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Outline of the talk

✓ Introduction

‣ The High-Luminosity LHC program and the ATLAS detector upgrade

‣ A quick look at the object reconstruction and identification performance 

‣ Higgs physics at HL-LHC, production modes, couplings and signal strengths

‣ Strategy and methodology for the extrapolation studies at HL-LHC

✓ Coupling to bosons

‣ H→ɣɣ, H→ZZ→4l, H→WW

✓ Yukawa couplings

‣ H→ττ, H→μμ. top-Yukawa couplings (ttH→bb, ttH→ZZ/WW/ττ, ttH→ɣɣ)

✓ Wrapping-up and conclusions
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Now (√s=13 TeV), <µ>∼38 (2017 data-taking) Phase-II Atlas and CMS Upgrade 

Peak luminosity (cm-2 s-1) μ (pile-up)

Current 1.3·1034 ∼40

HL-LHC baseline 5·1034 140

HL-LHC ultimate 7.5·1034 200

• Increased instantaneous luminosity 
and mean number of interactions 
per bunch-crossing (pile-up)

• Integrated luminosity collected 
during HL-LHC ∼ 3000 fb-1

• Precision measurements on the 
Higgs sector (couplings, self-
couplings, VBF production), rare-
decays

The High-Luminosity LHC program
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HL-LHC environment and object performance
✓ Very challenging environment at HL-LHC → detector 

requirements to maximize benefits from high luminosity

‣ large integrated radiation dose 

‣ mitigation of pile-up effects

‣ sustain large event rate with more sophisticated 
trigger and data acquisition systems

✓ Important to keep good control over performance of 
physics objects (identification and reconstruction, 
background rejection)  

‣ track resolution, pile-up jet rejection, background 
rejection for b-tagging, identifications of electrons 
and photons 
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Higgs precision measurements at HL-LHC
✓ Higgs boson studies are a major target for the physics program at HL-LHC 

‣ large statistics collected (3000 fb-1) will be very useful to test the Higgs properties and to have a 
global picture of its couplings to initial and final state particles

- achieve high-precision measurements on coupling strengths and access to sensitivity for 
possible deviations to SM values revealing New Physics 

- sensitivity to rare decays (H→J/ψɣ, H→Zɣ), couplings with 2nd generations (H→μμ) and 
shape of the Higgs potential (HH)

‣ significant increase in production cross section from √s=13 TeV to √s=14 TeV 

‣ for many channels, the foreseen sensitivity extracted from past extrapolation studies is already 
by far superseded

‣ studies on Higgs properties will be included in YR2018

- extrapolation on current Run 2 analyses with scaling of luminosity and signal/background 
yields to account for the new conditions. Systematics model kept the same as in Run 2 
analyses

- additional scaling of systematic uncertainties currently being discussed in ATLAS and CMS to 
reach a common procedure for the two experiments and to prepare floor for combination

- additional studies based on the smearing function approach that will be also discussed later 
in this talk
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Signal strength and couplings - results for HL-LHC
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✓ ATLAS public results on couplings at HL-LHC → 
extrapolation from Run 1 using <μ>=140

ATL-PHYS-PUB-2014-016

‣ Run 1: Δμ/μ (H→γγ)=23%, Δμ/μ (H→ZZ)=24%, Δμ/μ 
(H→WW)=33%

➡ Expected precision on couplings to W/Z around 3%, to 
muons ∼7%, to τ, b, t approximately 10% @ 3000 fb-1 
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✓ Coupling combination 
with Run 2 inputs 
currently being 
performed by ATLAS

‣ will supersede 
results based on 
Run 1 extrapolation 
presented here

‣ various ingredients 
and channels for 
coupling 
combination will be 
presented in what 
follows

HL-LHC

Run 1 

Run 2
(36 fb-1)
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Strategy and methodology for extrapolation studies 

✓ ATLAS uses generator-level 14 TeV samples 

✓ Particles (e, μ, τ, missing energy, jets) at 
event-generator level are smeared in pT and 
energy according to functions that take into 
account the upgraded detector layout

‣ Smearing functions extracted from fully-
simulated samples in HL-LHC 
configuration

‣ gauge impact of upgraded detector and 
optimized object performance

‣ requires a full re-analysis  

✓ Pile-up included in the simulation (<μ>=140 
and <μ>=200)

➡ Theoretical systematic uncertainties: same as 
Run 1/ Run 2 analysis, reduced by 1/2 or 
absent (same approach for the Run 2 
extrapolation treatment)

Smearing functions 
✓ Kept analysis strategy as in Run 2 

✓ Scale luminosity and signal/background cross 
section yields to match HL-LHC conditions 
(3000 fb-1 and 14 TeV)

✓ At a later stage, apply HL-LHC detector 
performance 

✓ Agree on scenarios for experimental 
(optimistic, pessimistic) systematic 
uncertainties 

‣ talk by S. Pagan Griso and M. Narain at 
the plenary session yesterday 

‣ difficult to predict evolution vs luminosity 
of systematic uncertainties which do not 
have statistical component (modeling, ...)

