}(K_L \to (\pi^0)^* \to \gamma \gamma)} \right] \end{cases}$$

$$\mathcal{B}(K_S \to \mu^+ \mu^-)_{SM} = [4.99(LD) + 0.19(SD)] \times 10^{-12}$$

= $(5.18 \pm 1.50 \pm 0.02) \times 10^{-12}$
LD other

$$\pm = \operatorname{sgn}\left[\frac{\mathcal{A}\left(K_L \to \gamma\gamma\right)}{\mathcal{A}\left(K_L \to (\pi^0)^* \to \gamma\gamma\right)}\right]$$

changes the relative sign between LD and SD

Extrapolating

from Run-I result

- $K_S \rightarrow \mu\mu$ is dominated by P-wave *CP*-conserving LD contribution, while S-wave CP-violating SD is subleading
- Current bounds:

$$\mathcal{B}(K_L \to \mu^+ \mu^-)_{\rm exp} = (6.84 \pm 0.11) \times 10^{-9}$$
 [BNL E871 '00]
 $\mathcal{B}(K_S \to \mu^+ \mu^-)_{\rm exp} < 0.8 \times 10^{-9}$ [LHCb, Run-I 1706.00758]

LHCb Upgrade is aiming to reach the SM sensitivity of $K_S \rightarrow \mu\mu$

3R (K_s -> $\mu\mu$) limit at 95%CL [x10 $^{\circ}$

LHCb-upgrade

[D. M. Santos, HQL2018]

Phase-II-upgrade?

Interference between K_S and K_L

Decay intensity of neutral kaon beam into *f states*

Decay intensity of neutral kaon beam into
$$f$$
 states
$$I(K \to f)(t) = \frac{1+D}{2} \left| \langle f | - \mathcal{H}_{\mathrm{eff}}^{|\Delta S|=1} | K^0(t) \rangle \right|^2 + \frac{1-D}{2} \left| \langle f | - \mathcal{H}_{\mathrm{eff}}^{|\Delta S|=1} | \overline{K}^0(t) \rangle \right|^2$$

$$= \frac{1}{2} \left[\left\{ (1-2D\mathrm{Re}[\overline{\epsilon}]) |\mathcal{A}(K_1)|^2 + 2\mathrm{Re}\left[\overline{\epsilon}\mathcal{A}(K_1)^*\mathcal{A}(K_2)\right] \right\} e^{-\Gamma_S t} \qquad \qquad |\mathcal{A}(K_S \to f)|^2$$

$$+ \left\{ (1-2D\mathrm{Re}[\overline{\epsilon}]) |\mathcal{A}(K_2)|^2 + 2\mathrm{Re}\left[\overline{\epsilon}\mathcal{A}(K_1)\mathcal{A}(K_2)^*\right] \right\} e^{-\Gamma_L t} \qquad \qquad |\mathcal{A}(K_L \to f)|^2$$

$$+ \left\{ 2D\mathrm{Re}\left[e^{-i\Delta M_K t} \left(\mathcal{A}(K_1)^*\mathcal{A}(K_2) + \overline{\epsilon}|\mathcal{A}(K_1)|^2 + \overline{\epsilon}^*|\mathcal{A}(K_2)|^2\right) \right] \qquad \qquad Interference$$

$$-4\mathrm{Re}[\overline{\epsilon}]\mathrm{Re}\left[e^{-i\Delta M_K t} \mathcal{A}(K_1)^*\mathcal{A}(K_2)\right] \right\} e^{-\frac{\Gamma_S + \Gamma_L}{2} t} \qquad \qquad \mathcal{A}(K_S \to f)^*\mathcal{A}(K_L \to f)$$

$$+ \mathcal{O}(\overline{\epsilon}^2), \qquad \text{time dependence} \qquad \qquad \tau \sim 2\tau_S$$

 $f=\mu^+\mu^-$ case [TK, D'Ambrosio, PRL '17]

$$\begin{split} & \sum_{\text{spin}} \mathcal{A}(K_1 \to \mu^+ \mu^-)^* \mathcal{A}(K_2 \to \mu^+ \mu^-) \\ & = \frac{16iG_F^4 M_W^4 F_K^2 M_K^2 m_\mu^2 \sin^2 \theta_W}{\pi^3} \text{Im}[\lambda_t] y_{7A}' \{ A_{L\gamma\gamma}^{\mu} - 2\pi \sin^2 \theta_W (\text{Re}[\lambda_t] y_{7A}' + \text{Re}[\lambda_c] y_c) \} \end{split}$$

