Probing Electroweak Precision Physics via Boosted Higgsstrahlung at the LHC

Rick Sandeepan Gupta (IPPP Durham)

HE-HL LHC Workshop 2018, CERN

in collaboration with Banerjee, Englert, and Spannowsky
Measuring Higgs properties is the most concrete particle physics goal of our times.

Indirect deviations can constrain scale much higher than direct searches.

Eg. : The S,T parameters at LEP constrain certain kinds of new Physics to scales higher than a few TeV. Much higher than LEP energies.
LEP vs LHC

- Can LHC compete with LEP? Can LHC searches give us new information that LEP does not provide?

- EFT techniques show that many anomalous Higgs interactions were already probed by LEP.

- One way to compete with LEP precision is by going to higher energies.
Anomalous Higgs interactions at dimension-6 level

\[\mathcal{L}_h^{\text{primary}} = g_{VV}^h h \left[W^{+\mu} W^-_{\mu} + \frac{1}{2c_{\theta_W}^2} Z^{\mu} Z_{\mu} \right] + g_3 h^3 + g_f^h (h \bar{f} L f_R + h.c.) \]

\[+ \ k_G \ G^{A \mu \nu} G_{\mu \nu}^A + k_{\gamma \gamma} \ A^{\mu \nu} A_{\mu \nu} + k_Z t_{\theta_W} \ A^{\mu \nu} Z_{\mu \nu}, \]

\[\Delta \mathcal{L}_h = \delta g_{ZZ}^h \frac{v}{2c_{\theta_W}^2} h Z^{\mu} Z_{\mu} + g_{Zff}^h \frac{h}{2v} (Z_{\mu} J^\mu_N + h.c.) + g_{Wff'}^h \frac{h}{v} (W^+_{\mu} J^\mu_C + h.c.) \]

\[+ \ k_{WW} \ W^{+ \mu \nu} W^-_{\mu \nu} + k_{ZZ} \ Z^{\mu \nu} Z_{\mu \nu}, \]
Anomalous Higgs interactions at dimension-6 level

\[\mathcal{L}_{h}^{\text{primary}} = g_{VV}^{h} h \left[W^{+\mu} W_{\mu}^{-} + \frac{1}{2 c_{\theta W}^{2}} Z^{\mu} Z_{\mu} \right] + g_{3h} h^{3} + g_{f f}^{h} \left(h \bar{f}_{L} f_{R} + h.c. \right) \]

Higgs interactions to be directly measured for the first time at LHC.

\[\Delta \mathcal{L}_{h} = \delta g_{ZZ}^{h} \frac{v}{2 c_{\theta W}^{2}} h Z^{\mu} Z_{\mu} + g_{Z f f}^{h} \frac{h}{2 v} \left(Z_{\mu} J_{N}^{\mu} + h.c. \right) + g_{W f f}^{h} \frac{h}{v} \left(W_{\mu}^{+} J_{C}^{\mu} + h.c. \right) + \kappa_{WW} \frac{h}{v} W^{+\mu \nu} W_{\mu \nu}^{\nu} + \kappa_{Z Z} \frac{h}{v} Z^{\mu \nu} Z_{\mu \nu} , \]

A. Pomarol (arxiv: 1412.4410)
• EFT techniques imply many of these Higgs deformations not independent from electroweak precision/TGC deformations already constrained by LEP.

• Same operators give both Higgs and EW deformations
EW and Higgs Pseudo-observables

(1) Higgs observables (20):

\[hW^+_{\mu\nu} W^{-\mu\nu}, \quad hA_{\mu\nu} A^{\mu\nu}, \quad hA_{\mu\nu} Z^{\mu\nu}, \quad hG_{\mu\nu} G^{\mu\nu}, \quad hW^{+\mu} W^{-\mu}, \quad h\bar{f}f, \quad h^3, \quad h^2 \bar{f}f, \quad hZ_{\mu\nu} Z^{\mu\nu}, \quad hZ_{\mu} \bar{f}_{L,R} \gamma^\mu f_{L,R} \]

These contain the physical Higgs probed for the first time at LHC in Higgs Production/decay
EW and Higgs Pseudo-observables

(1) Higgs observables (20):

\[hW^{+}_{\mu\nu}W^{-\mu\nu}, hA_{\mu\nu}A^{\mu\nu}, hA_{\mu\nu}Z^{\mu\nu}, hG_{\mu\nu}G^{\mu\nu}, hW^{+\mu}W^{-\mu}, h\bar{f}f, h^3, h^2\bar{f}f, hZ_{\mu\nu}Z^{\mu\nu}, hZ_{\mu}\bar{f}_{L,R}\gamma^{\mu}f_{L,R} \]

These contain the physical Higgs probed for the first time at LHC in Higgs Production/decay

(2) Electroweak precision observables (9):

\[Z_{\mu}\bar{f}_{L,R}\gamma^{\mu}f_{L,R}, W^{+\mu}\bar{u}_{L}\gamma_{\mu}d_{L} \]

These were measured very precisely at the W/Z-pole in W/Z decays.
EW and Higgs Pseudo-observables

(1) Higgs observables (20):

\[hW_{\mu\nu}^+ W_{-\mu\nu}^-, hA_{\mu\nu} A^{\mu\nu}, hA_{\mu\nu} Z^{\mu\nu}, hG_{\mu\nu} G^{\mu\nu}, hW^{+\mu} W^-_{\mu}, h\bar{f} f, h^3, hZ_{\mu\nu} Z^{\mu\nu}, hZ_\mu \bar{f}_{L,R} \gamma^\mu f_{L,R} \]

These contain the physical Higgs probed for the first time at LHC in Higgs Production/decay

(2) Electroweak precision observables (9):

\[Z_\mu \bar{f}_{L,R} \gamma^\mu f_{L,R}, W^{+\mu} \bar{u}_L \gamma_\mu d_L \]

These were measured very precisely at the W/Z-pole in W/Z decays.

