# Higgs physics at the LHeC and the HE-LHC/FCC-he

### Uta Klein on behalf of the LHeC/FCC-he Higgs Group









HL-LHC Meeting, CERN, June 19th, 2018

# LH<sub>O</sub> electrons for pp : ERL + LHC

- Two Electron LINACs + 3 return arcs: using energy recovery in same structure: 'green' technology with power consumption < 100 MW : nominal E<sub>e</sub> = 60 GeV
- Beam dump: no radioactive waste!
- high electron polarisation of 80-90%
- Installation decoupled from LHC operation

<u>Concurrent ep and HL-LHC</u> <u>operation!</u> Same idea holds for HE-LHC and FCChh for a novel Twin Collider



- ep Lumi 10<sup>34</sup> cm s<sup>-2</sup> s<sup>-1</sup> \*\*
- 100 fb<sup>-1</sup> per year, e.g. ~2030-2040 (HL-LHC)
- L= 1000 fb<sup>-1</sup> total collected in 10 years
- eA luminosity estimates ~ 10<sup>33</sup> cm s<sup>-2</sup> s<sup>-1</sup> eA

\*\* based on existing HL-LHC proposal

LHeC CDR: arXiv:1206.2913 and updates at LheC/FCC-eh WS@CERN, 9/17

#### **Detector Design**

for HL+HE+FCC ep Peter Kostka et al. → installation in 2 years, e.g. during LS4

## SM Higgs Production in ep



### Total cross section [fb]

(LO QCD CTEQ6L1 M<sub>H</sub>=125 GeV)

| c.m.s. energy              | 1.3 TeV<br>LHeC | 3.5 TeV<br>FCC-he |
|----------------------------|-----------------|-------------------|
| CC DIS<br>NC DIS           | 109<br>21       | 560<br>127        |
| P=-80%<br>CC DIS<br>NC DIS | 196<br>25       | 1008<br>148       |

- •Scale dependencies of the LO calculations are in the range of 5-10%.
- NLO QCD corrections are small, but shape distortions of kinematic distributions up to 20%. QED corrections up to -5%.

[J. Blumlein, G.J. van Oldenborgh , R. Ruckl, Nucl.Phys.B395:35-59,1993][B.Jager, arXiv:1001.3789]

## SM Higgs Production in ep



### Total cross section [fb] (LO QCD CTEQ6L1 M<sub>H</sub>=125 GeV)

| c.m.s. energy              | 1.3 TeV<br>LHeC | 3.5 TeV<br>FCC-he |
|----------------------------|-----------------|-------------------|
| CC DIS<br>NC DIS           | 109<br>21       | 560<br>127        |
| P=-80%<br>CC DIS<br>NC DIS | 196<br>25       | 1008<br>148       |

Scale dependencies of the LO calenders in the range of 5-10%.
NLO QCD correction of the LO calender of the LO calender of the range of 5-10%.
NLO QCD correction of the LO calender of the range of the



### VBF Higgs Production in ep (top)





**ep:** Higgs production in ep comes uniquely from either CC or NC DIS via VBF

Clean bb final state, S/B >1 e-h Cross Calibration for Precision ep Clean, precise reconstruction and easy distinction of ZZH and WWH without pile-up:

<0.1@LHeC up to 1@FCCeh events

#### **VBF: Small theoretical uncertainties!**

**pp:** Higgs production in pp comes predominantly (~80%) from  $gg \rightarrow H$ : high rates crucial for rare decays However, only small VBF fraction

**Pile-up** in pp at 5  $10^{34}$  cm<sup>-2</sup> s<sup>-1</sup> is 150@25ns FCC-hh: pile-up 500-1000 (!) S/B very small for bb Final precision in pp needs accurate N<sup>3</sup>LO PDFs &  $\alpha_{s}$ 

## **Analysis Framework and 'Detector'**

### Event generation

- SM or BSM production
- CC & NC DIS background
- by MadGraph5/MadEvent

Fragmentation
 Hadronization
 by PYTHIA (modified for ep)
 Fast detector simulation
 by Delphes
 test of LHeC detector