- Interference comes from $K_S \rightarrow \mu\mu$ S-wave SD times $K_L \rightarrow \mu\mu$ S-wave CPC LD; $K_S \rightarrow \mu\mu$ P-wave LD is dropped
- **Proportional to direct CPV**
- Insensitive to indirect CPV $\bar{\epsilon}$

$$y_{7A}' = -0.654(34), \ A_{L\gamma\gamma}^{\mu} = \pm 2.01(1) \cdot 10^{-4} \cdot [0.71(101) - i5.21]$$
 top loop $\gamma\gamma$ loop sign ambiguity

Direct *CP* asymmetry in $K_S \rightarrow \mu \mu$

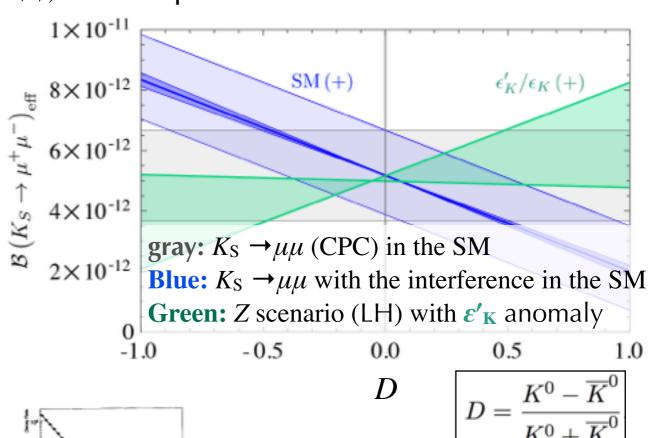
[TK, D'Ambrosio, PRL '17] [Chobanova, D'Ambrosio, TK, Martinez, Santos, Fernandez, Yamamoto '18] [Endo, Goto, TK, Mishima, Ueda, Yamamoto, '18]

- Interference contribution is comparable size to CPC of $K_S \to \mu\mu$ thanks to the large absorptive part of long-distance contributions to $K_L \to \mu\mu$
- The unknown sign of $\mathcal{A}(K_L \to \gamma \gamma)$ can be probed
- Nonzero dilution factor (D) can be achieved by an accompanying charged kaon tagging and a charged pion tagging

$$pp o K^0 K^- X$$

$$pp o K^{*+} X o K^0 \pi^+ X$$
 with $K^0 o \{K_S, K_L\} o \mu^+ \mu^-$

cf. CPLEAR experiment (1990-99@CERN) $p\bar{p} \to \begin{bmatrix} K^0K^-\pi^+ \\ \bar{K}^0K^+\pi^- \end{bmatrix}$



 $\{K_S,K_L\} \to \pi^+\pi^-$

[CPLEAR collaboration '95]

