

Global status of Higgs boson coupling projections in ATLAS

Alessandro Calandri CPPM-Aix Marseille Université

on behalf of the ATLAS Collaborations

Outline of the talk

✓ Introduction

- The High-Luminosity LHC program and the ATLAS detector upgrade
- A quick look at the object reconstruction and identification performance
- Higgs physics at HL-LHC, production modes, couplings and signal strengths
- Strategy and methodology for the extrapolation studies at HL-LHC
- √ Coupling to bosons
 - \rightarrow H \rightarrow yy, H \rightarrow ZZ \rightarrow 4I, H \rightarrow WW
- √ Yukawa couplings
 - ► H→ττ, H→μμ. top-Yukawa couplings (ttH→bb, ttH→ZZ/WW/ττ, ttH→γγ)
- √ Wrapping-up and conclusions

The High-Luminosity LHC program

LHC / HL-LHC Plan

Now ($\sqrt{s}=13$ TeV), $\langle \mu \rangle \sim 38$ (2017 data-taking)

Phase-II Atlas and CMS Upgrade

	Peak luminosity (cm ⁻² s ⁻¹)	μ (pile-up)
Current	1.3 · 10 ³⁴	~40
HL-LHC baseline	5 · 10 ³⁴	140
HL-LHC ultimate	7.5 · 10 ³⁴	200

- Increased instantaneous luminosity and mean number of interactions per bunch-crossing (pile-up)
 - Integrated luminosity collected during HL-LHC ~ 3000 fb⁻¹
- Precision measurements on the Higgs sector (couplings, selfcouplings, VBF production), raredecays

HL-LHC environment and object performance

Very challenging environment at HL-LHC → detector requirements to maximize benefits from high luminosity

ATLAS-TDR-030 (Pixel TDR)

- large integrated radiation dose
- mitigation of pile-up effects
- sustain large event rate with more sophisticated trigger and data acquisition systems
- ✓ Important to keep good control over performance of physics objects (identification and reconstruction, background rejection)
 - track resolution, pile-up jet rejection, background rejection for b-tagging, identifications of electrons and photons

Higgs precision measurements at HL-LHC

- √ Higgs boson studies are a major target for the physics program at HL-LHC
 - large statistics collected (3000 fb⁻¹) will be very useful to test the Higgs properties and to have a global picture of its couplings to initial and final state particles
 - achieve high-precision measurements on coupling strengths and access to sensitivity for possible deviations to SM values revealing New Physics
 - = sensitivity to rare decays $(H \rightarrow J/\psi \gamma, H \rightarrow Z \gamma)$, couplings with 2nd generations $(H \rightarrow \mu \mu)$ and shape of the Higgs potential (HH)
 - significant increase in production cross section from $\sqrt{s}=13$ TeV to $\sqrt{s}=14$ TeV
 - for many channels, the foreseen sensitivity extracted from past extrapolation studies is already by far superseded
 - studies on Higgs properties will be included in YR2018
 - extrapolation on current Run 2 analyses with scaling of luminosity and signal/background yields to account for the new conditions. Systematics model kept the same as in Run 2 analyses
 - additional scaling of systematic uncertainties currently being discussed in ATLAS and CMS to reach a common procedure for the two experiments and to prepare floor for combination
 - additional studies based on the smearing function approach that will be also discussed later in this talk

Signal strength and couplings - results for HL-LHC

ATL-PHYS-PUB-2014-016

✓ ATLAS public results on couplings at HL-LHC → extrapolation from Run I using <µ>=140

Run I: $\Delta\mu/\mu$ (H $\rightarrow\gamma\gamma$)=23%, $\Delta\mu/\mu$ (H \rightarrow ZZ)=24%, $\Delta\mu/\mu$ (H \rightarrow WW)=33%

Expected precision on couplings to W/Z around 3%, to muons ~7%, to T, b, t approximately 10% @ 3000 fb⁻¹

- Coupling combination with Run 2 inputs currently being performed by ATLAS
 - will supersede results based on Run I extrapolation presented here
 - various ingredients and channels for coupling combination will be presented in what follows

Strategy and methodology for extrapolation studies

Smearing functions

- ✓ ATLAS uses generator-level 14 TeV samples
- Particles (e, μ, τ, missing energy, jets) at event-generator level are smeared in pT and energy according to functions that take into account the upgraded detector layout
 - Smearing functions extracted from fullysimulated samples in HL-LHC configuration
 - gauge impact of upgraded detector and optimized object performance
 - requires a full re-analysis
- ✓ Pile-up included in the simulation ($<\mu>=140$ and $<\mu>=200$)
- Theoretical systematic uncertainties: same as Run I/ Run 2 analysis, reduced by I/2 or absent (same approach for the Run 2 extrapolation treatment)