➡ main topic of this talk is review of main 
systematic uncertainties of various Higgs 
channels with a special focus on theory 
uncertainties   

Run 2 extrapolation

Systematics uncertainties 

YR
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Higgs couplings to bosons
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State-of-the art: H->ɣɣ & H-ZZ*->4l
ATLAS-CONF-2017-047

Run 2

✓ H→ɣɣ

‣ expected uncertainty on μ at HL-LHC: 2% 
(ggF), 5% (VBF), 10% (VH) 

‣ limited by photon resolution uncertainties 
and background modeling uncertainties 

‣ going from NNLO to N3LO description 
reduces theory uncertainties significantly

‣ more on ttHɣɣ extrapolation in this talk

✓ H→ZZ→4l

‣ expected statistical uncertainty on μ at 
HL-LHC: 2% (ggF) and 9% (VBF), 17% 
(VH)

‣ dominant uncertainties in Run 2: QCD 
scales (ggF) and jet-bin migration (VBF 
and VH)

‣ dedicated discussion later in the talk on 
systematic uncertainties affecting 
extrapolation
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H->ZZ*->4l ATLAS-PHYS-PUB-AAA

➡ Ranking plot reported with Run 2 statistics 
(36 fb-1) - amplitude of uncertainties not 
significantly reduced at HL-LHC

‣ H→ZZ using 80 fb-1 data is public 
(ATLAS-CONF-2018-018) - results will 
be re-discussed with updated analysis

➡ Ranking for theory uncertainties-only, all 
uncertainties included in the fit results

➡ Impact of experimental uncertainties on μ 
smaller than that of signal theory 
uncertainties (accuracy on cross-section 
dominated by luminosity determination)

➡ Second largest source of theory uncertainty 
related to PDF   

‣ they mostly impact signal normalization 
and have negligible impact on ggF cross 
section measurement 

➡ Main source of signal theory uncertainty for 
cross section (UE and PS uncertainty) 
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ATLAS-PHYS-PUB-AAA

➡ Ranking for theory uncertainties-only, all 
uncertainties included in the fit results

➡ QCD uncertainties with 0-1 jet bin 
migration has the largest impact at Run 2

‣ migration realized when ggF events with 
one or more jets enter in the 
background in the VBF category

‣ this uncertainty affects the signal 
strength and the cross section 
measurement precision 

➡ Second important uncertainty due to 
modeling of UE and PS 

‣ uncertainty on the acceptance (affect 
signal strength and cross section)

★ Exp. stat error on μ at 
HL-LHC: 9% (VBF)

H->ZZ*->4l
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H->ZZ*->4l 

➡ Ranking for theory uncertainties-only, all 
uncertainties included in the fit results

➡ QCD uncertainties with 1-2 jet bin migration 
has the largest impact at Run 2

‣ affect signal strength and cross section 
measurement  

ATLAS-PHYS-PUB-AAA

★ Exp. stat error on μ at 
HL-LHC: 17% (VH)
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H→WW→eνμν (VBF production)

✓ VBF signature is kinematically distinctive - presence 
of two energetic final state quark jets at very high 
rapidity gap - corresponding H boson centrally 
produced

‣ VBF H→WW* production mode very useful to test 
detector layouts because of the several objects in 
the final state which are affected by pile-up 

✓ Assuming Run 1 detector performance for e/μ - 
results for <μ>=200

- no other jets present between the VBF jets 

- Drell-Yan and multi-jet background suppressed 
by requiring ETmiss>20 GeV 

✓ QCD scale on the VBF jets dominates the 
systematic uncertainties - theoretical computation 
will improve with time and will reduce the 
uncertainty 

➡ Results will be extrapolated - very important to 
account for background systematics (WW modeling 
for 0-jet category)