S/B analysis  $\rightarrow$  cuts or BDT

- Calculate cross section with tree-level Feynman diagrams (any UFO) using <u>pT of scattered quark</u> <u>as scale (CDR ŝ )</u> for ep processes with MadGraph5
- Higgs mass 125 GeV as default
- Fragmentation & hadronisation uses epcustomised Pythia.
- Delphes 'detector' → displaced vertices and signed impact parameter distributions → studied for LHeC, and used for FCC-eh SM Higgs extrapolations
- 'Standard' GPD LHC-style detectors used and further studied based on optimising Higgs measurements, i.e. vertex resolution a la ATLAS IBL of ~ 5 μm, excellent hadronic and elmag resolutions using 'best' state-of-the art detector technologies (no R&D 'needed')

## LHeC@HL-LHC: SM Higgs rates

| √s= <b>1.3</b>     | TeV                      |             |                                |                               |                               |
|--------------------|--------------------------|-------------|--------------------------------|-------------------------------|-------------------------------|
|                    | LHeC Higgs               | 3           | $CC(e^-p)$                     | NC $(e^-p)$                   | $CC(e^+p)$                    |
|                    | Polarisation             |             | -0.8                           | -0.8                          | 0                             |
|                    | Luminosity               | $[ab^{-1}]$ | 1                              | 1                             | 0.1                           |
|                    | Cross Sectio             | on [fb]     | 196                            | 25                            | 58                            |
|                    | Decay B                  | rFraction   | $\mathcal{N}_{CC}^{H} e^{-} p$ | $\mathbf{N}_{NC}^{H} e^{-} p$ | $\mathcal{N}_{CC}^{H} e^{+}p$ |
|                    | $H \to b\overline{b}$    | 0.577       | 113 100                        | 13 900                        | $3 \ 350$                     |
|                    | $H \to c\overline{c}$    | 0.029       | 5  700                         | 700                           | 170                           |
|                    | $H \to \tau^+ \tau^-$    | 0.063       | $12 \ 350$                     | 1 600                         | 370                           |
|                    | $H \to \mu \mu$          | 0.00022     | 50                             | 5                             | _                             |
| nnunarfact         | $H \to 4l$               | 0.00013     | 30                             | 3                             | _                             |
| <i>pp:</i> periect | $H \rightarrow 2l 2 \nu$ | 0.0106      | 2080                           | 250                           | 60                            |
|                    | $H \to gg$               | 0.086       | 16 850                         | 2050                          | 500                           |
| factory for        | $H \to WW$               | 0.215       | 42  100                        | 5150                          | $1 \ 250$                     |
| gluon-             | $H \to ZZ$               | 0.0264      | $5\ 200$                       | 600                           | 150                           |
| induced            | $H \to \gamma \gamma$    | 0.00228     | 450                            | 60                            | 15                            |
| rare decays        | $H \to Z\gamma$          | 0.00154     | 300                            | 40                            | 10                            |

Ultimate polarised e-beam of <u>60 GeV</u> and LHC 7 TeV pbeams, 10 years of operation

Decay to bb is dominating decay mode : 58%

Higgs decay to charm is factor 20 less likely than Hbb

BDT:U Klein; Cut-based: M Kuze, M Tanaka

### Dijet Mass Candidates HFL untagged



'Worst' case scenario plot : Photoproduction background (PHP) is assumed to be 100%! → However, addition of small angle electron taggers will reduce PHP to ~1-2%



- → Realistic and conservative HFL tagging within Delphes realised, and dependence on vertex resolution (nominal 10 µm) and anti-kt jet radius studied
- → Light jet rejection very conservative, i.e. factor 10 worse than ATLAS
- → used in full LHeC analysis and for FCC-he extrapolations

# **HFL Tagging**



## **BDT Results for Higgs @ LHeC**

Uta Klein & **Daniel Hampson** 

Signal Events Hbb

Hbb : Clear sensitivity to chosen jet radius; rather robust w.r.t. vertex resolution in range of 5 to 20 µm

700 Siganl

600

500

400

300

200

100





→ Main systematic checks: variations of background contribution and tagging efficiencies