(2) Triple and Quartic Gauge couplings (3+4):

\[g_1^Z c_{\theta_W} Z^\mu \left(W^{+\nu} \hat{W}_{\mu\nu}^- - W^{-\nu} \hat{W}_{\mu\nu}^+ \right), \kappa_{\gamma} s_{\theta_W} A^{\mu\nu} W_{\mu}^+ W_{\nu}^- \]

These were measured in ee->WW process at LEP.
Organizing principle: Effective Field Theory (EFT)

- Only 18 independent operators generate above vertices:

\[
\begin{align*}
\mathcal{O}_H &= \frac{1}{2}(\partial^\mu |H|^2)^2 \\
\mathcal{O}_T &= \frac{1}{2} \left(H^{\dagger} \tilde{D}_\mu H \right)^2 \\
\mathcal{O}_6 &= \lambda |H|^6 \\
\mathcal{O}_W &= \frac{i g}{2} \left(H^{\dagger} \sigma^a \tilde{D}_\mu H \right) D^\nu W^a_{\mu \nu} \\
\mathcal{O}_B &= \frac{i g^f}{2} \left(H^{\dagger} \tilde{D}_\mu H \right) \partial^\nu B_{\mu \nu}
\end{align*}
\]

\[
\begin{align*}
\mathcal{O}_{BB} &= g^B |H|^2 B_{\mu \nu} B^{\mu \nu} \\
\mathcal{O}_{GG} &= g^G_s |H|^2 G_{\mu \nu}^A G^{A \mu \nu} \\
\mathcal{O}_{HW} &= ig (D^\mu H)^{\dagger} \sigma^a (D^\nu H) W^a_{\mu \nu} \\
\mathcal{O}_{HB} &= ig' (D^\mu H)^{\dagger} (D^\nu H) B_{\mu \nu} \\
\mathcal{O}_{3W} &= \frac{1}{3!} g \epsilon_{abc} W^a_{\mu \nu} W^b_{\nu \rho} W^c_{\rho \mu}
\end{align*}
\]
Correlations between observables

18 Operators

Many Vertices /pseudo-observables

of contributing operators \ll # of vertices/pseudo-observables
18 Operators and Higgs Operators

At any given order

Number of contributing operators

<< Number of vertices/pseudo-observables

Correlations between different vertices/observables
Anomalous Higgs interactions not constrained by LEP

8 operators cannot be constrained by LEP at all!
Anomalous Higgs interactions not constrained by LEP
Anomalous Higgs interactions already constrained by LEP

\[\mathcal{L}_{h}^{\text{primary}} = g_{VV}^h h \left[W^{+\mu} W^-_{\mu} + \frac{1}{2c^2_{\theta_W}} Z^{\mu} Z_{\mu} \right] + g_{3h} h^3 + g_{ff}^h (h \bar{f}_L f_R + \text{h.c.}) \]

\[+ \kappa_{GG} \frac{h}{v} G^{A \mu \nu} G^A_{\mu \nu} + \kappa_{\gamma \gamma} \frac{h}{v} A^{\mu \nu} A_{\mu \nu} + \kappa_{Z \gamma t_{\theta_W}} \frac{h}{v} A^{\mu \nu} Z_{\mu \nu} , \]

\[\Delta \mathcal{L}_h = \delta g_{ZZ}^h \frac{v}{2 c^2_{\theta_W}} h Z^{\mu \nu} Z_{\mu \nu} + g_{Zff}^h \frac{h}{2v} (Z_{\mu} J^\mu_N + \text{h.c.}) + g_{Wff'}^h \frac{h}{v} (W^+_{\mu} J^\mu_C + \text{h.c.}) \]

\[+ \kappa_{WW} \frac{h}{v} W^{+ \mu \nu} W^-_{\mu \nu} + \kappa_{ZZ} \frac{h}{v} Z^{\mu \nu} Z_{\mu \nu} , \]
Anomalous Higgs interactions already constrained by LEP

\[
\Delta L_h = \delta g_{ZZ}^h \frac{v}{2c_{\theta_W}^2} h Z^\mu Z_\mu + g_{Zf}^h \frac{c_{\theta_W}}{2v} (Z_\mu J_N^\mu + h.c.) + g_{Wf}^h \frac{h}{v} (W_\mu J_C^\mu + h.c.) \\
+ \kappa_{WW} \frac{h}{v} W^{+\mu\nu} W^{-\mu\nu} + \kappa_{ZZ} \frac{h}{v} Z^{\mu\nu} Z_{\mu\nu},
\]

\[
\delta g_{ZZ}^h = \delta g_1^Z e^2 - \delta \kappa_\gamma \frac{e^2}{c_{\theta_W}^2},
\]

\[
g_{Zf}^h = 2\delta g_{Zf}^Z - 2\delta g_1^Z (g_f^Z c_{2\theta_W} + eQ_f s_{2\theta_W}) + 2\delta \kappa_\gamma Y_f \frac{e s_{\theta_W}}{c_{\theta_W}^2},
\]

\[
g_{Wf}^h = 2\delta g_{f}^W - 2\delta g_1^Z g_f^W c_{\theta_W}^2,
\]

\[
\kappa_{WW} = \delta \kappa_\gamma + \kappa_{Z\gamma} + 2\kappa_{\gamma\gamma},
\]

