Higgs self coupling & HH at the HL/HE-LHC

Jonathon Langford on behalf of the CMS+ATLAS collaborations

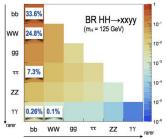
Imperial College London

HL/HE-LHC Workshop 18 Jun. 2018

HH contributions to YR

• Section 3b: "Double Higgs measurements and trilinear coupling"

One of highest priority reseach subjects for future LHC operations


- For sensitivity projections important to incorporate:
 - Detector upgrades
 - Theory developments
 - Analysis improvements
- Section 3c: "Indirect probes of trilinear coupling through differential distributions measurements"

Novel approach to investigating λ_3

• Projected constraints of trilinear coupling from $H \to \gamma \gamma$ differential measurements

HH analyses: run II status

- several final states explored @13TeV by ATLAS+CMS
- resonant + non-resonant production
- o no signs of HH @ run-II
 - sensitivity @ HL-LHC?

Observed $\sigma/\sigma_{ m SM}$ (exp)					
Channel	ATLAS		CMS		
bbbb	<13 (20.7)	(36.1fb ⁻¹)	<342 (308)	(2.32fb ⁻¹)	
	[submitted to JHEP]		[HIG-PAS-16-026]		
$bb\gamma\gamma$	<22	(36.1fb ⁻¹)	<23.6 (19)	(35.9fb ⁻¹)	
	NEW paper coming soon		[submitted to Phys.Lett.B]		
bb au au			<31.4 (25)	(35.9fb ⁻¹)	
			[Phys.Lett.B 778(18)101]		
bbVV			<79 (89)	(35.9fb ⁻¹)	
			[JHEP 01 (2018) 054]		
$WW\gamma\gamma$	<230	(36.1fb ⁻¹)			
	NEW paper coming	soon			

HH analyses: HL-LHC

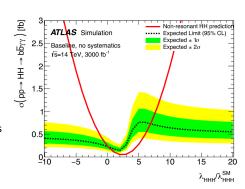
Two alternative approaches to sensitivity prediction of HH @ HL-LHC:

CMS **ATLAS** Full analysis based on Delphes: • Based on extrapolation from run-II: Phase-II CMS @HI-I HC Studying systematics and triggers in Better account for experimental HL-LHC environment effects + 14 TeV + detector bbbb, bbττ, bbγγ upgrades bbbb, bbγγ, bbττ, bbVV, bbZZ Combination Channel CMS ATLAS HH → bbbb $Z(\sigma_{UU}(SM))=0.39 \sigma$ $-4.1 < \lambda_{HHH}/\lambda_{SM} < 8.7$ @95 % C.L. 1.6 xSM HH → bbττ 0.6σ $-4.0 < \lambda_{HHH}/\lambda_{SM} < 12.0$ @95 % C.L. HH → bbyy $1.43 \,\sigma$ 1.5σ

current projections: more info see Back-up

 $0.45 \,\sigma$

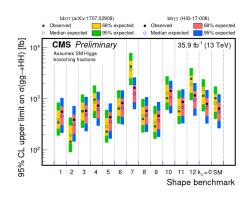
 $0.2 < \lambda_{\rm HHH}/\lambda_{\rm SM} < 6.9$ @95 % C.L. (stat only)


HH - WWhh

HH physics results

How to present results for HH@HL-LHC: input from theory community

- ullet goals: SM-HH cross-section $+ \lambda_3$
- non-resonant:
 - ightharpoonup ggH in 5 channels + combination
 - ▶ VBF in higher BR (CMS only)
 ⇒ VVHH constraint, parametric modelling of VBF
- discussion on results to deliver:
 - ▶ agreement: SM HH limit, κ_{λ} , benchmarks
 - possibilities: BSM couplings, 2D scans (e.g. κ_{λ} -vs- κ_{t})
- Paradigm shift: exclusion → likelihood contours



HH physics results

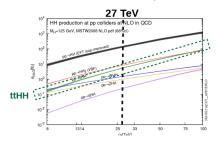
How to present results for HH@HL-LHC: input from theory community

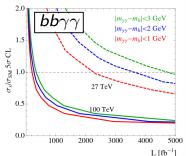
- 5D EFT parameter space: ⇒ [arXiv:1608.06578]
 - ► BSM effective lagrangian:
 - $\implies \kappa_{\lambda}$, κ_{t} , c_{2} , c_{g} , c_{2g} partition space: regions w/ similar pheno
 - sensitivity in different regions
 - correlations between anomalous couplings in ggH and VBF