12

Uta & Max Klein, Contribution to FCC Workshop, 16.1.2018, preliminary

## **New: Estimates of Higgs Prospects**

- Use LO Higgs cross sections σ<sub>H</sub> for M<sub>H</sub>=125 GeV, in [fb], and branching fractions BR(H→XX from Higgs Cross Section Handbook (c.f. appendix)
- Apply further branching, BR(X→FS) in case e.g. of W→ 2 jets and use acceptance, Acc, estimates based on MG5, for further decay
- Use reconstruction efficiencies, ε, achieved at LHC Run-1, see e.g. prospect calculations explored in arXiV:1511.05170
- Use fully simulated LHeC Hbb and Hcc results as baseline for S/B ranges
- Use fully simulated Higgs to invisible for 3 ep c.m.s. scenarios as guidance for extrapolation uncertainty (~25%)
- Estimate HIggs events per decay channel for certain Luminosity in [fb<sup>-1</sup>]

$$N = \sigma_{_H} \bullet BR(H \to XX) \bullet BR(X \to FS) \bullet L$$

• Calculate uncertainties of signal strengths w.r.t. SM expectation

$$\frac{\delta\mu}{\mu} = \frac{1}{\sqrt{N}} \bullet f$$
 with  $f = \sqrt{\frac{1+1/(S/B)}{Acc \bullet \varepsilon}}$ 

 $\mu$  = -

Uta & Max Klein, Contribution to HL/HE Workshop, 4.4.2018, preliminary

# Signal Strengths @ LHeC - HE-LHeC - FCCeh





M+U.Klein, 6.3.18

Charged Currents:  $ep \rightarrow vHX$  Neutral Currents:  $ep \rightarrow eHX$ 

Note: HWW and HZZ requires different e+e- machine settings / c.m.s. energies for high precision →NC and CC DIS together over-constrain Higgs couplings in a combined fit.

 $E_e = 60 \text{ GeV}$  LHeC  $E_p = 7 \text{ TeV}$  L=1ab<sup>-1</sup> HE-LHC  $E_p = 14 \text{ TeV}$  L=2ab<sup>-1</sup> FCC:  $E_p = 50 \text{ TeV}$  L=2ab<sup>-1</sup>



Uta & Max Klein, Contribution to HL/HE Workshop, 4.4.2018, preliminary

### ... and Consistency Checks of EW Theory

 $\rightarrow$  similar tests possible using various cms energy CLIC machines, however, in ep, we could perform them with one machine

 $\frac{\sigma_{WW \to H \to ii}}{\sigma_{ZZ \to H \to ii}} = \frac{\kappa_V^2}{\kappa_Z^2}$ 

$$\frac{\kappa_W}{\kappa_Z} = \cos^2 \theta_W = 1 - \sin^2 \theta_W$$

 $\rightarrow$  Dominated by H $\rightarrow$ bb decay channel precision

Very interesting consistency check of EW theory



Values for cos<sup>2</sup>O given here are the PDG value as central value
 0.777 and uncertainty from ep Higgs measurement prospects

 LHeC:
  $\pm$  0.010

 HE-LHeC
  $\pm$  0.006

 FCC-eh
  $\pm$  0.004

Another nice test: How does the Higgs couple to 3<sup>rd</sup> and 2<sup>nd</sup> generation quark? b is down-type and c is up-type

$$\frac{\sigma_{WW \to H \to c\bar{c}}}{\sigma_{WW \to H \to b\bar{b}}} = \frac{\kappa_c^2}{\kappa_b^2}$$

Uta & Max Klein, Contribution to FCC Week, 6.4.2018, preliminary

# **Model-dependent Coupling Fit**

 $\rightarrow$  Assuming SM branching fractions weighted by the measured  $\kappa$  values, and  $\Gamma_{md}$  (c.f. CLIC model-dependent method)



See also talk by Jorge de Blas@FCC-Week2018 for further fits and ep+ee combinations.

# **LHeC and HL-LHC Higgs Prospects**



J. De Blas, M.+U. Klein, 16.4.2018

## → Amazing prospect for measuring fundamental Higgs couplings to high precision (dark red) at LHC with pp + ep using SM assumptions.