RSG, A. Pomarol and F. Riva (arxiv: 1405.0181)
Anomalous Higgs interactions already constrained by LEP

\[\Delta \mathcal{L}_h = \delta g_{ZZ}^h \frac{v}{2c_{\theta_W}^2} hZ^\mu Z_\mu + g_{Zff}^h \frac{h}{2v} (Z_\mu J_N^\mu + h.c.) + g_{Wff}^h \frac{h}{v} (W_\mu^+ J_C^\mu + h.c.) \]

\[+ \kappa_{WW} \frac{h}{v} W^{+\mu\nu} W_{\mu\nu} - \kappa_{ZZ} \frac{h}{v} Z^{\mu\nu} Z_{\mu\nu} , \]

\[\delta g_{ZZ}^h = \delta g_1^Z e^2 - \delta \kappa_\gamma \frac{e^2}{c_{\theta_W}^2} , \]

\[g_{Zff}^h = 2 \delta g_{ff}^Z - 2 \delta g_1^Z (g_f c_{2\theta_W} + e Q_f s_{2\theta_W}) + 2 \delta \kappa_\gamma Y_f \frac{e s_{\theta_W}}{c_{\theta_W}^2} , \]

\[g_{Wff}^h = 2 \delta g_{ff}^W - 2 \delta g_1^W g_f c_{\theta_W}^2 , \]

\[\kappa_{ZZ} = \frac{1}{2c_{\theta_W}^2} (\delta \kappa_\gamma + \kappa_{Z\gamma} c_{2\theta_W} + 2 \kappa_{\gamma\gamma} c_{\theta_W}^2) , \]

\[\kappa_{WW} = \delta \kappa_\gamma + \kappa_{Z\gamma} + 2 \kappa_{\gamma\gamma} , \]

RSG, A. Pomarol and F. Riva (arxiv: 1405.0181)
If these predictions are not confirmed, one of our assumptions must have been wrong:

(1) h not part of a doublet.

(2) Scale of new physics not very high and dimension 8 operators cannot be ignored.
Example: $h \rightarrow Zff$

Already constrained!
• Only way to compete with LEP is to go to high energies.

• Rest of the talk: Zh production at high energies
Zh production at LHC

- The following vertices in the unitary gauge contribute:

$$\Delta L_6 \supset \sum_f \delta g^Z f Z_\mu \bar{f} \gamma^\mu f + \delta g^W_{ud} (W^+ u_L \gamma^\mu d_L + h.c.)$$

$$+ \ g^h_{VV} h \left[W^+ \mu W^- \mu + \frac{1}{2 c^2_{\theta_W}} Z^\mu Z_\mu \right] + \delta g^h_{ZZ} h \frac{Z^\mu Z_\mu}{2 c^2_{\theta_W}}$$

$$\sum_f \ g^h_{Zff} \frac{h}{v} Z_\mu \bar{f} \gamma^\mu f + g^h_{Wud} \frac{h}{v} (W^+ \bar{u}_L \gamma^\mu d_L + h.c.)$$

$$+ \ k_{Z} \frac{h}{v} A^{\mu \nu} Z_{\mu \nu} + k_{WW} \frac{h}{v} W^{+ \mu \nu} W^{\mu \nu}_- + k_{ZZ} \frac{h}{2 v} Z^{\mu \nu} Z_{\mu \nu}.$$
Zh production at LHC

- The following vertices in the unitary gauge contribute:

\[\Delta L_6 \supset \sum_f \delta g^Z_f Z_{\mu} \bar{f} \gamma^\mu f + \delta g^W_{ud} (W^+_{\mu} \bar{u}_L \gamma^\mu d_L + h.c.) \]

\[+ g^h_{VV} h \left[W^+_{\mu} W^-_{\mu} + \frac{1}{2 c_{\theta_W}^2} Z^\mu Z_{\mu} \right] + \delta g^h_{ZZ} h \frac{Z^\mu Z_{\mu}}{2 c_{\theta_W}^2} \]

\[+ \sum_f g^h_{Zff} \frac{h}{v} Z_{\mu} \bar{f} \gamma^\mu f + g^h_{Wud} \frac{h}{v} (W^+_{\mu} \bar{u}_L \gamma^\mu d_L + h.c.) \]

\[+ \kappa_{Z\gamma} A^{\mu\nu} Z_{\mu\nu} + \kappa_{WW} h_v W^{+\mu\nu} W^-_{\mu\nu} + \kappa_{ZZ} \frac{h}{2 v} Z^{\mu\nu} Z_{\mu\nu} . \]

\[\mathcal{M}(ff \to ZLh) = g^Z_f \frac{q \cdot J_f}{v} \frac{2m_Z}{\hat{s}} \left[1 + \frac{g^Z_{Zff}}{g^Z_f} \frac{\hat{s}}{2m_Z^2} \right] \]
Zh production at LHC

- The following vertices in the unitary gauge contribute:

\[
\Delta \mathcal{L}_6 \supset \sum_f \delta g_f^Z Z_\mu \bar{f} \gamma^\mu f + \delta g_{ud}^W (W^+_\mu \bar{u}_L \gamma^\mu d_L + h.c.) \\
+ g_{VV}^h h \left[W^+\mu W^-\mu + \frac{1}{2c^2_{\theta_W}} Z^\mu Z_\mu \right] + \delta g_{ZZ}^h h \frac{Z^\mu Z_\mu}{2c^2_{\theta_W}} \\
+ \sum_f g_{Zff}^h \frac{h}{v} Z_\mu \bar{f} \gamma^\mu f + g_{Wud}^h \frac{h}{v} (W^+_\mu \bar{u}_L \gamma^\mu d_L + h.c.)
\]

Leading effect from contact interaction at high energies. Energy growth as there is no propagator.

\[
\mathcal{M}(f f \to Z_L h) = g_f^Z \frac{q \cdot J_f}{v} \frac{2m_Z}{\hat{s}} \left[1 + \frac{g_{Zff}^h}{g_f^Z} \frac{\hat{s}}{2m_Z^2} \right]
\]
Zh production at LHC

The following vertices in the unitary gauge contribute:

<table>
<thead>
<tr>
<th>SILH Basis</th>
<th>Warsaw Basis</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\mathcal{O}W = \frac{ig}{2} \left(H^\dagger \sigma^a D^\mu H \right) D^\nu W{\mu\nu}^a$</td>
<td>$\mathcal{O}_{L}^{(3)} = (\bar{Q}L \sigma^a \gamma^\mu Q_L)(iH^\dagger \sigma^a D\mu H)$</td>
</tr>
<tr>
<td>$\mathcal{O}B = \frac{ig'}{2} \left(H^\dagger \tilde{D}^\mu H \right) \partial^\nu B{\mu\nu}$</td>
<td>$\mathcal{O}_L = (\bar{Q}L \gamma^\mu Q_L)(iH^\dagger \tilde{D}\mu H)$</td>
</tr>
<tr>
<td>$\mathcal{O}{HW} = ig(D^\mu H)^{\dagger} \sigma^a(D^\nu H) W{\mu\nu}^a$</td>
<td>$\mathcal{O}_R^{u} = (\bar{u}R \gamma^\mu u_R)(iH^\dagger \tilde{D}\mu H)$</td>
</tr>
<tr>
<td>$\mathcal{O}{HB} = ig'(D^\mu H)^{\dagger}(D^\nu H) B{\mu\nu}$</td>
<td>$\mathcal{O}_R^{d} = (\bar{d}R \gamma^\mu d_R)(iH^\dagger \tilde{D}\mu H)$</td>
</tr>
<tr>
<td>$\mathcal{O}{2W} = -\frac{1}{2}(D^\mu W{\mu\nu}^a)^2$</td>
<td></td>
</tr>
<tr>
<td>$\mathcal{O}{2B} = -\frac{1}{2}(\partial^\mu B{\mu\nu})^2$</td>
<td></td>
</tr>
</tbody>
</table>
Zh production: High energy primaries

- At high energies **four directions in EFT space** are isolated by high energy ZH production.

\[
\begin{align*}
g^h_{Zu_Lu_L} &= -\frac{g}{c_{\theta_W}} \frac{v^2}{\Lambda^2} (c^1_L - c^3_L) \\
g^h_{Zd_Ld_L} &= -\frac{g}{c_{\theta_W}} \frac{v^2}{\Lambda^2} (c^1_L + c^3_L) \\
g^h_{Zu_Ru_R} &= -\frac{g}{c_{\theta_W}} \frac{v^2}{\Lambda^2} c^u_R \\
g^h_{Zd_Rd_R} &= -\frac{g}{c_{\theta_W}} \frac{v^2}{\Lambda^2} c^d_R
\end{align*}
\]

WARSAW BASIS
Zh production: High energy primaries

- At high energies four directions in EFT space are isolated by high energy ZH production.

\[
g_{Z^{u_L}u_L}^h = 2\delta g_{Z^{u_L}u_L}^Z - 2\delta g_1^Z (g_j^Z c_{2\theta_W} + eQ s_{2\theta_W}) + 2\delta \kappa_\gamma g' Y_h \frac{s_{\theta_W}}{c_{\theta_W}}
\]

\[
g_{Z^{d_L}d_L}^h = 2\delta g_{Z^{d_L}d_L}^Z - 2\delta g_1^Z (g_j^Z c_{2\theta_W} + eQ s_{2\theta_W}) + 2\delta \kappa_\gamma g' Y_h \frac{s_{\theta_W}}{c_{\theta_W}}
\]

\[
g_{Z^{u_R}u_R}^h = 2\delta g_{Z^{u_R}u_R}^Z - 2\delta g_1^Z (g_j^Z c_{2\theta_W} + eQ s_{2\theta_W}) + 2\delta \kappa_\gamma g' Y_h \frac{s_{\theta_W}}{c_{\theta_W}}
\]

\[
g_{Z^{d_R}d_R}^h = 2\delta g_{Z^{d_R}d_R}^Z - 2\delta g_1^Z (g_j^Z c_{2\theta_W} + eQ s_{2\theta_W}) + 2\delta \kappa_\gamma g' Y_h \frac{s_{\theta_W}}{c_{\theta_W}}
\]

RSG, A. Pomarol and F. Riva (arxiv: 1405.0181)
Zh production: High energy primaries

- At high energies four directions in EFT space are isolated by high energy ZH production.

\[
\begin{align*}
 g^{h}_{Zu_{LL}} & = \frac{g}{c_{\theta_{W}}} \frac{m_{W}^{2}}{\Lambda^{2}} (c_{W} + c_{H_{W}} - c_{2W} - \frac{t_{\theta_{W}}^{2}}{3} (c_{B} + c_{H_{B}} - c_{2B})) \\
 g^{h}_{Zd_{LL}} & = -\frac{g}{c_{\theta_{W}}} \frac{m_{W}^{2}}{\Lambda^{2}} (c_{W} + c_{H_{W}} - c_{2W} + \frac{t_{\theta_{W}}^{2}}{3} (c_{B} + c_{H_{B}} - c_{2B})) \\
 g^{h}_{Zu_{RR}} & = -\frac{4g s_{\theta_{W}}^{2}}{3 c_{\theta_{W}}^{3}} \frac{m_{W}^{2}}{\Lambda^{2}} (c_{B} + c_{H_{B}} - c_{2B}) \\
 g^{h}_{Zd_{RR}} & = -\frac{2g s_{\theta_{W}}^{2}}{3 c_{\theta_{W}}^{3}} \frac{m_{W}^{2}}{\Lambda^{2}} (c_{B} + c_{H_{B}} - c_{2B})
\end{align*}
\]
Zh production: High energy primaries

- At high energies **four directions in EFT space** are isolated by high energy ZH production.

