Flavour anomalies at the HL/HE LHC

Martin Jung

"Workshop on the physics of HL-LHC, and perspectives at HE-LHC"

CERN, 19th of June 2018

Anomalies and projections 2018

- Presently $\sim 4\sigma$ from SM
- Relative to tree-level
- **▶** Low NP scale?

- $\sim 5\sigma$ from SM
- Relative to EW penguin loop
- ullet Consistent BR, angular + LFU data

If anomalies are real, they will be established before 2nd upgrade

Generalities

If anomalies are real, they will be established before 2nd upgrade

Consequently the objectives change:

- Differentiation between NP structures
 - \blacktriangleright Distributions in q^2 + angles, polarization...
 - Require analyses beyond 1/2 operators
- Flavour structure on the lepton side ($\rightarrow \tau$ vs. μ vs. e)
 - \blacktriangleright hardware improvements for electrons? ideas for τ s?
- Flavour structure on the quark side (e.g. $b \rightarrow u$ vs. $b \rightarrow c$)
 - Possibilities in charm and top decays (not part of this talk)

A lot of this is not yet done, insufficient data Close collaboration of experiment and theory necessary

Objectives of this talk:

- Examples of challenging systematics (th + exp)
- Going beyond $R(D^{(*)})$ in charged-current modes
- Identification of "clean" observables with differentiating power

What if the anomalies go away?

Think long & hard about systematic + theory uncertainties. . .

Back to the drawing board

All these observable remain valuable! Strategies:

- Semi-true statement: "The smaller the SM rate, the larger the potential relative NP contribution"
- Strong motivation for (very) rare decays
- Large "Background" doesn't matter if you understand it well
- ▶ Motivation for tree-level modes

Theoretically, high precision can be achieved by that time:

- ullet Basically all CC sl decays (LQCD), challenges at $\sim 1\%$ -level
- Golden rare modes: $B_{d,s} \to \mu^+ \mu^-$
- High-precision predictions for LFU ratios
- ▶ Very precise, but also very specific
- Generally $b \to s(d)\ell^+\ell^-$, limits from charm-(charm+up-) quark loops, but recent proposals for control via data [Bobeth+,Blake+'18]

A couple of systematic issues

Form factors:

- V_{cb} + WCs only in combination w/ FFs
 SM: shape from exp., normalization
 - from non-perturbative methods
- NP: FFs needed from theory, only!
 ▶ Reanalyses cannot resolve R(D^(*))
- [Bigi+,Grinstein+,Bernlochner+]

B o D FFs [MJ/Straub'18]

Branching ratio measurements: [MJ'15]

- Implicit isospin assumption in extraction of BRs at B factories
- Affects BRs @ LHC, improvable with Belle (II) data
- \blacktriangleright Address isospin for high-precision measurements (e.g. f_u/f_d)

Implicit SM assumptions:

- Signal shape assumptions in CC sl decays
 - Has to be avoided for high precision NP analyses
 - ▶ Not trivial! How to present data model-independently?

Spectroscopic Information:

$$B \to D^{**}$$
 badly understood \longrightarrow measurements with D^{**} , $B_c \to J/\psi \tau \nu$

Higgs EFT(s)

Apparent gap between EW and NP scales:

- ► EFT approach at the electroweak scale:
 - SM particle content
 - ✓ SM gauge group
 - ? Embedding of h
 - ? Power-counting
 - ▶ Formulate NLO

Linear embedding of h:

- h part of doublet H
- Appropriate for weaklycoupled NP
- Power-counting: dimensionsFinite powers of fields
- LO: SM

Non-linear embedding of h:

- h singlet, U Goldstones
- Appropriate for stronglycoupled NP
- Power-counting: loops ($\sim \chi {\rm PT}$)
 - Arbitrary powers of $h/v, \phi$
- LO: SM + modified Higgs-sector

Implications of the Higgs EFT for flavour [Cata/MJ'15]

 $q \rightarrow q'\ell\ell$:

- Tensor operators absent in linear EFT for $d \to d' \ell \ell$ [Alonso+'14]
 - Present in general! (already in linear EFT for $u \to u'\ell\ell$)
- Scalar operators: linear EFT $C_S^{(d)} = -C_P^{(d)}$, $C_S^{\prime(d)} = C_P^{\prime(d)}$ [Alonso+'14] • Analogous for $u \to u'\ell\ell$, but no relations in general!

$$extsf{q} o extsf{q}' \ell
u$$
 :

• Relations between different transitions: weak doublets C_{V_R} is lepton-flavour universal [see also Cirigliano+'09]

Relations between charged- and neutral-current processes, e.g.

$$\sum_{U=u,c,t} \lambda_{Us} C_{S_R}^{(U)} = -\frac{e^2}{8\pi^2} \lambda_{ts} C_S^{(d)}$$
 [see also Cirigliano+'12,Alonso+'15]

These relations are again absent in the non-linear EFT

Flavour physics sensitive to Higgs embedding!

- Surprising, since no Higgs is involved
- ▶ Difficult differently [e.g. Barr+, Azatov+'15]

For NP below 1 TeV, SMEFT not really the best framework

Large $R(D^*)$ possible with NP in V_L ($\hat{R}(X) = R(X)/R(X)_{SM} \sim 1.25$):

- can be related to anomaly in $B \to K^{(*)} \ell^+ \ell^-$ modes
- $\hat{R}(X_c) = 0.99 \pm 0.10$ measured by LEP, oversaturation
- issues with $au o \mu
 u
 u$ [Feruglio+'16] and $b ar b o X o au^+ au^-$ [Faroughy+'16]

Scalar NP: $R(D^*)$ limited by $\Gamma(B_c)$, worse issue w/ $b\bar{b} o X o au^+ au^-$

Large $R(D^*)$ possible with NP in V_L ($\hat{R}(X) = R(X)/R(X)_{SM} \sim 1.25$):

- can be related to anomaly in $B \to K^{(*)} \ell^+ \ell^-$ modes
- $\hat{R}(X_c) = 0.99 \pm 0.10$ measured by LEP, oversaturation
- issues with $au o \mu
 u
 u$ [Feruglio+'16] and $bar b o X o au^+ au^-$ [Faroughy+'16]

Scalar NP: $R(D^*)$ limited by $\Gamma(B_c)$, worse issue w/ $b\bar{b} \to X \to \tau^+\tau^-$ Fit results for the two scenarios for $B \to D^{(*)}\tau\nu$:

Large $R(D^*)$ possible with NP in V_L ($\hat{R}(X) = R(X)/R(X)_{SM} \sim 1.25$):

- can be related to anomaly in $B \to K^{(*)} \ell^+ \ell^-$ modes
- $\hat{R}(X_c) = 0.99 \pm 0.10$ measured by LEP, oversaturation
- issues with $au o \mu
 u
 u$ [Feruglio+'16] and $bar b o X o au^+ au^-$ [Faroughy+'16]

Scalar NP: $R(D^*)$ limited by $\Gamma(B_c)$, worse issue w/ $b\bar{b} \to X \to \tau^+\tau^-$

Fit predictions for polarization-dependent $B o D^* au
u$ observables:

Combination independent of scalar NP: [Celis/MJ/Li/Pich'13]

$$X_2^{D^{(*)}}(q^2) \equiv R_{D^{(*)}}(q^2) \left[A_{\lambda}^{D^{(*)}}(q^2) + 1 \right] = X_{2,SM}^{D^{(*)}}(q^2)$$

Large $R(D^*)$ possible with NP in V_L ($\hat{R}(X) = R(X)/R(X)_{SM} \sim 1.25$):

- can be related to anomaly in $B \to K^{(*)} \ell^+ \ell^-$ modes
- $\hat{R}(X_c) = 0.99 \pm 0.10$ measured by LEP, oversaturation
- issues with $au o \mu
 u
 u$ [Feruglio+'16] and $bar b o X o au^+ au^-$ [Faroughy+'16]

Scalar NP: $R(D^*)$ limited by $\Gamma(B_c)$, worse issue w/ $b\bar{b} \to X \to \tau^+\tau^-$