HL-LHC prospects using ATLAS 2014 projections (3ab<sup>-1</sup>) w and w/o theoretical uncertainties ('no thy unc') in a SM coupling fit  $\rightarrow$  will be updated with HL-LHC yellow report in preparation

## ...to take home: ep+pp >~ 2030

• The LHC is fantastic – *let's use it best* by building a Twin Collider!

→ adding electrons for HL-LHC: ep could run in parallel with HL-LHC pp (until ~2040) and for HE-LHC (>2040).

- LHeC (FCC-he) could measure the dominant Higgs couplings, including ttH, to 0.6-17% (0.2-2%) precision [CC+NC DIS, no pile-up, clean final state..]
- ep (>~1 TeV) complements with HWW the ee (250-350 GeV) HZZ coupling measurements: HIGH luminosity is KEY for both machines!
- ep would empower the physics potential of pp (non-resonant searches, EW, Higgs..) through high precision QCD measurements: flavour separated PDFs at N<sup>3</sup>LO, α<sub>s</sub> to per mille ...

Already with the first ~100 fb<sup>-1</sup> ep data (first few years)

- → use ep as the 'near' detector for pp to beat the α<sub>s</sub> and PDF uncertainties for Higgs@HL-LHC from ~3% to <~0.5%, δm<sub>b</sub> to 10 MeV; δm<sub>charm</sub> to 3 MeV
- $\rightarrow \delta M_{W(pp)}$  to 3 MeV<sub>LHeCPDF</sub> & sin<sup>2</sup>θ better than LEP

## Electrons for the LHC

LHeC/FCCeh and PERLE

June 27-29, 2018 LAL-Orsay, France

Organising Committee:

PERLE

Nestor Armesto (USC) Oliver Brüning (CERN) Walid Kaabi (LAL) Uta Klein (Liverpool) Zhiging Zhang (LAL)

Advisory Committee: Sergio Bertolucci (Bologna) Nicola Bianch (INFN) Frédérick Bordy (CERN) Oliver Brünig (CERN) Stanley Brodsky (SLAC) Hesheng Chen (HEP Beijing) Stelano Forte (Milano) Ardewr Hitton (Jefferson Lab)

LHO

to) Coordination Group: Nestor Armesto (Santiago de G Gianluigi Arduni (CERN) Oliver Brüning (CERN) Andrea Gaddi (CERN) - Chair K- Jensen (CERN) Nu Walid Kaabi (LAL Orsay) Pau Max Klein (Liverpool) Dar Max Klein (Liverpool) Fran

https://indico.cern.ch/eve

p: b de Compostela) Bruce Mellado (Wits) Paul Newman (Birningham) Daniel Sohnue (CERN) Park Zhmermann (CERN)

698368/

Workshops

Recent: September 2017 https://indico.cern.ch/event/639067/

### Next: 27-29 June 2018 Orsay

https://indico.cern.ch/event/698368/ Preparation for strategy: Physics, Accelerator, Detector, PERLE

Many eh related workshops FCC Physics Week CERN Jan 2018 FCC Week:April 2018 (Amsterdam) DIS 2018 April (Kobe) HL-HE LHC Physics June 2018 (CERN) which includes ep/eA

Goal by end of 2018: LHeC/FCC-he reports: Physics, Detector, Accelerator https://lhec.web.cern.ch **UHO** + FCC-he **Organisation**\*)

#### **International Advisory Committee**

#### "..Direction for ep/A both at LHC+FCC"

Sergio Bertolucci (CERN/Bologna) Nichola Bianchi (Frascati) Frederick Bordry (CERN) Stan Brodsky (SLAC) Hesheng Chen (IHEP Beijing) Eckhard Elsen (CERN) Stefano Forte (Milano) Andrew Hutton (Jefferson Lab) Young-Kee Kim (Chicago) Victor A Matveev (JINR Dubna) Shin-Ichi Kurokawa (Tsukuba) Leandro Nisati (Rome) Leonid Rivkin (Lausanne) Herwig Schopper (CERN) – Chair Jurgen Schukraft (CERN) Achille Stocchi (LAL Orsay) John Womersley (ESS)