\[
\begin{align*}
 g_{Zu_Lu_L}^h &= -\frac{g}{c_{\theta_W}} \left((c_{\theta_W}^2 + \frac{s_{\theta_W}^2}{3}) \delta g_1^Z + W + \frac{t_{\theta_W}^2}{3} (\hat{S} - \delta \kappa_{\gamma} - Y) \right) \\
 g_{Zd_Ld_L}^h &= \frac{g}{c_{\theta_W}} \left((c_{\theta_W}^2 - \frac{s_{\theta_W}^2}{3}) \delta g_1^Z + W - \frac{t_{\theta_W}^2}{3} (\hat{S} - \delta \kappa_{\gamma} - Y) \right) \\
 g_{Zu_Ru_R}^h &= -\frac{4gs_{\theta_W}^2}{3c_{\theta_W}^3} (\hat{S} - \delta \kappa_{\gamma} + c_{\theta_W}^2 \delta g_1^Z - Y) \\
 g_{Zd_Rd_R}^h &= \frac{2gs_{\theta_W}^2}{3c_{\theta_W}^3} (\hat{S} - \delta \kappa_{\gamma} + c_{\theta_W}^2 \delta g_1^Z - Y)
\end{align*}
\]
Zh production: High energy primaries

- At high energies **four directions in EFT space** are isolated by high energy ZH production.

\[
\begin{align*}
 g_{ZuLdL}^h &= -\frac{g}{c_{\theta_W}} \left((c_{\theta_W}^2 + \frac{s_{\theta_W}^2}{3}) \delta g_1^Z + W + \frac{t_{\theta_W}^2}{3} (\hat{S} - \delta \kappa_\gamma - Y) \right) \\
 g_{ZdLdL}^h &= \frac{g}{c_{\theta_W}} \left((c_{\theta_W}^2 - \frac{s_{\theta_W}^2}{3}) \delta g_1^Z + W - \frac{t_{\theta_W}^2}{3} (\hat{S} - \delta \kappa_\gamma - Y) \right) \\
 g_{ZuRuR}^h &= -\frac{4gs_{\theta_W}^2}{3c_{\theta_W}^3} (\hat{S} - \delta \kappa_\gamma + c_{\theta_W}^2 \delta g_1^Z - Y) \\
 g_{ZdRdR}^h &= \frac{2gs_{\theta_W}^2}{3c_{\theta_W}^3} (\hat{S} - \delta \kappa_\gamma + c_{\theta_W}^2 \delta g_1^Z - Y)
\end{align*}
\]

CORRELATIONS (UNIVERSAL MODELS)

Franceschini, Panico, Pomarol, Riva & Wulzer
arxiv:1712.01310
Zh production: LHC vs LEP

- These vertices can be thus measured in this process. For eg. At high energies:

\[
M(ff \rightarrow Z_L h) = g_f^Z q \cdot J_f \frac{2m_Z}{\hat{s}} \left[1 + \frac{g_{Zff}^h}{g_f^Z} \frac{\hat{s}}{2m_Z^2} \right]
\]

\[
g_{Zu_L u_L}^h = -\frac{g}{c_{\theta_W}} \left(c_{\theta_W}^2 + \frac{s_{\theta_W}^2}{3} \right) \delta g_1^Z + W - \frac{t_{\theta_W}^2}{3} \left(\hat{S} - \delta \kappa_{\gamma} - Y \right)
\]

- LEP constraint: 5-10 % level, 0.2 % level.

- To be as sensitive as LEP, LHC needs to measure this process at 30 % level because of energy enhancement.
These vertices can be thus measured in this process. For eg. At high energies:

\[\mathcal{M}(f f \rightarrow Z_L h) = g_f^Z q \cdot J_f \frac{2m_Z}{u} \left[1 + \frac{g_{Zf}^h}{g_f^Z} \frac{\hat{s}}{2m_Z^2} \right] \]

\[
g_{Zu_Lu_L}^h = -\frac{g}{c_{\theta_W}} \left((c_{\theta_W}^2 + \frac{s_{\theta_W}^2}{3}) \delta g_1^Z + W - \frac{t_{\theta_W}^2}{3} (\hat{s} - \delta \kappa_{\gamma} - Y) \right)
\]

\text{Factor of 30}

\text{Per mille- % level constraint possible?}

\text{LEP constraint: 5-10% level}

\text{To compete with LEP, LHC needs to measure this process at 30 % level because of energy enhancement}
HIGH ENERGIES ESSENTIAL!

Greater sensitivity expected at higher energies such as the HE-LHC at 27 TeV.
Cross section deviations and EFT Validity

\[\mathcal{M}(f f \rightarrow Z_{L} h) = g_{f}^{Z} q \cdot J_{f} \frac{2m_{Z}}{\hat{s}} \left[1 + \frac{g_{Z ff}^{n}}{g_{f}^{Z}} \frac{\hat{s}}{2m_{Z}^{2}} \right] \]

EFT validity: \(\hat{s} \ll \Lambda^{2} \)

Fractional Deviations \(\gg 1 \) signal a breakdown of EFT expansion unless UV completion is strongly coupled
Can sensitivity to 30 % deviation be achieved in high energy bins for this process?

Banerjee, Englert, RSG and Spannowsky
(work in progress)
Search Strategy

\[q + \bar{q} \rightarrow Z \rightarrow ll \]

\[p_T^{l_1} + p_T^{l_2} > 160 \text{ GeV} \]

Cross Section: 5.6 fb

\[pp \rightarrow Z(ll)h(\gamma\gamma) \]

Less than 4 SM events at 300 fb

BSM (EFT) events can only be a fraction of this
Search Strategy

Cross Section: 5.6 fb

Less than 4 SM events at 300 fb

BSM (EFT) events can only be a fraction of this
Search Strategy

Cross Section: 4.6 fb

$p_T^{l_1} + p_T^{l_2} > 160 \text{ GeV}$

$pp \rightarrow Z(ll)h(\bar{b}b)$

Much larger rate than diphoton channel

But 40 times larger $Z(\bar{b}b)$ background = 165 fb
Search Strategy

$\mathcal{Z} h (b b) = 4.6 \text{ fb} \quad \mathcal{Z} b b = 165 \text{ fb}$

$\mathcal{Z} h (b b) = 0.12 \text{ fb} \quad \mathcal{Z} b b = 0.22 \text{ fb}$

$\mathcal{Z} h (b b) = 0.11 \text{ fb} \quad \mathcal{Z} b b = 0.35 \text{ fb}$

$\mathcal{P}_{T1} + \mathcal{P}_{T2} > 160 \text{ GeV}$

BDT optimisation

Cut-based Analysis
Cut-flow

\[p_T^{l_1} + p_T^{l_2} > 160 \text{ GeV} \]

\[
\begin{align*}
\text{Zh (bb)} &= 4.6 \text{ fb} \\
\text{Zbb} &= 165 \text{ fb}
\end{align*}
\]

