Single top plans for HL/HE YR

HLHE2018 workshop

Matthias Komm

Imperial College London

Outline & authors

- theory-inspired introduction
 - predictions for HE
 - modeling (4/5FS, channel separation)
 - potential EFT interpretations
- common analysis techniques
 - MVA, unfolding (iterative Bayesian & TUnfold)
 - top quark reconstruction (t-channel/tZq)
- t-channel cross section (HL): 3 plots
 - charge ratio → sensitive to PDF
 - differential top quark pT, rapidity → sensitive to modeling, PDF
 - differential polarization angle → sensitive to EFT/Wtb couplings
- s-channel inclusive cross section (HL/HE): 2 plots
 - inclusive, differential cross-sections
 - analysis of high-Q2 regime → sensitive to EFT/Wtb couplings
- tZq inclusive cross section (HL): ~1 plot (potentially also differential)

I. Cioara

E. Re., F. Caola

common also for other studies

K. Finelli

→ shared description?

M. Komm, W. A. Khan

total: ~4 pages, 5-6 plots

Motivation: t-channel

- inclusive cross section measurements @ 13 TeV
 - − CMS: $\sigma_t = 238 \pm 13 \; ({\rm stat}) \pm 29 \; ({\rm syst}) \; {\rm pb}$ → Phys. Lett. B 72 (2017) 752
 - This is a state of the equation of the equation in the equation is a state of the equation of the equation
 - → already dominated by systematic uncertainties using only data from 2015
 - → further precision at HL only possible through in-depth study of experimental syst. & modeling
- charge ratio
 - allows for cancellation of systematic uncertainties

→ HL-LHC might provide additional input to u/d ratio in proton PDF

Motivation: t-channel (2)

- differential cross sections
 - $^{-}$ top quark $p_{
 m T}$ sensitive to flavor schemes

top quark rapidity sensitive to PDF

Motivation: t-channel (3)

production of polarized top quark polarization

- → Nucl.Phys.B840:349-378,2010
- → Phys.Lett. B476 (2000) 323-330
- → Phys.Lett. B534 (2002) 97-105

in SM:
$$\mathcal{L}_{Wtb}^{\mathrm{SM}} \propto \bar{b} \Big(\gamma_{\mu} - \gamma_{\mu} \gamma_{5} \Big) t W^{\mu} \Big)$$

- → top quark spin aligned with spectator quark (q')
- → angular distributions of decay products dictated by coupling structure

ightharpoonup observable: angle between q' & lepton in top rest frame: $\cos \theta_{\ell}^{\star} = \frac{\vec{p}^{(\mathrm{t})}(\mathbf{q}') \cdot \vec{p}^{(\mathrm{t})}(\ell)}{|\vec{p}^{(\mathrm{t})}(\mathbf{q}')||\vec{p}^{(\mathrm{t})}(\ell)|}$

production: $\vec{s}_{\mathrm{top}} \cdot \vec{p}_{q\prime} \sim P_{\mathrm{top}}$

decay: $\vec{s}_{\mathrm{top}} \cdot \vec{p}_l \sim \alpha_l$

Previous differential measurements ...

top quark $p_{
m T}$, rapidity & spectator jet rapidity @ 8 TeV by ATLAS ightarrow Eur. Phys. J. C 77 (2017) 531

 $m^{
ho}$ polarization angle, top quark $p_{
m T}$, rapidity @ 8/13 TeV by CMS ightarrow JHEP 04 (2016) 073, TOP-PAS-16-004

t-channel strategy

- goals
 - HL-LHC scenario only
 - employ standard single top t-channel selection (1 lepton & 2-3 jets w/ 1 b-tag)
 - assess sensitivity of charge ratio → evaluate potential gain in PDF fits
 - differential measurements
 - ullet top quark p_{T} , rapidity
 - polarization angle → extract asymmetry & precision on Wtb couplings

workflow

- simulation of multijet background not feasible
 - → derive multijet contamination by extrapolating shape/yield from existing analyses at 13 TeV instead
- use pseudorapidity of light jet to estimate precision of signal yield through fit
 - → challenge: understand impact of pileup in forward region
- estimate signal yield for top quark/antiquark
 & also as a function of the unfolding observables
- unfold fit results to parton level using TUnfold

Motivation: tZq

properties

- very small contribution to total single top production
- includes W & Z boson EWK couplings to fermions
- sensitive to potential BSM scenarios, e.g.
 - anomalous gauge couplings
 - FCNC

Recent tZq evidence

- CMS result
 - measured cross section (for $m_{\ell\ell}>30~{
 m GeV}$) $\sigma_{{
 m t}\ell^+\ell^-{
 m q}}=123\pm27\%~{\rm (stat)}$ $\pm23\%~{\rm (syst)~fb}$
 - theory: $\sigma^{\rm NLO}_{{\rm t}\ell^+\ell^-{\rm q}}=94\pm3\%~{\rm fb}$ (calculated with MG5aMC@NLO)
 - observed significance: 3.7(3.1 expected)

> ATLAS result

measured cross section (inclusive)

$$\sigma_{\rm tZq} = 600 \pm 28\% \text{ (stat)}$$

$$\pm 23\% \text{ (syst) fb}$$

- Theory: $\sigma_{\mathrm{tZq}}^{\mathrm{NLO}} = 800 \pm 7\% \; \mathrm{fb}$ (calculated with MG5aMC@NLO)
- observed significance: 4.2(5.4 expected)

Data tZq

tZq strategy

- goals
 - assess achievable precision of inclusive cross section
 - focus on HL-LHC study
 - add HE-LHC if it fits in timescale
 - focus on 3 lepton channel
 - study possibility of adding also single lepton channel
 (dilepton channel very challenging due to high Drell-Yan background)
 - investigate prospects for differential measurement (not yet settled on observable)

workflow

- reuse existing ATLAS strategy at 13 TeV
- employ MVA techniques to separate signal from background
- challenge: fake background estimation
- estimate precision through binned fit to pseudo data

Motivation: s-channel

properties

- small cross section: $\sigma_{s\text{-ch}}^{\text{NLO}} = 11.4 \pm 0.4 \text{ pb}$ (14 TeV)
- sensitivity to anomalous couplings
 EFT observables of mass spectrum
- particularly: probing process at high momentum transfers yields high sensitivity to anomalous Wtb couplings

goals

- assess reachable precision on cross section
- study sensitivity to Wtb couplings
- study cross section as a function of the momentum transfer for HE scenario (e.g. differentially)
- $^-$ determine if the high-Q2 ($m_{
 m tb}$) region can be access already at HL-LHC

strategy

- signal region: 1 lepton + 2 b-tagged jets
- similar to ATLAS 8 TeV result except using neural network instead of matrix element method
- $^-$ a fiducial selection on $m_{
 m tb}$ will be applied to study the high-Q2 region

Previous s-channel measurements

only 7/8 TeV measurements so far (13 TeV challenging due to less steeply increasing cross section wrt. other processes)

> CMS

observed sig.: 2.5(expected: 1.1)

> ATLAS

observed sig.: 3.2 (expected: 3.9)

Conclusion

single top plans for HL/HE YR

t-channel charge ratio

t-channel differential

s-channel inclusive & high-Q2

tZq production inclusive/differential