#### We miss Guido Altarelli.

#### **Coordination Group**

Accelerator+Detector+Physics

Nestor Armesto Oliver Brüning – Co-Chair Andrea Gaddi Erk Jensen Walid Kaabi Max Klein – Co-Chair Peter Kostka Bruce Mellado Paul Newman Daniel Schulte Frank Zimmermann

5(11) are members of the FCC coordination team

OB+MK: FCC-eh responsibles MDO: physics co-convenor

### Working Groups PDFs, QCD Fred Olness, Claire Gwenlan Higgs Uta Klein, Masahiro Kuze BSM Georges Azuelos, Monica D'Onofrio Top

Top Olaf Behnke, Christian Schwanenberger eA Physics Nestor Armesto Small x Paul Newman, Anna Stasto Detector Alessandro Polini Peter Kostka

\*)September 2017

## Additional Sources & Thanks to

- Much more material can be found here: LHeC and FCC-eh Workshop, September 2017, CERN <u>https://indico.cern.ch/event/639067/</u>
- The LHeC/FCC-eh study group, <u>http://cern.ch/lhec</u>.
- "On the Relation of the LHeC and the LHC" [arXiv:1211.5102]
- 1<sup>st</sup> FCC Physics Workshop, 16.1.-20.1.2017, CERN <u>https://indico.cern.ch/event/550509/</u>
- Before April 2018: Higgs branching fractions and uncertainties taken from <u>https://twiki.cern.ch/twiki/bin/view/LHCPhysics/</u>

<u>CERNYellowReportPageBR2014</u>

- Update used from April 2018 <u>https://twiki.cern.ch/twiki/bin/view/LHCPhysics/</u> <u>CERNYellowReportPageBR</u>
- FCC Week 2018, Amsterdam, <u>https://indico.cern.ch/event/656491/</u>

Special thanks to my colleagues in the LHeC/FCC-he Higgs group and to Jorge de Blas for the discussion of model-dependent coupling fits.

## Additional material

## **pp+ep: HL-LHC** $\delta M_{W}$ and weak mixing angle

Stefano Camarda, Ludovica Aperio Bella, Bruno Lenzi



 Using LHeC prospect PDFs we expect the PDF uncertainties to be reduced by a factor of ~10, and the total uncertainty by a factor of ~5 (→ 4 x 10<sup>-5</sup>)
 → NEW PDFs free from assumptions & testing PDF paradigms

composition of sea guarks & gluon at small/high x

Using HL-LHC prospect PDF we expect at maximum a factor of
 2 improvement 

 using mainly existing assumptions / paradigms in PDF fits on the

| Higgs Couplings     |                   | e Wizz            | V,e<br>H b,c,t<br>5,c,t | Μ <sub>H</sub><br>Γ <sub>H</sub> = | =125 GeV<br>4.088 MeV |                     |                      |
|---------------------|-------------------|-------------------|-------------------------|------------------------------------|-----------------------|---------------------|----------------------|
| bb WW gg τ          |                   | ττ                | сс                      | ZZ                                 | γγ                    |                     |                      |
| BR 2016<br>(BR2014) | 0.5824<br>(0.577) | 0.2137<br>(0.215) | 0.08187<br>(0.086)      | 0.06272<br>(0.0632)                | 0.02891<br>(0.0291)   | 0.02619<br>(0.0264) | 0.00227<br>(0.00228) |

**CC DIS:**  $WW \rightarrow H \rightarrow i i$  (decay into FS i as listed in the table)

$$\sigma_{WW\to H\to ii} = \sigma_{WW\to H} \cdot br_i \propto \sigma_H^{SM} \cdot br_i^{SM} \cdot \kappa_W^2 \cdot \kappa_i^2 \cdot \frac{\Gamma}{\sum_j \kappa_j^2 \Gamma_j}$$

**NC DIS:**  $ZZ \rightarrow H \rightarrow i i$  (decay into FS i as listed in the table)

$$\sigma_{ZZ \to H \to ii} = \sigma_{ZZ \to H} \cdot br_i \propto \sigma_H^{SM} \cdot br_i^{SM} \cdot \kappa_Z^2 \cdot \kappa_i^2 \cdot \frac{\Gamma^{\mathsf{SM}}}{\sum_j \kappa_j^2 \Gamma_j}$$

$$\sum_i \kappa_i^2 br_i = rac{\Gamma_{H,\,md}}{\Gamma_H^{SM}}$$
 =1 ?