ATLAS+CMS Combination

For successful combination need to work under common hypothesis

- combine at results level?
- most likely SM HH $+ \kappa_{\lambda}$ scans

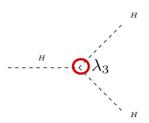

Implementation: combining CMS full sim studies w/ ATLAS projections


- experiments have technical know-how from experience
- need to understand correlations in systematics
 - experimental: experience from run l
 - theoretical: known correlations

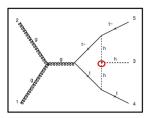
Results: again important to discuss optimal way for presenting

HH at HE-LHC

No central results planned (ATLAS+CMS), encouraging individual contributions


- Significant motivation: $\sigma^{
 m SM}_{HH}(ext{27TeV}) = 127.88 ext{ fb [G.Heinrich]}$
 - ► ~4 × @13TeV
- Recent <u>pheno studies</u> on prospects at HE collider: $bb\gamma\gamma$
 - Puote 30% accuracy on λ_3 achievable @27TeV
- Potential methods:
 - full 27 TeV Delphes analysis using upgraded detector config [M.Selvaggi+G.Ortona]
 - ② simply scale cross-section from 14 TeV analysis ⇒ projections

Indirectly probing λ_3 via single-Higgs differential measurements


Disclaimer: studies are standalone, not yet official

Single Higgs vs Di-Higgs

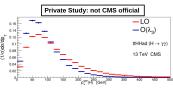
- ullet Di-Higgs standard process for studying λ_3 at LHC
 - ► SM cross-section \sim 0.001 \times single-Higgs: not yet demonstrated @HL-LHC $\implies \kappa_{\lambda} > \sim$ 7.7 & $\kappa_{\lambda} < -0.8$ [ATLAS (2b2 γ)]
- ullet investigate complementary avenues for determining λ_3
- Access λ₃ via NLO EWK corrections: precision differential measurements of single-Higgs events
 - ► motivated by F.Maltoni, D.Pagani, A.Shivaki and X.Zhao ⇒ [Eur. Phys. J. C (2017) 77: 887]
 - competitive with di-Higgs limits: $\Rightarrow \kappa_{\lambda} > \sim 7.0 \& \kappa_{\lambda} < -2.0$
 - ▶ use $H \rightarrow \gamma \gamma$

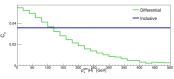
Master formula: $\lambda_3 = \kappa_\lambda \lambda_3^{\mathrm{SM}}$

Single-Higgs differential measurements

• LO cross-section in bins of some observable (e.g. $p_T(H)$) scales with κ_{λ} as:

$$\mu(\kappa_{\lambda}, C_1) = \frac{\sigma_{\rm NLO}(\kappa_{\lambda})}{\sigma_{\rm LO}(\kappa_{\lambda} = 0)}\bigg|_{C_1} = \frac{1 + \kappa_{\lambda} C_1}{1 - \kappa_{\lambda}^2 \delta Z_H}$$

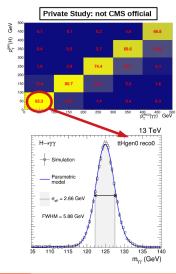

 C₁: interference between LO amplitude and λ₃-dependent virtual corrections at one-loop.


$$C_1(\left\{p_n
ight\}) = rac{2\Re(\mathcal{M}^{0*}\mathcal{M}_{\lambda_3^{ ext{SM}}}^1)}{|\mathcal{M}^0|^2}$$

- **Key**: C_1 process + kinematic dependence
 - ► $C_1 \equiv C_{1i}$: function of bin i of the observable \Longrightarrow differential $\mu_i(\kappa_\lambda, C_{1i})$
- \Longrightarrow Non-flat dependence on κ_{λ}
- Focus on associated modes: ttH and VH
- Use public code to calculate $\mathcal{O}(\lambda_3)$ effects: extract C_1 at gen-level

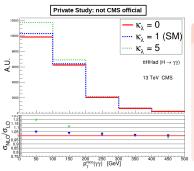
Range of validity

- neglect higher order terms $\Longrightarrow |\kappa_{\lambda}| \lesssim 20$
- indicate validity region in results
- th. unc framework


 $p_T(H)$ for ttH \rightarrow bjj bjj $\gamma\gamma$

Analysis Overview

Differential cross-section measurements using Delphes CMS-PhaseII @HL samples


- Event selection for particular final state
 - mimic tags as in $H \rightarrow \gamma \gamma$ 13 TeV analysis
 - ► calculate observable at gen and reco-level
- Coarser binning: statistically limited
 - still to be optimised
- ullet Gen o reco-bin migration: governed by detector resolution
 - characterised by response matrices
- Fit sig+bkg model to $m_{\gamma\gamma}$ distribution in each bin (e.g. ttHgen0 imes reco0)
- Incorporate κ_{λ} dependence: $\mu_{i}(\kappa_{\lambda}, C_{1i})$
 - ▶ Using C_{1i} values extracted at gen-level \implies sensitivity to κ_{λ} at 3 ab⁻¹

$p_T(H)$ for ttH o bjj bjj $\gamma\gamma$

Signal extraction and interpretation

Signal yield varies w/ κ_{λ}

 $p_T(H)$ for ttH \rightarrow bjj bjj $\gamma\gamma$

- Uncertainties for differential cross-sections: ttH and VH @HL-LHC
- **2** Sensitivity to κ_{λ}
 - ▶ 1D likelihood scan with κ_{λ} as POI
 - ▶ 2D scan of κ_{λ} vs κ_t ?