<table>
<thead>
<tr>
<th>Cuts</th>
<th>Zbb</th>
<th>Zh (SM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. At least 1 fat jet with 2 B-mesons with pT > 15 GeV</td>
<td>0.157</td>
<td>0.411</td>
</tr>
<tr>
<td>2. 2 OSSF isolated leptons</td>
<td>0.407</td>
<td>0.501</td>
</tr>
<tr>
<td>3. 80 GeV < M_{l1l2} < 100 GeV, pT_{l1l2} > 160 GeV, dR_{l1l2} > 0.2</td>
<td>0.846</td>
<td>0.887</td>
</tr>
<tr>
<td>4. At least 1 fat jet, at least 1 fat jet with 2 B-meson tracks with pT > 110 GeV</td>
<td>0.952</td>
<td>0.980</td>
</tr>
<tr>
<td>5. 2 Mass drop subjets and >= 2 filtered subjets</td>
<td>0.857</td>
<td>0.923</td>
</tr>
<tr>
<td>6. Exactly 2 b-tagged jets</td>
<td>0.383</td>
<td>0.409</td>
</tr>
<tr>
<td>7. 115 GeV < M_{fatjet} < 135 GeV</td>
<td>0.254</td>
<td>0.505</td>
</tr>
<tr>
<td>8. Delta R(l_i, b_j) > 0.4, MET < 30 GeV,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.490</td>
<td>0.693</td>
</tr>
<tr>
<td>and pT_{l1l2} > 200 GeV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>0.002</td>
<td>0.024</td>
</tr>
</tbody>
</table>

Butterworth et al, arXiv:0802.2470

\[
\begin{align*}
\text{Zh (bb)} &= 0.12 \text{ fb} \\
\text{Zbb} &= 0.22 \text{ fb}
\end{align*}
\]
Cut-flow

\[p_T^{l_1} + p_T^{l_2} > 160 \text{ GeV} \]

\[\text{Zh (bb)} = 4.6 \text{ fb} \quad \text{Zbb} = 165 \text{ fb} \]

<table>
<thead>
<tr>
<th>Cuts</th>
<th>Zbb</th>
<th>Zh (SM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. At least 1 fat jet with 2 B-mesons with pT > 15 GeV</td>
<td>0.157</td>
<td>0.411</td>
</tr>
<tr>
<td>2. 2 OSSF isolated leptons</td>
<td>0.407</td>
<td>0.501</td>
</tr>
<tr>
<td>3. Combined (please see last mail)</td>
<td>0.145</td>
<td>0.217</td>
</tr>
<tr>
<td>4. BDT cut</td>
<td>0.148</td>
<td>0.593</td>
</tr>
<tr>
<td>Total</td>
<td>0.0014</td>
<td>0.026</td>
</tr>
</tbody>
</table>

\[\text{Zh (bb)} = 0.11 \text{ fb} \]

\[\text{Zbb} = 0.35 \text{ fb} \]
For both cut based and BDT analyses:

1. About 35 SM Zh(bb) events left at 300 ifb.

2. Zh(bb)/Zbb increases from 1/40 to an O(1) number.

HIGH LUMINOSITIES ESSENTIAL!
To discriminate between SM and EFT we look at Zh invariant mass distribution (300 ifb):
SM background vs EFT Signal

Unphysical

-0.012 $\# gzur$
-0.011 $\# gzul$
0.006 $\# ghzdr$
0.005 $\# ghzdl$
We can find the sensitivity to % cross-section deviation given the SM background assuming 5% syst. uncertainty (300 ifb):

Sensitive to 20-40 % cross-section deviations
Sensitivity

We can find the sensitivity to % cross-section deviation given the SM background assuming 5% syst. uncertainty (300 ifb):

Sensitivity to 20-40 % cross-section deviations

HIGH LUMINOSITIES ESSENTIAL!
ZH production: LHC vs LEP

- These vertices can be thus measured in this process. For eg. At high energies:

\[
M(ff \rightarrow Z_L h) = g_f^Z q \cdot J_f \frac{2m_Z}{\hat{s}} \left[1 + \frac{g_{Z_{ff}}^h}{g_f^Z} \frac{\hat{s}}{2m_Z^2}\right]
\]

- LEP constraint: 5-10% level

- To be as sensitive as LEP, LHC needs to measure this process at 30% level because of energy enhancement

- Per mille-% level constraint possible?

- Factor of 30
\[\mathcal{M}(ff \rightarrow Z_L h) = g_f^Z q \cdot J_f \frac{2m_Z}{\hat{s}} \left[1 + \frac{g_{Zff}^h}{g_f^Z} \frac{\hat{s}}{2m_Z^2} \right] \]
This point can be excluded with 300 ifb data.

\[M(\mathbf{f} \mathbf{f} \rightarrow Z_L h) = g_f^Z q \cdot J_f \frac{2m_Z}{v} \left(1 + \frac{g_{Zff}^h}{g_f^Z} \frac{s}{2m_Z^2} \right) \]
• We will present final projections together with WZ projections.
Diboson production at LHC

Four channels:

- $ZH \rightarrow G^0 H$
- $WH \rightarrow G^+ H$
- $WW \rightarrow G^+ G^-$
- $WZ \rightarrow G^+ G^0$