allows a model-dependent fit of coupling uncertainties, see next slide

--SM

→ assuming SM or combination with ee absolute Higgs cross section would enable to measure sum of the 7 branching fractions to LHeC : 0.99 +- 0.02 FCC-he : 0.998 +- 0.010 25

### Higgs precision observables at FCC ee and eh

Talk by J deBlas @ FCC Week

Fit to modified Higgs couplings (assuming no extra invisible decays)

|                              | FCC-ee             |                             |                              | FCC-eh                             |
|------------------------------|--------------------|-----------------------------|------------------------------|------------------------------------|
| Coupling                     | Relative precision | NEW                         | Coupling                     | Relative precision                 |
| $\kappa_b$                   | 0.58%              | ZANT                        | $\kappa_b$                   | 0.74%                              |
| $\kappa_t$                   | —                  |                             | $\kappa_t$                   | -                                  |
| $\kappa_{	au}$               | $\mathbf{0.78\%}$  | ,                           | $\kappa_{	au}$               | 1.10%                              |
| $\kappa_c$                   | 1.05%              |                             | $\kappa_c$                   | 1.35%                              |
| $\kappa_{oldsymbol{\mu}}$    | 9.6%               |                             | $\kappa_{oldsymbol{\mu}}$    | _                                  |
| $\kappa_Z$                   | 0.16%              |                             | $\kappa_Z$                   | 0.43%                              |
| $\kappa_W$                   | 0.41%              |                             | $\kappa_W$                   | 0.26%                              |
| $\kappa_g$                   | 1.23%              |                             | $\kappa_{g}$                 | 1.17%                              |
| $\kappa_{oldsymbol{\gamma}}$ | $\mathbf{2.18\%}$  |                             | $\kappa_{oldsymbol{\gamma}}$ | $\mathbf{2.35\%}$                  |
| $\kappa_{Z\gamma}$           | _                  |                             | $\kappa_{Z\gamma}$           |                                    |
| ary by J deBla               | s@FCC-Amsterdam20  | $\equiv g_{hi}/g_{hi}^{SM}$ |                              | Higgs→ invisible: 1.<br>ttH: 1.85% |

- All three FCC options complement each other very well:
  - FCC-ee allows not only very precise measurements of the Higgs and EWPO but also provides the normalization for more precise measurements at the FCC-eh and FCC-hh
  - FCC-eh complements FCC-ee providing information about light quark EW couplings. Similar precision in the Higgs sector
  - FCC-hh fills gaps in precision Higgs measurements for rare decays, top and the Higgs selfcoupling

### Higgs complementarities: Global fit to Higgs couplings at FCC

**NEW** 

ee+ep+pp

#### All single Higgs couplings can be determined below the 1%

|                                                                                        | HLLHC + FCC                  |                    |  |  |
|----------------------------------------------------------------------------------------|------------------------------|--------------------|--|--|
| Precise determinations for the leading couplings                                       | Coupling                     | Relative precision |  |  |
|                                                                                        | $\kappa_b$                   | 0.38%              |  |  |
| HZZ Crucial for normalization of FCC-nn results                                        | $\kappa_t$                   | 0.51%              |  |  |
| ECC bb                                                                                 | $\kappa_{	au}$               | 0.58%              |  |  |
| Completes the picture with precise                                                     | $\kappa_c$                   | 0.79%              |  |  |
| determinations of Top and coupling                                                     | $\kappa_{\mu}$               | 0.42%              |  |  |
| associated to rare decays                                                              | $\kappa_Z$                   | 0.14%              |  |  |
|                                                                                        | $\kappa_W$                   | 0.17%              |  |  |
| NOT MODEL-INDEPENDENT:                                                                 | $\kappa_g$                   | 0.74%              |  |  |
| Results assume that, if there is New physics, it can only<br>be in the Higgs couplings | $\kappa_{oldsymbol{\gamma}}$ | 0.40%              |  |  |
|                                                                                        | $\kappa_{Z\gamma}$           | 0.52%              |  |  |
|                                                                                        | an                           |                    |  |  |

$$\kappa_i \equiv g_{hi}/g_{hi}^{SN}$$

FCC Week 2018 Amsterdam, April

Combine the complementary measurements for best physics outcome!
 Next: joint EFT fits