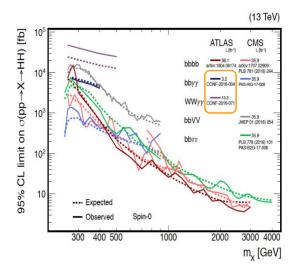
Important towards final sensitivity

- Systematics
 - experimental: YR2018
 - theoretical
- Theoretical assumptions
 - only λ_3 variations
 - impact of EW unc close to SM
 - role of QCD higher order effects

Combination with HH

- ullet 1D κ_{λ} scan, increased sensitivity
- global fit: constraints from standard single-Higgs measurements

Summary


- ullet several HH final states explored @13TeV by both ATLAS + CMS
- YR2018 guidelines HH prospective studies @HL-LHC
 - simple (conservative) projections show some sensitivity to HH
 - ▶ improvement by incorporating experimental + detector + analysis developments
 - ► CMS + ATLAS putting significant effort and time using different techniques
- Require input from theory community on most useful way to present results
 - ▶ SM-HH + λ_3 are HL-LHC primary goals
- ullet Single-Higgs differential measurements complimentary probe of λ_3
- Combinations ATLAS + CMS/H+HH offer best sensitivity

Back-Up Slides

HH analyses: run II status

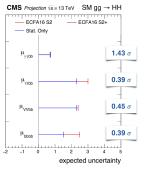
Search for new physics via resonant production:

ullet interpreted in terms of exclusion limits on m_X

HH analyses: HL-LHC (more info)

CMS

- Full analysis based on Delphes: five channels + combine results
 - Fast simulation of CMS HL-LHC conditions
 - Better account for experimental effects + 14 TeV + detector upgrades
 - bbbb: impact of trigger thresholds
 - $bb\gamma\gamma$: full analysis + cross-check w/ projections
 - bbττ: HGCAL TDR
 - \underline{bbVV} (2 ℓ 2 ν): importance of MVA
 - <u>bbZZ</u> (4ℓ): new channel


ATLAS

- Analysis mainly based on extrapolation from run-II:
 - Considering 3 channels for YR + combination
 - Studying systematics and triggers in HL-LHC environment
 - <u>bbbb</u>: extrapolation of 2015+2016, improved IT b-tagging efficiency
- <u>bbττ</u>: extrapolation from run II
- $bb\gamma\gamma$: dedicated HL-LHC prospects analysis \Longrightarrow upgraded detector + pile-up conditions

 \Longrightarrow orthogonal analyses with common structure

(N.B. significances assuming SM signal + background)

CMS: extrapolation of early run II results. (2.3/2.7 fb⁻¹ to 3000 fb⁻¹)

Channel	Uncertainty as a fraction of μ	
Chamici	2 Stat. only	
$HH \rightarrow bb\gamma\gamma(S2+)$	0.71	
$HH \rightarrow bb\tau\tau$	1.9	
$HH \rightarrow bbVV$	2.3	
$\mathrm{HH} ightarrow \mathrm{bbbb}$	1.5	
$\mathrm{HH} \to \mathrm{bbVV}$		

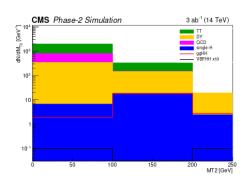
ECFA16 S2 Theoretical uncertainties scaled down by a factor 1/2, while experimental systematic uncertainties are scaled down by the square root of the integrated luminosity until they reach the ultimate level expected to be achievable by CMS with a sufficiently large accumulated dataset. The performance of the CMS detector is assumed to be the unchanged with respect to the reference analysis.

ECFA16 S2+ Theoretical uncertainties scaled down by a factor 1/2, while experimental systematic uncertainties are scaled down by the square root of the integrated furninosity until they reach the ultimate level expected to be achievable by CMS with a sufficiently large accumulated dataset. The effects of higher pileur conditions and detector upgrades on the future performance of CMS are taken into account.