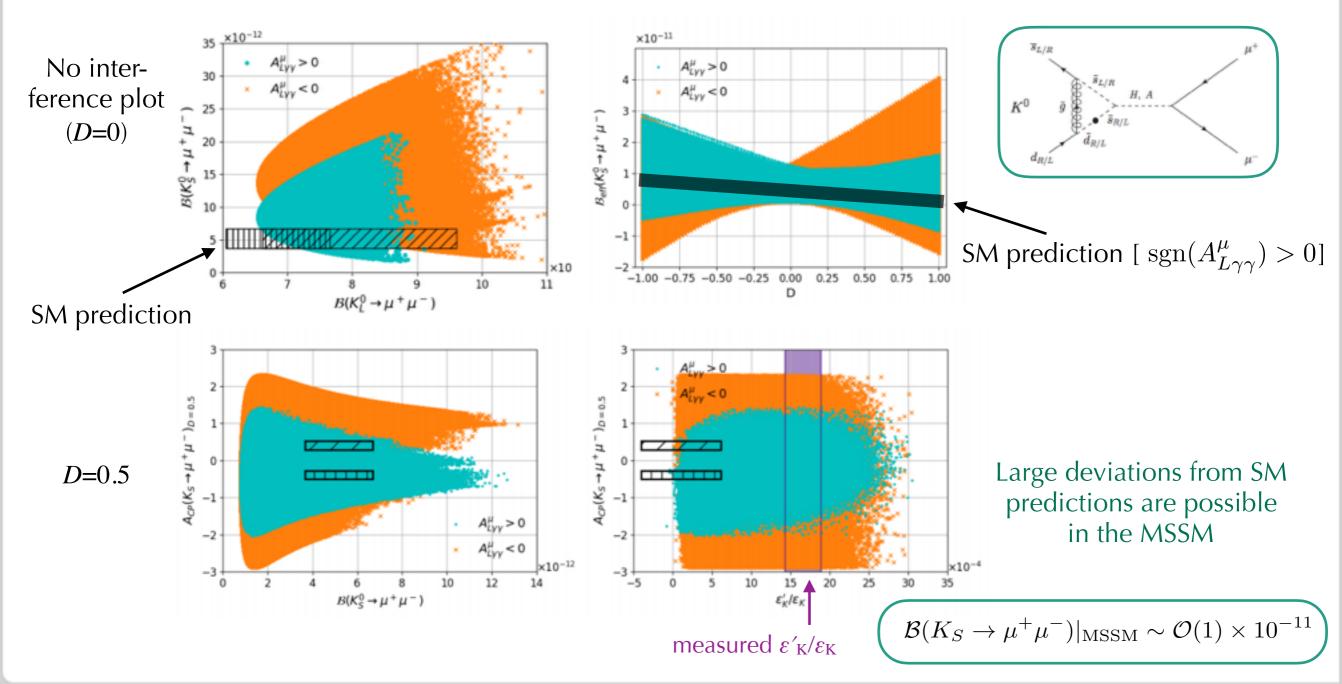
measured the interference between K_S and K_L

Kaon Physics: Theory View

SUSY contributions to $K^0 \rightarrow \mu^+\mu^-$

One of the MSSM scenario from Chobanova, D'Ambrosio, TK, Martinez, Santos, Fernandez, Yamamoto '18

mass difference between right-handed squarks, large $\tan\beta$, light M_A ~TeV



Kaon Physics: Theory View

$K \rightarrow \pi \nu \bar{\nu}$

$$K_{S}$$
 CP even CPC indirect CPV direct CPV

$K_{\rm L} \rightarrow \pi^0 \nu \bar{\nu}$ and $K^+ \rightarrow \pi^+ \nu \bar{\nu}$

- Both channels are theoretical clean and very sensitive to short-distance contributions, especially $K_L \rightarrow \pi^0 \nu \nu$ is pure direct CPV decay
- SM predictions: [Buras, Buttazzo, Girrbach-Noe, Knegjens '15]

$$\mathcal{B}(K^+ \to \pi^+ \nu \bar{\nu})_{\rm SM} = (8.4 \pm 1.0) \times 10^{-11} \,, \quad (9.11 \pm 0.72) \times 10^{-11}$$
 $\mathcal{B}(K_L \to \pi^0 \nu \bar{\nu})_{\rm SM} = (3.4 \pm 0.6) \times 10^{-11} \,, \quad (3.00 \pm 0.31) \times 10^{-11}$ CKM from tree — CKM from tree+loop

Current bounds:

$$\mathcal{B}(K^+ \to \pi^+ \nu \bar{\nu})_{\text{exp}} = 17.3^{+11.5}_{-10.5} \times 10^{-11}$$
 [E949, BNL '08]
 $\mathcal{B}(K_L \to \pi^0 \nu \bar{\nu})_{\text{exp}} \le 2.6 \times 10^{-8}$ [E391a, J-PARC '10]

On-going experiments:

$$\mathcal{B}(K^+ \to \pi^+ \nu \bar{\nu}) = 2.8^{+4.4}_{-2.3} \times 10^{-10} \ (68\% \ \text{CL}) \ [\text{NA62, 2016data, HQL2018}]$$