Jorge de Blas INFN - University

### **Branching for invisible Higgs** Values given in case of 2 $\sigma$ and L=1 ab<sup>-1</sup>

Satoshi Kawaguchi, Masahiro Kuze Tokyo Tech

| Delphes<br>detectors | LHeC / HL-LHC<br>1.3 / 1.8 TeV | FCC-he<br>3.5 TeV |
|----------------------|--------------------------------|-------------------|
| LHC-style            | 4.7% / 3.2%                    | 1.9%              |
| First 'ep-style'     | 5.7%                           | 2.6%              |
| +BDT Optimisation    | 5.5% (4.5%*)                   | 1.7% (2.1%*)      |



**LHeC parton-level, cut based** <6% [arXiv: 1508.01095] **HL-LHC** @ 3 ab<sup>-1</sup> < 3.5% [arXiv:1411.7699] **PORTAL to Dark Matter ?** 

- Uses ZZH fusion process to estimate prospects of Higgs to invisible decay using standard cut/BDT analysis techniques
- ✓ Results for full MG5+Delphes analyses, done for 3 c.m.s. energies → very encouraging for a measurement of the branching of Higgs to invisible in ep down to 1.2% (1.7%) for 2 (1) ab<sup>-1</sup>
- ✓ We also checked LHeC ← → FCC-he scaling with the corresponding cross sections (\* results in table) : Downscaling FCC-he simulation results to LHeC would give 4.5%, while up-scaling of LHeC simulation to FCC-he would result in 2.1% → all well within uncertainties of projections of ~25%

### further detector and analysis details have certainly an impact on results



Observe/Exclude non-zero phase to better than  $4\sigma \rightarrow$  With Zero Phase: Measure **ttH** coupling with **17% accuracy at LHeC**  $\rightarrow$  extrapolation to FCCeh: **ttH to 1.85%** 

29

### **Measure CP Properties of Higgs** [ CDR before Higgs discovery $M_{H}$ =120 GeV, $E_{p}$ =7 TeV]

- Higgs couplings with a pair of gauge bosons (WW/ZZ) and a pair of heavy fermions (t/b/τ) are largest.
- Higgs@LHeC allows uniquely to access HWW vertex  $\rightarrow$  explore the CP properties of HVV couplings: BSM will modify CP-even ( $\lambda$ ) and CP-odd ( $\lambda$ ') states differently

• Study *shape changes* in DIS normalised CC Higgs  $\rightarrow$  bb cross section versus the azimuthal angle,  $\Delta \phi_{MET,J}$ , between  $E_{T,miss}$  and forward jet.



### LHeC Detector for the HL/HE-LHC [arXiv:1802.04317]



Length x Diameter: LHeC (13.3 x 9 m<sup>2</sup>) HE-LHC (15.6 x 10.4) FCCeh (19 x 12) ATLAS (45 x 25) CMS (21 x 15): [LHeC < CMS, FCC-eh ~ CMS size] If CERN decides that the HE LHC comes, the LHeC detector should anticipate that

# LHeC Precision Partons for Higgs@pp

→ <u>Using LHeC input</u>: experimental uncertainty of predicted LHC Higgs

**cross section due to PDFs and** α<sub>s</sub> is strongly **reduced to <~0.5%** 

- → theoretically clean path to determine N<sup>3</sup>LO PDFs using ep DIS
- $\rightarrow$  ALL those 'benefits' for pp within the first few years, using ~100 fb<sup>-1</sup> ep data



NNLO pp—Higgs Cross Sections at 14 TeV

→ precision from LHeC can add a very significant constraint on the Higgs mass and challenge Lattice QCD calculations for  $\alpha_s$ :



### Invisible Higgs@LHeC relating the Higgs and the 'dark' sectors

**HL-LHC** @ 3 ab<sup>-1</sup> [arXiv:1411. 7699] Br $(h \rightarrow \not\!\!\!E_T)$  < 3.5% @95% C.L., MVA based For LHeC, assume : 1ab<sup>-1</sup>, P<sub>e</sub>=-0.9, <u>cut based</u>

 $\operatorname{Br}(h \to \not\!\!\!E_T)$  < 6% @ 95 % C.L.