Fit predictions for $B \to X_c \tau \nu$ and $\Lambda_b \to \Lambda_c \tau \nu$:

Quark flavour structure: NP in $b \rightarrow u \tau \nu$ transitions

b o u au
u less explored experimentally, $|V_{ub}/V_{cb}|^2 \lesssim 1\%$:

- $R(\tau) \equiv BR(B \to \tau \nu)/BR(B \to \pi \ell \nu)$ about 1.8σ from SM
- $R(\pi)$ not significantly measured yet
- Data consistent with SM as well as sizable NP

Quark flavour structure: NP in $b \rightarrow u \tau \nu$ transitions

 $b \to u \tau \nu$ less explored experimentally, $|V_{ub}/V_{cb}|^2 \lesssim 1\%$:

- $R(\tau) \equiv BR(B \to \tau \nu)/BR(B \to \pi \ell \nu)$ about 1.8 σ from SM
- $R(\pi)$ not significantly measured yet
- ▶ Data consistent with SM as well as sizable NP

Analyse $b \rightarrow u \tau \nu$ individually:

 $ightharpoonup R(\tau)$ yields correlation between $R(\pi)$ and R(p)

 Λ_b provides uncommon parameter combinations $B_s \to K^{(*)} \tau \nu$ decays competitive? Detector requirements? Pionic final states possible?

Lepton flavour structure: $b o c\ell u$ decays [MJ/Straub'18]

Left-handed vector currents: $\tilde{V}^e_{cb}/\tilde{V}^\mu_{cb}=1.011\pm0.012$ **Right-handed vector currents:** Affect $V^{incl.}_{cb}$ vs. $V^{excl.}_{cb}$ [e.g. Voloshin'97]

Scalar currents: q_{\max}^2 $(B \to D)$ highly sensitive to NP [see also Nierste+'08] Tensor currents: q_{\min}^2 $(B \to D^*)$ highly sensitive to NP

Similar to what we want to do for $b \to c \tau \nu$.

Large impact of differential distributions

Prospects $b \rightarrow (u, c)(e, \mu)\nu$ @ LHCb

Potential unambiguous $|V_{xb}|$ determination before phase-II upgrade \blacktriangleright Measuring $b \to u, c\ell\nu$ not about this

Instead, model-independent determinations of NP contributions

- If FNU in $b \rightarrow c$ is confirmed, expect "something" in $b \rightarrow u$
- Also, with $b \to c \tau \nu$ affected, μ vs. e important to check
- Universality checks of right-handed currents interesting

$$|V_{ub}/V_{cb}|$$
 from Λ_b important ingredient right now...

- Tests different NP combinations than mesonic modes
- Which observables are measurable?
- How much can we reduce the systematics?
- FFs need improvement, but not the main issue

 $B_s o K \ell
u$ essentially probes the same physics as $B o \pi \ell
u$

- direct competition with Belle II
- $B \to pp\ell\nu$ interesting new idea
- ▶ Challenging, qualititative theory progress required!

Prospects $b \to (s, d)\ell\ell'$ @ LHC

Again, model-independent determinations of NP contributions

- If NP in $b \rightarrow s$ is confirmed, expect "something" in $b \rightarrow d$
 - $|V_{td}/V_{ts}|^2 \sim 1/34
 ightarrow \text{high luminosity important}$
- With $b \to s \mu \mu$ affected, μ vs. τ, e important to check
 - ightharpoonup Angular analysis in b o see
 - **▶** Golden Channel $b \rightarrow s\tau\tau$: improvements possible?
- Also b o (d,s)
 u
 u important o Belle II
- Other FCNCs partly related, s o d, t o c, u, c o u

LFV: "generic" implication of NP in $\bar{\ell}\ell$ [Glashow+'15]

- Not always true, see e.g. [Celis/Fuentes-Martín/MJ/Serôdio,Alonso+'15]
- ▶ In any case worth looking for