@CERN

@J-PARC

~20 SM events are expected before LS2

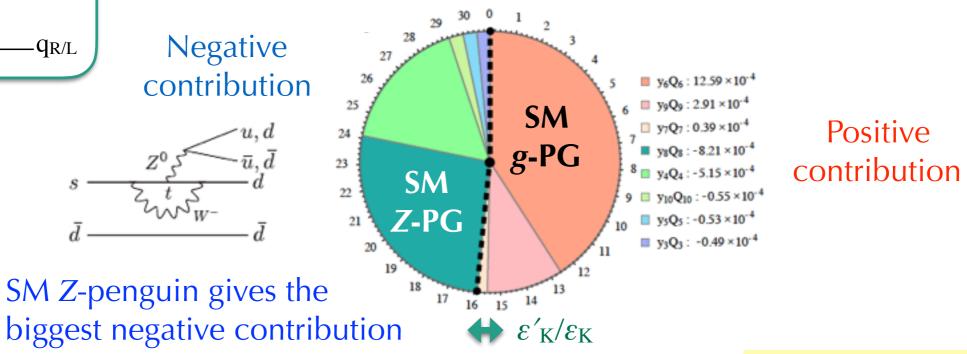
- $\mathcal{B}(K_L \to \pi^0 \nu \bar{\nu}) \lesssim \mathcal{O}(10^{-9})$ [First result will be presented in this summer]
- detector upgrade in this summer-autumn
- KOTO-step2 will aim at ~100 SM events

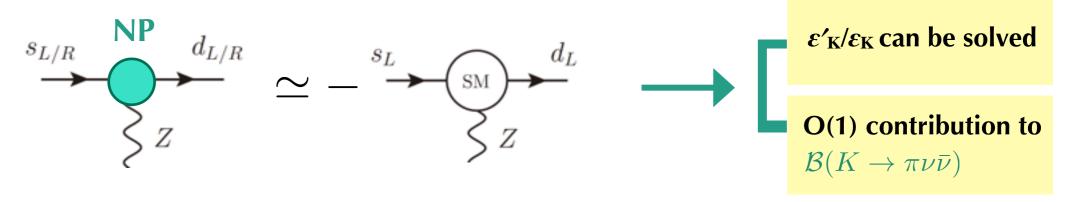
Modified Z-coupling scenario

Z scenario $S_{L/R} \longrightarrow d_{L/R} \longrightarrow Z$ $Q_{R/L} \longrightarrow Q_{R/L}$

[Buras, De Fazio, Girrbach, '13, '14] [Buras, Buttazzo, Knegjens, '15] [Buras, '16] [Endo, TK, Mishima, Yamamoto, '16] [Bobeth, Buras, Celis, Jung, '17]

When NP contribution to FCNC (sdZ) coupling is the same magnitude as the SM, $\varepsilon'_{\rm K}/\varepsilon_{\rm K}$ discrepancy be explained





Note: Although Z' FCNC scenario can also explain $\varepsilon'_K/\varepsilon_K$, a correlation to $\mathcal{B}(K \to \pi \nu \bar{\nu})$ is **model-dependent**

Modified Z-coupling scenario

For gauge-invariant predictions, SM + dimension-six effective theory (SMEFT) should be introduced [Endo, TK, Mishima, Yamamoto, '16] [Bobeth, Buras, Celis, Jung, '17] [Endo, Goto, TK, Mishima, Ueda, Yamamoto, '18]

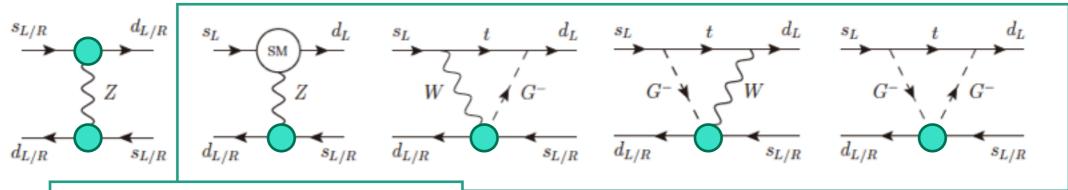
$$\mathcal{L} = \mathcal{L}_{SM} + \frac{c_L}{\Lambda^2} i (H^{\dagger} \overrightarrow{D_{\mu}} H) (\overline{Q}_L \gamma^{\mu} Q_L') + \frac{c_R}{\Lambda^2} i (H^{\dagger} \overrightarrow{D_{\mu}} H) (\overline{d}_R \gamma^{\mu} d_R'),$$

$$= \mathcal{L}_{SM} - \frac{\sqrt{2} v M_Z}{\Lambda^2} (c_L \overline{s} \gamma^{\mu} Z_{\mu} P_L d + c_R \overline{s} \gamma^{\mu} Z_{\mu} P_R d) + \dots$$