 $C_{\rm MET}^2 = \kappa_Z^2 \times {\rm Br}(h \to \not\!\!\!E_T)$ 



### Y.-L. Tang et al., arXiv: 1508.01095



- ➔ potential much enhanced for FCC-eh @ 3.5 TeV and HE-LHC-eh @ 1.8 TeV
- NEW studies performed on Delphes detectorlevel using our Madevent framework

## **Exotic Higgs Decays**

$$h \to \phi \phi \to 4b$$

φ: a spin-0 particle from new physics.

$$eq \rightarrow \nu_e hq' \rightarrow \nu_e \phi \phi q' \rightarrow \nu_e b \bar{b} b \bar{b} q'$$

![](_page_33_Figure_5.jpeg)

 $C_{4b}^2 = \kappa_V^2 \times \mathrm{Br}(h \to \phi \phi) \times \mathrm{Br}^2(\phi \to b \bar{b})$ 

$$\mathcal{L}_{eff} = \lambda_h v h \phi^2 + \lambda_b \phi \bar{b} b + \mathcal{L}_{\phi \, \text{decay,other}}$$

S. Liu, Y. L. Tang, C. Zhang, S. Zhu, 1608.08458

- Well motivated signature in extended Higgs sector.
- Difficult to probe at hadron colliders.
- LHeC signal: here using CC channel.
- Backgrounds: CC multijet, CC t/h/W/Z+jets, PHP multijet.
- PHP backgrounds assumed to be negligible after MET requirements and electron tagging.
- Current analysis is done at parton level.

@LHeC: 95% C.L. for  $m_{db}$  of 20, 40, 60 GeV is 0.3%, 0.2% and 0.1% for  $C_{4b}^2$ 

![](_page_34_Picture_0.jpeg)

Installation Study to fit into LHC shutdown needs directed to IP2 Andrea Gaddi et al

![](_page_34_Picture_2.jpeg)

Detector fits in L3 magnet support

#### LHeC INSTALLATION SCHEDULE

Modular structure

| ACTIVITY                        | Q1 | Q2 | Q3 | Q4 | Q5 | Q6 | Q7 | Q8 |
|---------------------------------|----|----|----|----|----|----|----|----|
|                                 |    |    |    |    |    |    |    |    |
| DETECTOR CONTRUCTION ON SITE TO |    |    |    |    |    |    |    |    |
| START BEFORE ENCLONG SHOT-DOWN  |    |    |    |    |    |    |    |    |
| LHC LONG SHUTDOWN START (T0)    |    |    |    |    |    |    |    |    |
| COIL COMMISSIONING ON SURFACE   |    |    |    |    |    |    |    |    |
| ACTUAL DETECTOR DISMANTLING     |    |    |    |    |    |    |    |    |
| PREPARATION FOR LOWERING        |    |    |    |    |    |    |    |    |
| LOWERING TO CAVERN              |    |    |    |    |    |    |    |    |
| HCAL MODULES & CRYOSTAT         |    |    |    |    |    |    |    |    |
| CABLES & SERVICES               |    |    |    |    |    |    |    |    |
| BARREL MUON CHAMBERS            |    |    |    |    |    |    |    |    |
| ENDCAPS MUON CHAMBERS           |    |    |    |    |    |    |    |    |
| TRACKER & CALORIMETER PLUGS     |    |    |    |    |    |    |    |    |
| BEAMPIPE & MACHINE              |    |    |    |    |    |    |    |    |
| DETECTOR CHECK-OUT              |    |    |    |    |    |    |    |    |
| LHC LONG SHUTDOWN END (T0+24m)  |    |    |    |    |    |    |    |    |