ATL-PHYS-PUB-2016-018
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Yukawa couplings
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VH->bb JHEP 12 - 2017 (024)Run 2
✓ Systematic uncertainties are dominant in Run 2 analysis

‣ signal modeling uncertainties (dominated by extrapolation 
uncertainties from high pt(V) to inclusive phase-space and 
parton shower/modeling for the signal)

‣ background modeling (statistical component from floating 
normalization will reduce with large data statistics provided by 
HL-LHC)

‣ b-tagging calibration experimental uncertainties

‣ limited size of simulation statistics

✓ Larger statistics will 
have more power to 
constrain nuisance 
parameters

✓ Stat-only increase 
on the uncertainty 
on μ:0.24 (36 fb-1) 
→ 0.03 (HL-LHC)
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H->ττ 

✓ Several channels with taus + VBF and boosted 
signatures, 36 fb-1 : 4,1σ (with 36 fb-1)

✓ Error on cross-section dominated by

‣ modeling on Higgs pt

‣ experimental uncertainties on jet energy 
resolution, missing energy and light-flavour 
jet mistag rate (moderately constrained, 
will get worse with larger data statistics)

Stat.err on σ 
(36 fb-1): 0.60 
→∼0.1 (HL-

LHC)

ATLAS-CONF-2018-021Run 2
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H->μμ

✓ Low BR (0.02) and significant irreducible background from Z/ɣ→μμ - high statistics needed  

‣ fundamental to achieve excellent mass resolution in HL-LHC environment 

‣ analysis is carried out with smearing function approach at HL-LHC

ATL-PHYS-PUB-2018-006

✓ Analysis strategy optimized wrt results documented in ATLAS scoping document

‣ upgraded smearing functions and detector performance with state-of-the-art parametrizations

‣ event classification splitting the sample in different S/B regions and ML fit to m(μμ) to estimate 
signal yields

‣ smearing function approach validated against full simulation MC 

HL-LHC

New for YR!

➡ H→μμ signal signal from gluon-fusion and vector 
boson fusion is expected to be observed with >9 σ 

➡ Total uncertainty on signal strength μ at 3000 fb-1 
expected to be around 13% (dominant 
uncertainties: muon reco/id efficiency, muon 
momentum scale/resolution) 

➡ Theory uncertainties dominated by scales and PDF 
for various production modes  
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Top-Yukawa couplings 

Top-Yukawa observation has recently been published by ATLAS and CMS 
way before this was foreseen by their corresponding projections!
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ttH->bbRun 2

✓ Current analysis is already limited by large tt
+HF (mostly tt+≥1b) and ttH modeling 
systematics

‣ two-point systematics extracted from 
comparison of MC predictions with 
different matrix-element and parton 
shower schemes

‣ constraints of modeling uncertainties 
observed in Run 2 analysis

‣ current model will result in even large 
constraints of nuisance parameters when 
Asimov data statistics reaches HL-LHC 
level

➡ Current analysis cannot be extrapolated to 
such a high luminosity as the systematics 
scheme (2-point systematics) breaks 

PRD 97, 07, 2016 (2018)

★ Run 2 results: μ=0.84±0.29(stat)±0.56 (sys)
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ttH->ML at Run 2 and extrapolation at HL-LHC

✓ Largest signal theory uncertainty (QCD/PDF scale 
variations) for μ=σ /σSM related to assumed σSM 

✓ Large contributions also from signal acceptance (PS  
modeling) which affects σ in the numerator of the 
signal strength (main component of  “ttH model 
acceptance”)

✓ Some systematic components are specific of the 
ttH→ML channel (fake estimation) and some 
others are correlated with ttH→ɣɣ (JES, JER + 
signal systematics)

New for YR!

ATLAS-PHYS-PUB-AAA
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ttH->ɣɣ at Run 2 and extrapolation at HL-LHC

✓ Similar conclusions can be drawn for 
ttH→ɣɣ

‣ ttH→ɣɣ guides the precision among all 
ttH-initiated states 

‣ dominated by theory uncertainties on ttH 
cross section prediction 

‣ large contribution also from parton 
shower modeling on the ttH signal  

ATLAS-PHYS-PUB-AAAHL-LHC

New for YR!
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Role of the systematics uncertainties in the extrapolation

✓ The current approach assumes same 
(experimental) systematics as in Run 2

✓ Need to project current systematic 
uncertainty schemes from Run 2 to HL-
LHC

‣ statistical component of systematics 
scales with luminosity → negligible at 
HL-LHC

‣ hard to predict theory/MC 
advancements for modeling (e.g. 
ttH→bb, VH→bb)

‣ new methods may reduce systematics 
components

‣ impact of larger pile-up at HL-LHC also 
to be accounted for

✓ Ongoing discussion between ATLAS and 
CMS experts to define a common 
treatment of uncertainties (S. Pagan Griso 
and M. Narain’s talks in yesterday’s plenary ) 

‣ systematics will be discussed on a case-
by-case basis - if needed, prefit 
projections will be taken into account

✓ Let’s use b-tagging as an example...