Conclusions

Excellent physics potential for LHCb beyond Run 4

- $b \rightarrow c\ell\nu + b \rightarrow s\ell\ell$: indications of lepton-non-universal NP
 - New measurements/observables constrain NP more severely
- Unprecendented control over uncertainties necessary
- Should tensions be real, they're established by LS 3
 - Expect smaller deviations anyway (smaller $R(D^*)$ would improve most NP interpretations)
 - Need to pin down precise strucure of NP (Dirac, flavour)
 - Need for distributions + polarization measurements
 - $ightharpoonup b o c\ell
 u$ shows potential
- Clean observables available to differentiate between different NP
- We start to constrain $b \rightarrow u + b \rightarrow d$ transitions now
 - Experimentally challenging, HL indispensable

Conclusions

Excellent physics potential for LHCb beyond Run 4

- $b \rightarrow c\ell\nu + b \rightarrow s\ell\ell$: indications of lepton-non-universal NP
 - New measurements/observables constrain NP more severely
- Unprecendented control over uncertainties necessary
- Should tensions be real, they're established by LS 3
 - Expect smaller deviations anyway (smaller $R(D^*)$ would improve most NP interpretations)
 - Need to pin down precise strucure of NP (Dirac, flavour)
 - ▶ Need for distributions + polarization measurements
 - $ightharpoonup b o c\ell
 u$ shows potential
- Clean observables available to differentiate between different NP
- We start to constrain $b \rightarrow u + b \rightarrow d$ transitions now
 - Experimentally challenging, HL indispensable

Thank you for your attention!

Importance of (semi-)leptonic hadron decays

In the Standard Model:

• Determination of $|V_{ij}|$ (7/9)

Beyond the Standard Model:

- Leptonic decays $\sim m_I^2$
 - \blacktriangleright large relative NP influence possible (e.g. H^{\pm})
- NP in semi-leptonic decays moderate
 - Need to understand the SM very precisely!
- NP: Relative to tree, au least constrained

Key advantages:

- Large rates
- Minimal hadronic input
- This input is systamatically improvable

Additionally: (almost) all flavour anomalies involve leptons

$|V_{xb}|$: inclusive versus exclusive

Long-standing problem:

- Very hard to explain by NP [Crivellin/Pokorski'15] (but see [Colangelo/de Fazio'15])
- ▶ Likely experimental/theoretical systematics

$|V_{xb}|$: Recent developments

 V_{cb} :

Recent Belle $B \to D, D^*\ell\nu$ analyses Recent lattice results for $B \rightarrow D$

[FNAL/MILC, HPQCD, RBC/UKQCD (ongoing)]

 $\triangleright B \rightarrow D$ between incl. $+ B \rightarrow D^*$

New lattice result for $B \to D^*$ [HPQCD] $\stackrel{\sim}{\mathbb{S}}$

 \bigvee_{ch}^{incl} cv, compatible with old result

 $B \rightarrow D^*\ell\nu$ re-analyses with CLN,

$$|V_{cb}| = 39.3(1.0)10^{-2}$$
 [Bernlochner+'17]

$$+ \ \mathsf{BGL} \ [\mathsf{Bigi+,Grinstein+'17}] \ \ (\mathsf{Belle} \ \mathsf{only}),$$

 $|V_{cb}| = 40.4(1.7)10^{-2}$ New BaBar analysis of V_{ub} incl.:

Dependence on theory treatment!

- \blacksquare GGOU 2σ lower than WA
- Compatible w/ PDG exclusive avg

Hints towards resolution, not conclusive

New systematics: BR measurements and isospin violation

Branching ratio measurements require normalization...

- B factories: depends on $\Upsilon \to B^+B^-$ vs. $B^0\bar{B}^0$
- LHCb: normalization mode, usually obtained from B factories

New systematics: BR measurements and isospin violation

Branching ratio measurements require normalization...

- B factories: depends on $\Upsilon o B^+ B^-$ vs. $B^0 ar{B}^0$
- LHCb: normalization mode, usually obtained from B factories

Assumptions entering this normalization:

- PDG: assumes $r_{+0} \equiv \Gamma(\Upsilon \to B^+ B^-)/\Gamma(\Upsilon \to B^0 \bar{B}^0) \equiv 1$
- LHCb: (mostly) assumes $f_u \equiv f_d$, uses $r_{+0}^{\rm HFAG} = 1.058 \pm 0.024$

New systematics: BR measurements and isospin violation

Branching ratio measurements require normalization...