- These different final states are connected by more than nomenclature.
- At high energies longitudinal W/Z production dominates.
- Using goldstone boson equivalence theorem one can compute amplitudes for various components of Higgs doublet in the unbroken phase.
- Full SU(2) symmetry manifest

$$\Phi = \left(\frac{G^+}{(v + H) + iG^0} \right) \sqrt{2}$$

Franceschini, Panico, Pomarol, Riva & Wulzer
arxiv:1712.01310
Diboson production at LHC

Four channels:

- $ZH \rightarrow G^0 H$
- $WH \rightarrow G^+ H$
- $WW \rightarrow G^+ G^-$
- $WZ \rightarrow G^+ G^0$

- These different final states are connected by more than nomenclature.
- At high energies longitudinal W/Z production dominates.
- Using goldstone boson equivalence theorem one can compute amplitudes for various components of Higgs doublet in the unbroken phase.
- Full SU(2) symmetry manifest

$$\Phi = \left(\frac{G^+}{H + iG^0} \right)$$

Franceschini, Panico, Pomarol, Riva & Wulzer

arxiv:1712.01310
Diboson production at LHC

Four channels:

- ZH → $G^0 H$
- WH → $G^+ H$
- WW → $G^+ G^-$
- WZ → $G^+ G^0$

<table>
<thead>
<tr>
<th>Amplitude</th>
<th>High-energy primaries</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\bar{u}_L d_L \rightarrow W_L Z_L, W_L h$</td>
<td>$\sqrt{2}a_q^{(3)}$</td>
</tr>
<tr>
<td>$\bar{u}_L u_L \rightarrow W_L W_L$</td>
<td>$a_q^{(1)} + a_q^{(3)}$</td>
</tr>
<tr>
<td>$\bar{d}_L d_L \rightarrow Z_L h$</td>
<td></td>
</tr>
<tr>
<td>$\bar{d}_L d_L \rightarrow W_L W_L$</td>
<td>$a_q^{(1)} - a_q^{(3)}$</td>
</tr>
<tr>
<td>$\bar{u}_L u_L \rightarrow Z_L h$</td>
<td></td>
</tr>
<tr>
<td>$f_R f_R \rightarrow W_L W_L, Z_L h$</td>
<td>a_f</td>
</tr>
</tbody>
</table>

HV and VV processes amplitude connected by symmetry. They constrain the same set of observables at high energies.

Franceschini, Panico, Pomarol, Riva & Wulzer
arxiv:1712.01310
Diboson production at LHC

Four channels:

- **ZH** → G^0H
- **WH** → G^+H
- **WW** → G^+G^-
- **WZ** → G^+G^0

<table>
<thead>
<tr>
<th>Amplitude</th>
<th>High-energy primaries</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\bar{u}_Ld_L \rightarrow W_LZ_L, W_Lh$</td>
<td>$\frac{g^h_{Zd_Ld_L} - g^h_{Zu_Lu_L}}{\sqrt{2}}$</td>
</tr>
<tr>
<td>$\bar{u}_Lu_L \rightarrow W_LW_L$</td>
<td>$g^h_{Zd_Ld_L}$</td>
</tr>
<tr>
<td>$\bar{d}_Ld_L \rightarrow Z_Lh$</td>
<td>$g^h_{Zu_Lu_L}$</td>
</tr>
<tr>
<td>$\bar{d}_Ld_L \rightarrow W_LW_L$</td>
<td>$g^h_{Zf_Rf_R}$</td>
</tr>
<tr>
<td>$\bar{u}_Lu_L \rightarrow Z_Lh$</td>
<td>$g^h_{Zf_Rf_R}$</td>
</tr>
<tr>
<td>$\bar{f}_Rf_R \rightarrow W_LW_L, Z_Lh$</td>
<td>$g^h_{Zf_Rf_R}$</td>
</tr>
</tbody>
</table>

HV and VV processes amplitude connected by symmetry. They constrain the same set of observables at high energies.

Franceschini, Panico, Pomarol, Riva & Wulzer
arxiv:1712.01310
Diboson production at LHC

Four channels:
- ZH → $G^0 H$
- WH → $G^+ H$
- WW → $G^+ G^-$
- WZ → $G^+ G^0$

HV and VV processes amplitude connected by symmetry. They constrain the same set of observables at high energies.

This work

Banerjee, Englert, RSG and Spannowsky (work in progress)
Diboson production at LHC

Four channels:
- $ZH \rightarrow G^0 H$
- $WH \rightarrow G^+ H$
- $WW \rightarrow G^+ G^-$
- $WZ \rightarrow G^+ G^0$

HV and VV processes amplitude connected by symmetry. They constrain the same set of observables at high energies.

This work

Banerjee, Englert, RSG and Spannowsky (work in progress)
Conclusions

- Can LHC compete with LEP? Can LHC searches give us new information that LEP does not provide?

- EFT techniques show that many anomalous Higgs interactions were already probed by LEP.

- Only way to compete with LEP precision is by going to higher energies and luminosities.

- Zh production promising example channel. We perform collider analysis for Z(ll)H(bb) final state using subjet techniques. Order of Magnitude improvement over LEP.

