

Benjamin Nachman

on behalf of the ATLAS and CMS collaborations

HE/HL-LHC workshop

Monday, June 18, 2018

Motivation

Higgs → MET

2

The Higgs could be the portal to Dark Matter.

If a Hidden Valley (+ friends), Higgs could be bridge to BSM. Higgs \rightarrow MET/displaced

Current Status - Stable Invisible

PLB 776 (2017) 318

3

Current limit is ~25% dominated by VBF

Challenge: Systematic uncertainty ~ statistical uncertainty

Current Status - Stable Invisible

Current limit is ~25% dominated by VBF

- large cross-section

- main background is qualitatively different than signal, i.e. $pp \rightarrow Z$ for ggH and $pp \rightarrow ZZ$ for VH, but for VBF,

 $\sigma(EW qqZ) << \sigma(QCD Z+jets)$

key uncertainty is from modeling $W \rightarrow lv/Z \rightarrow vv$ ratio (more on this later)

4

Current Status - (semi)visible

For a given topology, can do (much) better than bounds from h→invisible

10

 10^{2}

Dark photon $c\tau$ [mm]

5

Projections for HL-LHC

Extrapolations from 2015 analysis; **2016 analysis** follows optimistic scaling.

6

theory uncerts. drop by 50% exp. uncerts. scale with lumi (until a bound)

theory uncerts. drop by 50% exp. uncerts. scale with lumi

+ analysis improvements possible over the next 10 years!

Possible solutions:

-Improve online calibrations -Multi-object triggers (e.g. VBF + MET) -Trigger-level PU suppression -Tracking (+displaced?) MET trigger heavily affected by pileup

Trigger thresholds will continue to increase

8

HLT_xe110_pufit_xe70_L1XE50

p_ (Z) [GeV]

150

-Tracking (+displaced?)

-Improve online calibrations -Multi-object triggers (e.g. VBF + MET)

-Trigger-level PU suppression -Tracking (+displaced?) L1Topo trigger in ATLAS now allows for complex multi-object selections

9

CMS is already uses MET and jet counting at L1 further improvements possible with topological selections and also including the forward region

Improve online calibrations
 Multi-object triggers (e.g. VBF + MET)
 Trigger-level PU suppression
 Tracking (+displaced?)

Can we improve with deep learning? see e.g. JHEP 12 (2017) 051

Tracking can generically help calibrations, tagging, etc. For LLP, can significantly enhance acceptance

Muons at L1 can be used but more general displaced (track) triggers are challenging -Improve online calibrations -Multi-object triggers (e.g. VBF + MET) -Trigger-level PU suppression -Tracking (+displaced?)

from HIG-16-035-pas and this talk. [100.0 50.0 20.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 0.819048 0.87955 0.900553 0.95 0.881801 0.90952 10.0 0.900047 0.929705 0.9 5.00 0.916345 0.922990 0.927664 0.92963 0.93014 0.945267 3.00).923142 0.937249 -0.85 2.00 .926765 1.00 0.50 .944776 0.95876 0 947034 0.9539140.8 0.20 956174 0.10 0.964043 0.75 0.05 961278 0.96927 0.0 0.967042 0.972494 0.7 8.5 0.25 0.275 0.3 0.4 1.0 1.5 2.0 0.7 m_{v D} [Gev] **ATLAS** Preliminary 0.4 Data 2018, √s = 13 TeV L1 XE50 HLT_xe110_pufit_xe65_L1XE50 HLT_xe110_pufit_xe70_L1XE50 see also JINST 8 (2013) P07015 for ATLAS displaced triggers GeV

Challenges: Pileup (Jets)

To be seen what role pileup jets play at $\mu \sim 200$ - could make VBF @ HL/HE-LHC much harder than now!

Some ideas already in place to reject forward pileup jets, though composition (QCD/ stochastic) between now and HL/HE-LHC will change. VBF jets tend to be forward.

Due do limited tracker acceptances, forward jets harder to ID as not pileup.

Challenges: Quark/gluon tagging

VBF jets are quark-initiated.

13

Forward QCD Z+jets are a mix of quarks and gluons.

Challenges: Vertexing

With the wrong vertex, may label HS jets as PU.

Algorithmic improvements possible - also benefit from extended tracker coverage.

Finding the correct vertex is a challenge in $H \rightarrow MET$ events.

Challenges: Systematic Uncertainties

CMS, JHEP 02 (2017) 135

Systematic uncertainty	Impact
Common	
W to Z ratio in QCD produced V+jets	13%
W to Z ratio in EW produced V+jets	6.3%
Jet energy scale and resolution	6.0%
QCD multijet normalisation	4.3%
Pileup mismodelling	4.2%
Lepton efficiencies	2.5%
Integrated luminosity	2.2%
Signal specific	
ggH acceptance	3.8%
Renorm. and fact. scales and PDF (qqH)	1.8%
Renorm. and fact. scales and PDF (ggH)	<0.2%
Total systematic	$^{+15}_{-19}$ %
Total statistical only	$^{+28}_{-27}\%$
Total uncertainty	+32% -33%

W/Z cross-section ratio is a significant source of uncertainty.

15

Can contain with leptonic Z decays, but stats are poor.

Theory input here could make a significant impact on results!

Opportunities - Extended Trackers

16

- Helps with lepton rejection (W \rightarrow lv)
- Improves forward jet calibration
- Improves forward jet PU/qg tagging

Likely that algorithms will need re-optimization to account for worse resolution at high |z|.

These detectors have a lot of promise for rejecting pileup, improving vertexing, etc.

Opportunities - Timing

Both ATLAS and CMS are planning on including MIP timing detectors.

BR(H → MET) will be a key measurement from the full HL/HE-LHC program that will benefit from the full dataset and upgraded detectors.

...at the same time, we should strongly support other proposals to enhance / complement LHC sensitivity.

https://arxiv.org/abs/1606.06298

18