- B factories: depends on $\Upsilon \to B^+ B^-$ vs. $B^0 \bar{B}^0$
- LHCb: normalization mode, usually obtained from B factories

Assumptions entering this normalization:

- PDG: assumes $r_{+0} \equiv \Gamma(\Upsilon \to B^+ B^-)/\Gamma(\Upsilon \to B^0 \bar{B}^0) \equiv 1$
- LHCb: (mostly) assumes $f_u \equiv f_d$, uses $r_{+0}^{\rm HFAG} = 1.058 \pm 0.024$

Both approaches problematic: [MJ'16 [1510.03423]]

- Potential large isospin violation in $\Upsilon o BB$ [Atwood/Marciano'90]
- Measurements in r^{HFAG}₊₀ assume isospin in exclusive decays
 ▶ This is one thing we want to test!
- Avoiding this assumption yields $r_{+0} = 1.027 \pm 0.037$
- Isospin asymmetries test NP with $\Delta I = 1, 3/2$ (e.g. $b \rightarrow s\bar{u}u$)
 - ▶ Isospin asymmetry $B \rightarrow J/\psi K$: $A_I = -0.009 \pm 0.024$

Affects every percent-level BR measurement $B \to J/\Psi K$ can be used to determine $f_u/f_d!$

SM predictions

SI amplitude: kinematics \times FC coupling (SM: CKM) \times form factor

Strategy SM predictions: V_{cb} + leading FF cancels data + theoretical input from LQCD/HQET for FF ratios

$$B \rightarrow D$$
: 2 form factors $f_{+,0}$

- Data determines shape of $f_+(q^2)$
- LQCD required for f₀: fit HPQCD + FNAL/MILC, use $f_+(0) = f_0(0)$
- $R(D) = 0.301 \pm 0.003$ [Bigi/Gambino'16]

$$B \rightarrow D^*$$
: 4 form factors $V, A_{0.1.2}$

- $3/4 \rightarrow \text{data} (+\text{HQET}, \text{unitarity} \rightarrow \text{CLN})$
- HQET for A₀ [Falk/Neubert], enhance uncertainty [Fajfer/Kamenik] $R(D^*) = 0.252 \pm 0.003$, (0.257 from re-analysis [Bernlochner+'17])
- LQCD for non-maximal recoil underway (Very) good control, effect too large to be in CLN relations

NP in (semi-)leptonic decays

EFT for $b \to c \tau \nu$ transitions (no light ν_R , SM: $C_{V_l} = 1$, $C_{i \neq V_l} = 0$):

$$\mathcal{L}_{\mathrm{eff}}^{b \to c au
u} = -\frac{4G_F}{\sqrt{2}} V_{cb} \sum_{j}^{5} C_j \mathcal{O}_j \,, \qquad \text{with}$$

$$\mathcal{O}_{V_{L,R}} = (\bar{c}\gamma^{\mu}P_{L,R}b)\bar{\tau}\gamma_{\mu}\nu\,,\,\mathcal{O}_{S_{L,R}} = (\bar{c}P_{L,R}b)\bar{\tau}\nu\,,\,\mathcal{O}_{T} = (\bar{c}\sigma^{\mu\nu}P_{L}b)\bar{\tau}\sigma_{\mu\nu}\nu\,.$$

NP models typically generate subsets; for a charged scalar:

NP couplings $C_{S_{I,R}}$ (complex), $C_{V_I} = C_{V_I}^{SM} = 1$, $C_{V_R} = C_T = 0$

- Model-independent subclass as long as $C_{S_{I,R}}$ general
- Phenomenologically $C_{SI,R}^{q_uq_dl} \sim m_{q_{ud}} m_l$ (e.g. Type III)
- Thenemenologically egr, R mqudmi (e.g. 1) pe m

Used to illustrate here, appearing combinations:

$$R(D): \delta^{cbl} \equiv \frac{(C_{S_L} + C_{S_R})(m_B - m_D)^2}{m_l(\bar{m}_b - \bar{m}_c)} \quad R(D^*): \Delta^{cbl} \equiv \frac{(C_{S_L} - C_{S_R})m_B^2}{m_l(\bar{m}_b + \bar{m}_c)}$$

Can trivially explain $R(D^{(*)})!$ Exclusion possible with specific flavour structure or more $b \to c \tau \nu$ observables!