- Both High energies and luminosities essential
Anomalous Higgs interactions not constrained by LEP

\[\mathcal{L}_h^{\text{primary}} = g_{VV}^h h \left[W^{+\mu} W^-_{\mu} + \frac{1}{2c_w^2} Z^\mu Z_{\mu} \right] + g_{3h}^h h^3 + g_{ff}^h (h f_L f_R + h.c.) \]

\[+ \kappa_{GG} \frac{h}{v} G_A^{\mu\nu} G_{\mu\nu}^A + \kappa_{\gamma\gamma} \frac{h}{v} A^{\mu\nu} A_{\mu\nu} + \kappa_{Z\gamma t_{\theta_w}} \frac{h}{v} A^{\mu\nu} Z_{\mu\nu}, \]

\[\Delta \mathcal{L}_h = \delta g_{ZZ}^h \frac{v}{2c_w^2} h Z^\mu Z_{\mu} + g_{Zff}^h \frac{h}{2v} (Z_{\mu} J_N^\mu + h.c.) + g_{Wff}^h \frac{h}{v} (W^{+\mu} J_C^\mu + h.c.) \]

\[+ \kappa_{WW} \frac{h}{v} W^{+\mu\nu} W^-_{\mu\nu} + \kappa_{ZZ} \frac{h}{v} Z^{\mu\nu} Z_{\mu\nu}, \]
Anomalous Higgs interactions not constrained by LEP

\[L_{h^{\text{primary}}} = g_{VV}^h h \left[W^{+\mu} W^-_{\mu} + \frac{1}{2c_W^2} Z^\mu Z_{\mu} \right] + g_3 h^3 + g_{ff}^h (h f_L f_R + h.c.) + \kappa_{GG} \frac{h}{v} G^{A\mu\nu} G^A_{\mu\nu} + \kappa_{\gamma\gamma} \frac{h}{v} A^{\mu\nu} A_{\mu\nu} + \kappa_{Z\gamma t_{\theta W}} \frac{h}{v} A^{\mu\nu} Z_{\mu\nu}, \]

\[\Delta L_h = \delta g_{ZZ}^h \frac{v}{2c_W^2} h Z^\mu Z_{\mu} + g_{Zff}^h \frac{h}{2v} (Z_{\mu} J_{N}^\mu + h.c.) + g_{Wff}^h \frac{h}{v} (W^{+}_\mu J_{C}^\mu + h.c.) + \kappa_{WW} \frac{h}{v} W^{+\mu\nu} W^-_{\mu\nu} + \kappa_{ZZ} \frac{h}{v} Z^{\mu\nu} Z_{\mu\nu}, \]
Anomalous Higgs interactions already constrained by LEP

\[\mathcal{L}_{h}^{\text{primary}} = g_{VV}^{h} h \left[W^{+\mu} W_{\mu}^{-} + \frac{1}{2c_{\theta W}^2} Z^{\mu} Z_{\mu} \right] + g_{3h} h^3 + g_{ff}^{h} (h \bar{f}_L f_R + h.c.) \]

\[+ \kappa_{GG} \frac{h}{v} G_{\mu\nu}^{A} G_{\mu\nu}^{A} + \kappa_{\gamma\gamma} \frac{h}{v} A_{\mu}^{\mu\nu} A_{\mu\nu} + \kappa_{Z\gamma t_{\theta W}} \frac{h}{v} A_{\mu\nu} Z_{\mu\nu} , \]

\[\Delta \mathcal{L}_{h} = \delta g_{Z}^{h} \frac{v}{2c_{\theta W}^2} h Z^{\mu} Z_{\mu} + g_{Zff}^{h} \frac{h}{2v} (Z_{\mu} J_{N}^{\mu} + h.c.) + g_{Wff}^{h} \frac{h}{v} (W_{\mu}^{+} J_{C}^{\mu} + h.c.) \]

\[+ \kappa_{WW} \frac{h}{v} W_{\mu\nu}^{+} W_{\mu\nu}^{-} + \kappa_{ZZ} \frac{h}{v} Z^{\mu\nu} Z_{\mu\nu} , \]
Anomalous Higgs interactions already constrained by LEP

\[\mathcal{L}_h^{\text{primary}} = g_{VV}^h h \left[W^{+\mu} W^-_{\mu} + \frac{1}{2 c_w^2} Z^{\mu} Z_{\mu} \right] + g_3^h h^3 + g_{ff}^h \left(h \bar{f}_L f_R + \text{h.c.} \right) + \kappa_{GG}^h \frac{h}{v} G^A_{\mu\nu} G^A_{\mu\nu} + \kappa_{\gamma\gamma}^h \frac{h}{v} A_{\mu\nu} A_{\mu\nu} + \kappa_{Z\gamma t \theta_W}^h \frac{h}{v} A_{\mu\nu} Z_{\mu\nu}, \]

\[\Delta \mathcal{L}_h = \delta g_{ZZ}^h \frac{v}{2 c_w^2} h Z^{\mu} Z_{\mu} + g_{Zff}^h \frac{h}{2v} \left(Z_{\mu} J^\mu_N + \text{h.c.} \right) + g_{Wff'}^h \frac{h}{v} \left(W^+_{\mu} J^\mu_C + \text{h.c.} \right) + \kappa_{WW}^h \frac{h}{v} W^{+\mu\nu} W^-_{\mu\nu} + \kappa_{ZZ}^h \frac{h}{v} Z^{\mu\nu} Z_{\mu\nu}, \]
Anomalous Higgs interactions not constrained by LEP

\[\Delta \mathcal{L}_{\text{h}^2\text{SM}} = c_V g^2 \hat{h}^4 (W^2 + Z^2/2c_{\theta_W}^2) + c_6 \hat{h}^6 + \frac{\hat{h}^2}{\Lambda^2} \left[c_{WW} g^2 W^a_{\mu \nu} W^{\mu \nu a} + c_{BB} g^2 B_{\mu \nu} B^{\mu \nu} \right] + c_{y_f} y_f (\hat{h}^3 f_L f_R + h.c), \]

\[\hat{h} = v + h \]

\[H^\dagger H \mathcal{O}_{\text{SM}} \]

8 operators

Redefining 8 parameters in the vacuum
Anomalous Higgs interactions not constrained by LEP

8 operators → 8 Higgs Primaries

$hA_{\mu\nu}A^{\mu\nu}$, $hA_{\mu\nu}Z^{\mu\nu}$, $hG_{\mu\nu}G^{\mu\nu}$,
$hW^{+\mu}W^{-\mu}$, $h\bar{f}f$, h^3

These operators could never have been probed at LEP as they only redefine 8 parameters in dim-4 Lagrangian in the vacuum.

Constrained for the first time by LHC!