(N.B. significances assuming SM signal + background)

CMS: updates in projection studies

 $bb\gamma\gamma$: Barrel TDR


- knowledge of expected CMS detector w/ ageing ECAL + 200 PU
- upgraded detector: photon iso eff, energy resolution + vertex-finding eff
- improved CMS-II tracker

	Median expected		Significance		
	limits in μ_r				
Process	Stat. + Sys.	Stat. Only	Stat. + Sys.	Stat. Only	
$ ext{HH} ightarrow \gamma \gamma ext{bb}$	1.1	1.00	1.9	2.0	

bbττ: HGCAL TDR

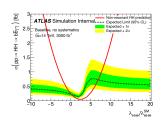
- Phase-II CMS upgrades, in particular HGCAL
- profits from HGCAL both in acceptance + better reco of jets + τ s
- use dedicated sim to incorporate collision conditions of HL-LHC + performance of CMS-II
- reduced systematics to current values

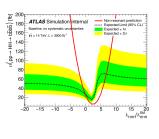
Category	$\sigma_{\rm HH}/\sigma_{\rm SM}$	$\sigma_{\rm ggHH}/\sigma_{\rm SM}$	$\sigma_{\mathrm{VBF}}/\sigma_{\mathrm{SM}}$
2b0j	1.8	3.0	72.6
VBF	3.9	5.4	86.6
Combined	1.6	2.8	52.2

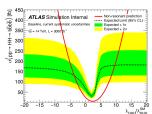
(N.B. significances assuming SM signal + background)

ATLAS: from TDRs

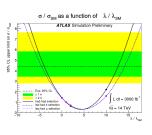
- $HH \rightarrow bb\gamma\gamma$: based on truth level particles convoluted w/ detector resolution + efficiencies + fake rates computed for PU 200
 - ▶ Re-evaluation of photon energy resolution \Longrightarrow narrower $H \to \gamma \gamma$ peak
 - Improved b-tagging performance: more powerful MV2 alg. + dedicated tune for ITk
 - ▶ Improved inner tracking performance
- $\underline{HH \rightarrow bbbb}$: extrapolation of run II results (24.3 fb⁻¹)
 - improved b-tagging performance (as in $bb\gamma\gamma$)
 - ▶ improved trigger described in TDAQ TDR
 - ▶ two projections: none & current systematics
- $HH \rightarrow bb\tau\tau$:
 - truth-level studies
 - ATLAS at HL-LHC: representative samples to extract detector performance

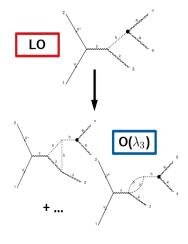

Channel	ATLAS		
HH → bbbb	$-4.1 < \lambda_{HHH} / \lambda_{SM} < 8.7$ @95 % C.L.		
HH→ bbττ	0.6σ -4.0 < $\lambda_{\text{HHH}}/\lambda_{\text{SM}}$ < 12.0 @95 % C.L.		
HH → bbγγ	1.5σ $0.2 < \lambda_{\text{HHH}} / \lambda_{\text{SM}} < 6.9 @95 \% \text{ C.L.}$ (stat only)		

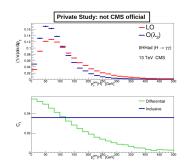

(N.B. significances assuming SM signal + background)


ATLAS: from TDRs

HH → bbbb




• $HH \rightarrow bb\tau\tau$


HH cross section measurement: theory uncertainties

<u>√s</u>	7 <u>TeV</u>	8 TeV	13 <u>TeV</u>	14 TeV	27 <u>TeV</u>	100 <u>TeV</u>
σ _{NNLO} FTapprox [fb]	6.572 -6.5%+3.0%	9.441 -6.1% + 2.8%	31.05 -5.0% + 2.2%	36.69 -4.9% +2.1%	139.9 -3.9% +1.3%	1224 -3.2% +0.9%
mt unc.	±2.2%	±2.3%	±2.6%	±2.7%	±3.4%	±4.6%
PDF unc.	±3.5%	±3.1%	±2.1%	±2.1%	±1.7%	±1.7%
αS unc.	±2.6%	±2.4%	±2.1%	±2.1%	±1.8%	±1.7%
PDF+αS unc.	±4.3%	±3.9%	±3.0%	±3.0%	±2.5%	±2.4%

Analysis Overview: extracting C_1

- Generate LO signal samples with MADGRAPH (v2.5.5)
 - ► LO in terms of both QCD and EWK
- Use public code to calc $\mathcal{O}(\lambda_3)$ effects by re-weighting LO on event-by-event basis.
- Extract C_{1i} in bins of observable (at gen-level) as ratio of LO to $\mathcal{O}(\lambda_3)$ contribution.
 - Currently using at $p_T(H)$, but investigating others