$R(D), R(D^*)$:

- R(D) compatible with SM at $\sim 2\sigma$
- Preferred scalar couplings from $R(D^*)$ huge $(|\mathcal{C}_{\mathcal{S}_L} \mathcal{C}_{\mathcal{S}_R}| \sim 1-5)$
- Can't go beyond circles with just $R(D, D^*)!$

Differential rates:

- compatible with SM and NP
- already now constraining, especially in $B \to D au
 u$
- "theory-dependence" of data needs addressing [Bernlochner+'17]

Total width of B_c :

- $B_c \to \tau \nu$ is an obvious $b \to c \tau \nu$ transition
 - not measurerable in foreseeable future
 - can oversaturate total width of $B_c!$ [X.Li+'16]
- Excludes second real solution in Δ_{cb}^{τ} plane (even scalar NP for $R(D^*)$? [Alonso+'16])

au polarization:

- So far not constraining (shown: $\Delta \chi^2 = 1$)
- Differentiate NP models: with scalar NP [Celis/MJ/Li/Pich'13]

$$X_2^{D^{(*)}}(q^2) \equiv R_{D^{(*)}}(q^2) \left[A_{\lambda}^{D^{(*)}}(q^2) + 1 \right] = X_{2,SM}^{D^{(*)}}(q^2)$$

Consistent explanation in 2HDMs possible, flavour structure?

Generic features and issues in 2HDMs

Charged Higgs possible as explanation of $b \to c \tau \nu$ data... However, typically expect $\Delta R(D^*) < \Delta R(D)$

Generic feature: Relative influence larger in leptonic decays!

- No problem in $b \to c \tau \nu$ since $B_c \to \tau \nu$ won't be measured
- Large charm coupling required for $R(D^*)$
- Embedding $b \to c \tau \nu$ into a viable model complicated!
- ▶ $D_{d,s} \rightarrow \tau, \mu\nu$ kill typical flavour structures with $C_{S_{l,R}} \sim m$
- Only fine-tuned models survive all (semi-)leptonic constraints

 $b \rightarrow s\ell\ell$ very complicated to explain with scalar NP

▶ 2HDM alone tends to predict $b \rightarrow s\ell\ell$ to be QCD-related

 $b\bar{b} \to (H,A) \to \tau^+ \tau^-$ poses a severe constraint [Faroughy+'16]

2HDMs strongly prefer a smaller value for $R(D^*)!$

The differential distributions $d\Gamma(B \to D^{(*)} \tau \nu)/dq^2$

- Data stat. uncertainties only, BaBar rescaled
- Bands 68% CL (bins highly correlated):

Grey: NP fit including R(D)

Red: SM fit (distributions only)

Green: Allowed by R(D), excluded by distribution

- Need better experimental precision, ideally $dR(D)/dq^2$
- Parts of NP parameter space clearly excluded

The differential distributions $d\Gamma(B \to D^{(*)} \tau \nu)/dq^2$

- Data stat. uncertainties only, BaBar rescaled
- Bands 68% CL (bins highly correlated):

Grey: NP fit including $R(D^*)$

Red: SM fit (distributions only)

Green: Allowed by $R(D^*)$, excluded by distribution

- Need better experimental precision, ideally $dR(D^*)/dq^2$
- Not very restrictive at the moment

Implications of the Higgs EFT for Flavour: $q \rightarrow q' \ell \nu$

 $b \rightarrow c \tau \nu$ transitions (SM: $C_{V_L} = 1, C_{i \neq V_L} = 0$):

$$\begin{split} \mathcal{L}_{\mathrm{eff}}^{b\to c\tau\nu} &= -\frac{4G_F}{\sqrt{2}} V_{cb} \sum_{j}^{5} C_j \mathcal{O}_j \,, \qquad \text{with} \\ \mathcal{O}_{V_{L,R}} &= (\bar{c} \gamma^\mu P_{L,R} b) \bar{\tau} \gamma_\mu \nu \,, \qquad \mathcal{O}_{S_{L,R}} &= (\bar{c} P_{L,R} b) \bar{\tau} \nu \,, \\ \mathcal{O}_T &= (\bar{c} \sigma^{\mu\nu} P_L b) \bar{\tau} \sigma_{\mu\nu} \nu \,. \end{split}$$