Run 2 extrapolation

- √ Scale luminosity and signal/background cross section yields to match HL-LHC conditions (3000 fb⁻¹ and 14 TeV)
- ✓ At a later stage, apply HL-LHC detector performance

Systematics uncertainties

- ✓ Agree on scenarios for experimental (optimistic, pessimistic) systematic uncertainties
 - talk by S. Pagan Griso and M. Narain at the plenary session yesterday
 - difficult to predict evolution vs luminosity of systematic uncertainties which do not have statistical component (modeling, ...)
 - main topic of this talk is review of main systematic uncertainties of various Higgs channels with a special focus on theory uncertainties

Higgs couplings to bosons

State-of-the art: H->yy & H-ZZ*->41

Run 2

ATLAS-CONF-2017-047

- expected uncertainty on μ at HL-LHC: 2% (ggF), 5% (VBF), 10% (VH)
- limited by photon resolution uncertainties and background modeling uncertainties
- going from NNLO to N3LO description reduces theory uncertainties significantly
- more on ttHyy extrapolation in this talk

- expected statistical uncertainty on μ at HL-LHC: 2% (ggF) and 9% (VBF), 17% (VH)
- dominant uncertainties in Run 2: QCD scales (ggF) and jet-bin migration (VBF and VH)
- dedicated discussion later in the talk on systematic uncertainties affecting extrapolation

H->ZZ*->4L

Gluon fusion

ATLAS

 $\Delta\mu_{\text{ggF}}$

- Ranking plot reported with Run 2 statistics (36 fb⁻¹) amplitude of uncertainties not significantly reduced at HL-LHC
 - H→ZZ using 80 fb⁻¹ data is public (ATLAS-CONF-2018-018) - results will be re-discussed with updated analysis
- Ranking for theory uncertainties-only, all uncertainties included in the fit results
- Impact of experimental uncertainties on μ smaller than that of signal theory uncertainties (accuracy on cross-section dominated by luminosity determination)
- Second largest source of theory uncertainty related to PDF
 - they mostly impact signal normalization and have negligible impact on ggF cross section measurement
- Main source of signal theory uncertainty for cross section (UE and PS uncertainty)

Vector boson fusion

ATLAS

- Ranking for theory uncertainties-only, all uncertainties included in the fit results
- QCD uncertainties with 0-1 jet bin
 migration has the largest impact at Run 2
 - migration realized when ggF events with one or more jets enter in the background in the VBF category
 - this uncertainty affects the signal strength and the cross section measurement precision
- Second important uncertainty due to modeling of UE and PS
 - uncertainty on the acceptance (affect signal strength and cross section)

- Ranking for theory uncertainties-only, all uncertainties included in the fit results
- - affect signal strength and cross section measurement

$H \rightarrow WW \rightarrow e \nu \mu \nu$ (VBF production)

ATL-PHYS-PUB-2016-018

- √ VBF signature is kinematically distinctive presence of two energetic final state quark jets at very high rapidity gap corresponding H boson centrally produced
- VBF H→WW* production mode very useful to test detector layouts because of the several objects in the final state which are affected by pile-up
- Assuming Run I detector performance for e/μ results for $<\mu>=200$
 - no other jets present between the VBF jets
 - Drell-Yan and multi-jet background suppressed by requiring E_T^{miss}>20 GeV
- √ QCD scale on the VBF jets dominates the systematic uncertainties theoretical computation will improve with time and will reduce the uncertainty
- Results will be extrapolated very important to account for background systematics (WW modeling for 0-jet category)

Yukawa couplings

MC statistical

Source of un	σ_{μ}		
Total		0.39	
Statistical		0.24	
Systematic	Systematic		
Experiment	al uncertainties		
Jets		0.03	
$E_{ m T}^{ m miss}$		0.03	
Leptons	1		
	<i>b</i> -jets	0.09	
b-tagging	c-jets	0.04	
<i>ce e</i>	light jets	0.04	
	extrapolation	0.01	
Pile-up		0.01	
Luminosity		0.04	
Theoretical	and modelling ur	ncertainties	
Signal		0.17	
Floating normalisations		0.07	
Z+jets		0.07	
W+jets		0.07	
$t\bar{t}$		0.07	
Single top-quark		0.08	
Diboson		0.02	
Multijet		0.02	

VH->bb

- ✓ Systematic uncertainties are dominant in Run 2 analysis
 - signal modeling uncertainties (dominated by extrapolation uncertainties from high pt(V) to inclusive phase-space and parton shower/modeling for the signal)
 - background modeling (statistical component from floating normalization will reduce with large data statistics provided by HL-LHC)
 - b-tagging calibration experimental uncertainties
 - limited size of simulation statistics
- Larger statistics will have more power to constrain nuisance parameters
- Stat-only increase on the uncertainty on μ:0.24 (36 fb⁻¹)
 → 0.03 (HL-LHC)