→ After EWSB, in addition to FCNC terms, some NG boson vertices emerge

• Constraint comes from $\Delta S=2$ process: ε_K

$$(H^\dagger i \overset{\leftrightarrow}{D}_\mu H)(\overline{s}_R \gamma^\mu d_R) \quad \text{@high scale} \quad \underbrace{\text{top-Yukawa RG}}_{\text{constraint}} \qquad (\overline{s}_L \gamma_\mu d_L)(\overline{s}_R \gamma^\mu d_R) \quad \text{@low scale} \\ \Delta S = 1 \qquad \qquad \Delta S = 2$$



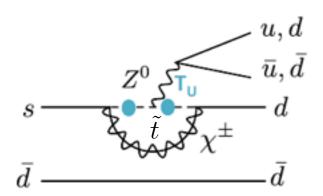
Interference (NP and SM) terms

They can be significant in a certain case

$B(K_L \rightarrow \pi^0 \nu \bar{\nu})$ in Z scenario (MSSM)

chargino Z-penguin in the MSSM

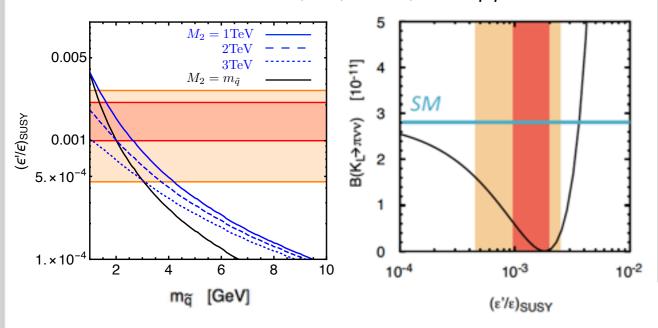
[Endo, Mishima, Ueda, Yamamoto, '16]



Z model (LH)

Upper bounds under the constraints:

<u>Vacuum</u>, $\varepsilon_{\rm K}$, $\Delta M_{\rm K}$, $K_{\rm L} \rightarrow \mu \mu$



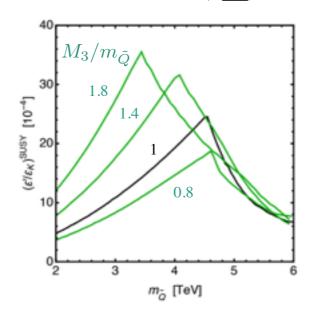
gluino Z-penguin in the MSSM

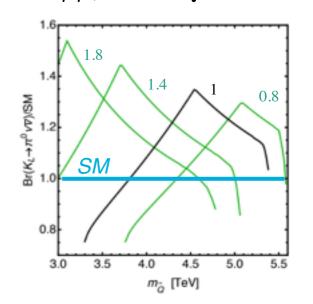
[Tanimoto, Yamamoto, '16] [Endo, Goto, TK, Mishima, Ueda, Yamamoto, '18]



 $Z \mod (RH + LH)$

Upper bounds under the constraints: Vacuum, $\underline{\varepsilon}_{\mathbf{K}}$, $\Delta M_{\mathbf{K}}$, $K_{\mathbf{L}} \rightarrow \mu \mu$, $\underline{b} \rightarrow s(\underline{d}) \underline{\gamma}$





with $\mathcal{B}(K^+ \to \pi^+ \nu \bar{\nu})/\mathrm{SM} \lesssim 1.5$

Conclusions

■ Kaon physics can probe *CP*-violating FCNC from various ways

- First lattice result indicates $\varepsilon'_{\rm K}/\varepsilon_{\rm K}$ discrepancy in $K^0 \to \pi\pi$ (2.8-2.9σ)
- $\mathcal{B}(K_S \to \mu^+ \mu^-)|_{\mathrm{MSSM}} \sim \mathcal{O}(1) \times 10^{-11}$ can be probed by **LHCb Upgrade**
- LHCb Upgrade could open a short distance window by the interference effect in $K^0 \rightarrow \mu^+\mu^-$
- **10% precisions** in $K_L \rightarrow \pi^0 \nu \nu$ and $K^+ \rightarrow \pi^+ \nu \nu$ are crucial