- All operators are independently present already in the linear EFT
- However: Relations between different transitions: C_{V_R} is lepton-flavour universal [see also Cirigliano+'09] Relations between charged- and neutral-current processes, e.g. $\sum_{U=u,c,t} \lambda_{Us} C_{S_R}^{(U)} = -\frac{e^2}{8\pi^2} \lambda_{ts} C_S^{(d)}$ [see also Cirigliano+'12,Alonso+'15]
- These relations are again absent in the non-linear EFT

Matching for $b \to c \ell \nu$ transitions

$$\begin{split} C_{V_L} &= -\mathcal{N}_{\mathrm{CC}} \left[C_L + \frac{2}{v^2} c_{V5} + \frac{2V_{cb}}{v^2} c_{V7} \right] \,, \\ C_{V_R} &= -\mathcal{N}_{\mathrm{CC}} \left[\hat{C}_R + \frac{2}{v^2} c_{V6} \right] \,, \\ C_{S_L} &= -\mathcal{N}_{\mathrm{CC}} \left(c'_{S1} + \hat{c}'_{S5} \right) \,, \\ C_{S_R} &= 2 \mathcal{N}_{\mathrm{CC}} \left(c_{LR4} + \hat{c}_{LR8} \right) \,, \\ C_T &= -\mathcal{N}_{\mathrm{CC}} \left(c'_{S2} + \hat{c}'_{S6} \right) \,, \end{split}$$

where
$$\mathcal{N}_{\text{CC}} = \frac{1}{2V_{cb}} \frac{v^2}{\Lambda^2}$$
, $C_L = 2c_{LL2} - \hat{c}_{LL6} + \hat{c}_{LL7}$ and $\hat{C}_R = -\frac{1}{2}\hat{c}_{Y4}$.

List of minimal χ^2 values

Scenario	χ^2_{min}	# obs.	# pars.	central values $(\delta^{ au}_{cb}, \Delta^{ au}_{cb})$
$R(D^{(*)})$ only				
SM	23.1	2	0	_
S1	0	2	4	(0.2 + 0.7i, 10.0 - 6.3i)
S1 real	0	2	2	(0.4, -3.6)
${\cal g}_{L}^{cb au}$	0	2	2	$g_I^{cb\tau} = -1.3 - 0.6i$
$g_R^{cb au}$	9.1	2	2	$g_R^{cb\tau} = 0.3 + 0.i$
g_{V_I}	0.2	2	1	$ g_{V_l} = 1.12$
$R(D^{(*)}), d\Gamma/dq^2, \Gamma_{B_c}$				
SM	65.9	61	4	_
S1	49.2	61	8	(0.4+0.i, -2.4+0.i)
S1 real	49.2	61	6	(0.4, -2.4)
$g_{L_i}^{cb au}$	55.4	61	6	$g_I^{cb\tau} = -0.4 + 0.8i$
$g_R^{cb au}$	55.4	61	6	$g_R^{cb\tau} = 0.3 + 0.i$
g_{V_I}	42.4	61	5	$ g_{V_t} = 1.12$
$R(D^{(*)}), d\Gamma/dq^2, \Gamma_{B_c}, R(X_c)$				
SM	65.9	62	4	_
S1	50.4	62	8	(0.3 + 0.i, -2.4 + 0.i)
S1 real	50.4	62	6	(0.3, -2.4)
$g_I^{cb au}$	55.4	62	6	$g_I^{cb\tau} = -0.4 - 0.8i$
$g_R^{cb au}$	56.1	62	6	$g_R^{cb\tau} = 0.2 + 0.i$
g_{V_L}	46.7	62	5	$ g_{V_L} =1.10$