Several channels with taus + VBF and boosted signatures, 36 fb⁻¹: 4, $I\sigma$ (with 36 fb⁻¹)

- modeling on Higgs pt
- experimental uncertainties on jet energy resolution, missing energy and light-flavour jet mistag rate (moderately constrained, will get worse with larger data statistics)

 $\sqrt{s} = 13 \text{ TeV}, 36.1 \text{ fb}^{-1}$

$H \rightarrow \mu \mu$

- fundamental to achieve excellent mass resolution in HL-LHC environment
- analysis is carried out with smearing function approach at HL-LHC

- Analysis strategy optimized wrt results documented in ATLAS scoping document
 - upgraded smearing functions and detector performance with state-of-the-art parametrizations
 - event classification splitting the sample in different S/B regions and ML fit to m(μμ) to estimate signal yields
 ATL-PHYS-PUB-2018-006
 - smearing function approach validated against full simulation MC

- \rightarrow H \rightarrow µµ signal signal from gluon-fusion and vector boson fusion is expected to be observed with >9 σ
- Total uncertainty on signal strength μ at 3000 fb⁻¹ expected to be around 13% (dominant uncertainties: muon reco/id efficiency, muon momentum scale/resolution)
- Theory uncertainties dominated by scales and PDF for various production modes

Top-Yukawa couplings

Top-Yukawa observation has recently been published by ATLAS and CMS way before this was foreseen by their corresponding projections!

ヒヒトーンりり

PRD 97, 07, 2016 (2018)

 $(\theta - \theta_0)/\Delta \theta$

Current analysis is already limited by large tt +HF (mostly tt+≥ Ib) and ttH modeling systematics

- two-point systematics extracted from comparison of MC predictions with different matrix-element and parton shower schemes
- constraints of modeling uncertainties observed in Run 2 analysis
- current model will result in even large constraints of nuisance parameters when Asimov data statistics reaches HL-LHC level
- Current analysis cannot be extrapolated to such a high luminosity as the systematics scheme (2-point systematics) breaks

*

Run 2 results: μ =0.84±0.29(stat)±0.56 (sys)

ttH->ML at Run 2 and extrapolation at HL-LHC

- Largest signal theory uncertainty (QCD/PDF scale variations) for μ = σ ^{/ σ SM} related to assumed σ SM
- ✓ Large contributions also from signal acceptance (PS modeling) which affects σ in the numerator of the signal strength (main component of "ttH model acceptance")
- Some systematic components are specific of the $ttH\rightarrow ML$ channel (fake estimation) and some others are correlated with $ttH\rightarrow \chi\chi$ (JES, JER + signal systematics)

20

ttH->yy at Run 2 and extrapolation at HL-LHC

- √ Similar conclusions can be drawn for ttH→γγ
 - ttH→γγ guides the precision among all ttH-initiated states
 - dominated by theory uncertainties on ttH cross section prediction
 - large contribution also from parton shower modeling on the ttH signal

Role of the systematics uncertainties in the extrapolation

- The current approach assumes same (experimental) systematics as in Run 2
- √ Need to project current systematic uncertainty schemes from Run 2 to HL-LHC
 - statistical component of systematics scales with luminosity → negligible at HL-LHC
 - hard to predict theory/MC advancements for modeling (e.g. ttH→bb,VH→bb)
 - new methods may reduce systematics components
 - impact of larger pile-up at HL-LHC also to be accounted for
- Ongoing discussion between ATLAS and CMS experts to define a common treatment of uncertainties (S. Pagan Griso and M. Narain's talks in yesterday's plenary)
 - systematics will be discussed on a caseby-case basis - if needed, prefit projections will be taken into account

- ✓ Let's use b-tagging as an example...
 - relatively different approaches in ATLAS and CMS to evaluate b-, c- and light-flavour jet systematic uncertainties on efficiencies and scale factors
 - e.g. for b-jets ATLAS is dominated by ttbar modeling systematics (comparison of MC generators) while CMS uses comparison of calibration methods (ttbar vs dijet)
 - need to converge on common approach/value of the uncertainty to ensure coherence of results

Wrapping-up and conclusions

- → Very rich physics program at HL-LHC profits from the upgraded ATLAS detector.
- √ Higgs physics is fundamental for the HL-LHC program
 - potential to improve precision on Higgs couplings and have sensitivity to possible New Physics contributions
 - rare processes (rare decays, couplings to 2nd generation, double Higgs production) getting accessible
- √ ATLAS and CMS are currently working on YR2018 project.
 - extrapolation of Run 2 analysis to HL-LHC conditions
 - definition of conservative and optimistic scenarios for systematics uncertainties underway
 - common treatment of systematic uncertainties in ATLAS and CMS being defined strong need to harmonize approaches to exercise the coupling combination
 - opportunity for fruitful and enriching discussion within and across experiments!