‣ relatively different approaches in ATLAS and CMS 
to evaluate b-, c- and light-flavour jet systematic 
uncertainties on efficiencies and scale factors

‣ e.g. for b-jets ATLAS is dominated by ttbar 
modeling systematics (comparison of MC 
generators) while CMS uses comparison of 
calibration methods (ttbar vs dijet)

‣ need to converge on common approach/value of 
the uncertainty to ensure coherence of results 
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Wrapping-up and conclusions 

➡ Very rich physics program at HL-LHC profits from the upgraded ATLAS detector

✓ Higgs physics is fundamental for the HL-LHC program

‣ potential to improve precision on Higgs couplings and have sensitivity to possible New Physics 
contributions

‣ rare processes (rare decays, couplings to 2nd generation, double Higgs production) getting 
accessible 

✓ ATLAS and CMS are currently working on YR2018 project 

‣ extrapolation of Run 2 analysis to HL-LHC conditions

‣ definition of conservative and optimistic scenarios for systematics uncertainties underway

‣ common treatment of systematic uncertainties in ATLAS and CMS being defined - strong need 
to harmonize approaches to exercise the coupling combination 

‣ opportunity for fruitful and enriching discussion within and across experiments!
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Additional slides
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H->ZZ*->4l and H->ɣɣ (differential) 
✓ Differential cross section allows to probe the high pT phase space (pQCD) and to be sensitive to 

possible deviations from SM  - treatment of systematics uncertainties in H→ZZ→4l and H→ɣɣ

- lepton efficiency, unfolding method, modeling of qq→ZZ (H→ZZ→4l)

- optimistic scenario: Run 2 experimental uncertainties are halved (H→ZZ→4l)

- H→ɣɣ - sys uncertainties from Run 2: bkg modeling and ɣ energy resolution

- background modeling (H→ɣɣ), will reduce with larger data stats at HL-LHC

- results for pessimistic/optimistic scenarios (pile-up jets faking ɣ for ɣ energy resolution)

H→ZZ→4l

H→ɣɣ

HL-LHC

ATLAS-TDR-027, 
ATLAS- TDR-026
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A sketch of the ATLAS Phase-II Upgrade 

Upgrade trigger system

track trigger

modification of the 
data acquisition 
system to deal with 
the high rate at HL-
LHC  

Inner tracker (all-silicon, 
pixel and strip sensors) 
extended to |η|=4  

Upgrade electronics for 
Liquid-Argon 
electromagnetic and for 
Tile hadronic calorimeter

New muon trigger 
chambers in the barrel 

High-granularity timing 
detector (still under 
discussion)

CERN-LHCC-2015-020 
(Scoping Document, SD)

ATLAS-TDR-025 (Strip 
TDR)

ATLAS-TDR-030 (Pixel 
TDR)
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ttH->bb

28



H->ττ
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Vector boson fusion - H→ZZ→4l ATL-PHYS-PUB-2016-008
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<μ>=200, stat+sys Stat+sys

Significance 7.2

Δμ/μ 0.18

Impact of increasing jet tracking coverage in the 
forward region (η=2.4→4) improves the expected 

precision on Δμ/μ from 22% to 14%

✓ Vector boson fusion (VBF) signature is 
kinematically highly distinctive, marked by the 
presence of two energetic final state quark jet at 
very high rapidity gap - corresponding H boson 
centrally produced

‣ Important role of pile-up jet suppression in the 
forward region

✓ Assuming Run 1 detector performance for e/μ - 
results for <μ>=200

- Selection requirements: same selection as in 
Run 1 VBF H→ZZ analysis + m(jj)>130 GeV 

✓ Multivariate approach employed to separate VBF 
from gluon-fusion + 2jets Higgs production and 
qq→ZZ

- definition of the signal region exploited by a 
cut on BDT to improve resulting VBF H→4l 
significance 

- QCD scale variation systematic uncertainty 
included 

31