Additional stides

H->ZZ*->41 and H->yy (differential)

- optimistic scenario: Run 2 experimental uncertainties are halved $(H \rightarrow ZZ \rightarrow 4I)$
- $H \rightarrow \gamma \gamma$ sys uncertainties from Run 2: bkg modeling and γ energy resolution
- background modeling ($H\rightarrow yy$), will reduce with larger data stats at HL-LHC

- results for pessimistic/optimistic scenarios (pile-up jets faking γ for γ energy resolution)

Source	Uncertainty in fiducial cross section				
	Diphoton	VBF-enhanced	$N_{\text{lepton}} \ge 1$	$t\bar{t}H$ -enhanced	High $E_{ m T}^{ m miss}$
Fit (stat.)	17%	22%	72%	176%	53%
Fit (syst.)	6%	9%	27%	138%	13%
Photon energy scale & resolution	4.3%	3.5%	3.1%	10%	4.1%
Background modelling	4.2%	7.8%	26.7%	138%	12.2%
Photon efficiency	1.8%	1.8%	1.8%	1.8%	1.9%
Jet energy scale/resolution	-	8.9%	-	4.5%	6.9%
b-jet flavor tagging	-	-	-	3%	-
Lepton selection	-	-	0.7%	0.2%	-
Pileup	1.1%	2.9%	1.3%	2.5%	2.5%
Theoretical modeling	0.1%	4.5%	4.0%	8.1%	31%
Signal composition	0.1%	4.5%	3.1%	8.1%	25%
Higgs boson $p_T^H \& y_H $	0.1%	0.9%	0.2%	0.7%	0.1%
UE/PS	-	0.3%	0.7%	1.1%	31%
Luminosity	3.2%	3.2%	3.2%	3.2%	3.2%
Total	18%	26%	77%	224%	63%

A sketch of the ATLAS Phase-II Upgrade

- frack trigger
- modification of the data acquisition system to deal with the high rate at HL-LHC
- Inner tracker (all-silicon, pixel and strip sensors) extended to |η|=4
- Upgrade electronics for Liquid-Argon electromagnetic and for Tile hadronic calorimeter

New muon trigger chambers in the barrel

High-granularity timing detector (still under discussion)

ATLAS-TDR-025 (Strip TDR)

ATLAS-TDR-030 (Pixel TDR)

CERN-LHCC-2015-020 (Scoping Document, SD)

ttH->bb

Uncertainty source	Δ	μ
$t\bar{t} + \ge 1b$ modeling	+0.46	-0.46
Background-model statistical uncertainty	+0.29	-0.31
b-tagging efficiency and mis-tag rates	+0.16	-0.16
Jet energy scale and resolution	+0.14	-0.14
ttH modeling	+0.22	-0.05
$t\bar{t} + \geq 1c \mod eling$	+0.09	-0.11
JVT, pileup modeling	+0.03	-0.05
Other background modeling	+0.08	-0.08
$t\bar{t} + light modeling$	+0.06	-0.03
Luminosity	+0.03	-0.02
Light lepton (e, μ) id., isolation, trigger	+0.03	-0.04
Total systematic uncertainty	+0.57	-0.54
$t\bar{t} + \geq 1b$ normalization	+0.09	-0.10
$t\bar{t} + \geq 1c$ normalization	+0.02	-0.03
Intrinsic statistical uncertainty	+0.21	-0.20
Total statistical uncertainty	+0.29	-0.29
Total uncertainty	+0.64	-0.61

ATLAS Simulation Preliminary

 $\sqrt{s} = 14 \text{ TeV}: \int Ldt = 3000 \text{ fb}^{-1}; \int Ldt = 3000 \text{ fb}^{-1}$

Vector boson fusion - H→ZZ→4L

- Vector boson fusion (VBF) signature is kinematically highly distinctive, marked by the presence of two energetic final state quark jet at very high rapidity gap - corresponding H boson centrally produced
- Important role of pile-up jet suppression in the forward region
- Assuming Run I detector performance for e/µ results for $\langle \mu \rangle = 200$
 - Selection requirements: same selection as in Run I VBF H→ZZ analysis + m(jj)>130 GeV
- Multivariate approach employed to separate VBF from gluon-fusion + 2jets Higgs production and $qq \rightarrow ZZ$
 - definition of the signal region exploited by a cut on BDT to improve resulting VBF H→4I significance
 - QCD scale variation systematic uncertainty included

<µ>=200, stat+sys	Stat+sys	
Significance	7.2	
Δμ/μ	0.18	

Impact of increasing jet tracking coverage in the forward region ($\eta=2.4\rightarrow4$) improves the expected precision on $\Delta\mu/\mu$ from 22% to 14%