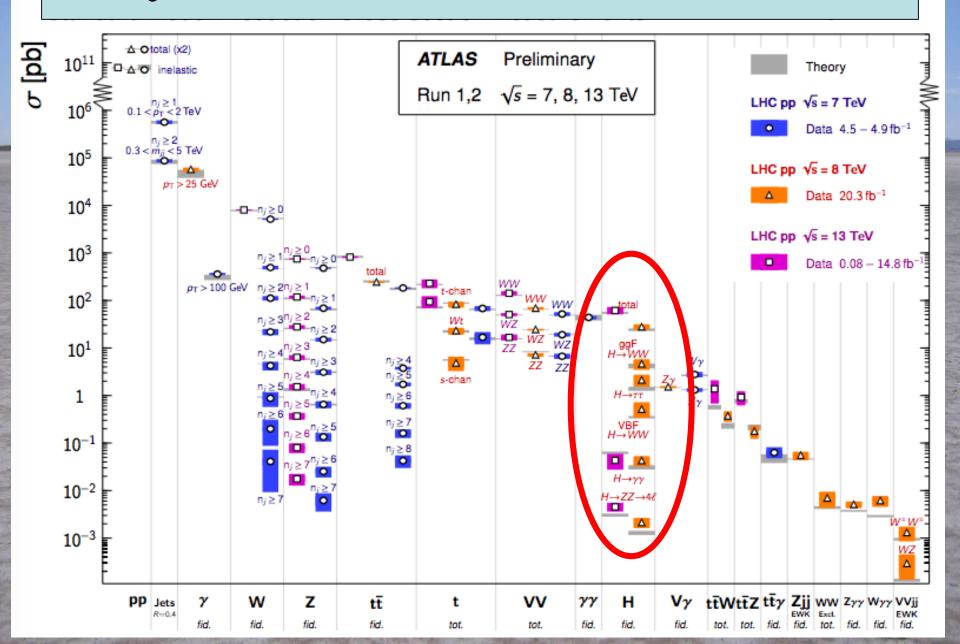
Updated Global SMEFT Fit to Higgs, Diboson and Electroweak Data

- Global fit to dimension-6 operators using precision electroweak data, W+W- at LEP, Higgs and diboson data from LHC Runs 1 and 2
- Results in Warsaw and SILH bases
- Improvements in the constraints from Run 2
- Constraints on BSM models
 - Some contribute to operators at tree level
 - Stops that contribute at loop level
- With a supplement on dimension-8 operators


Chris Murphy, JE, Verónica Sanz & Tevong You, arXiv:1803.03252

JE & Shao-Feng Ge, arXiv:1802.02416

John Ellis

Physics Measurements @ LHC

It Walks and Quacks like a Higgs • Do couplings scale ~ mass? With scale = v? ATLAS and CMS LHC Run 1 $\lambda_f = \sqrt{2} \left(\frac{m_f}{M}\right)^{1+\epsilon}, \ g_V = 2 \left(\frac{m_V^{2(1+\epsilon)}}{M^{1+2\epsilon}}\right)^{1+\epsilon}$ َ ا_> 10^{−1} 10⁻² ATLAS+CMS Global SM Higgs boson [M, ε] fit fit 68% CL 95% CL 10^{-4} **10**⁻¹ 10² 10 Par • Blue dashed line = Standard Model

Effective Field Theories (EFTs) a long and glorious History

- 1930's: "Standard Model" of QED had d=4
- Fermi's four-fermion theory of the weak force

- Dimension-6 operators: form = S, P, V, A, T?
- Due to exchanges of massive particles?
- V-A \rightarrow massive vector bosons \rightarrow gauge theory
- Yukawa's meson theory of the strong N-N force
- Due to exchanges of mesons? → pions
- Chiral dynamics of pions $(d\pi d\pi)\pi\pi$ clue \rightarrow QCD

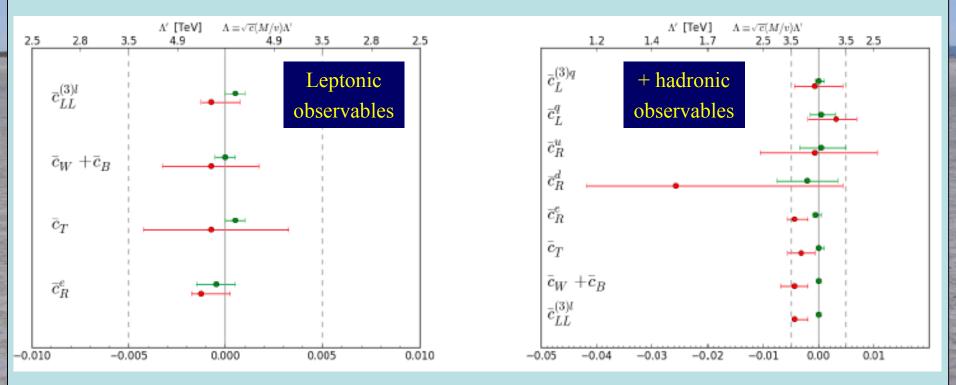
Assuming H(125) is SM-like: Model-independent search for new physics

Standard Model Effective Field Theory

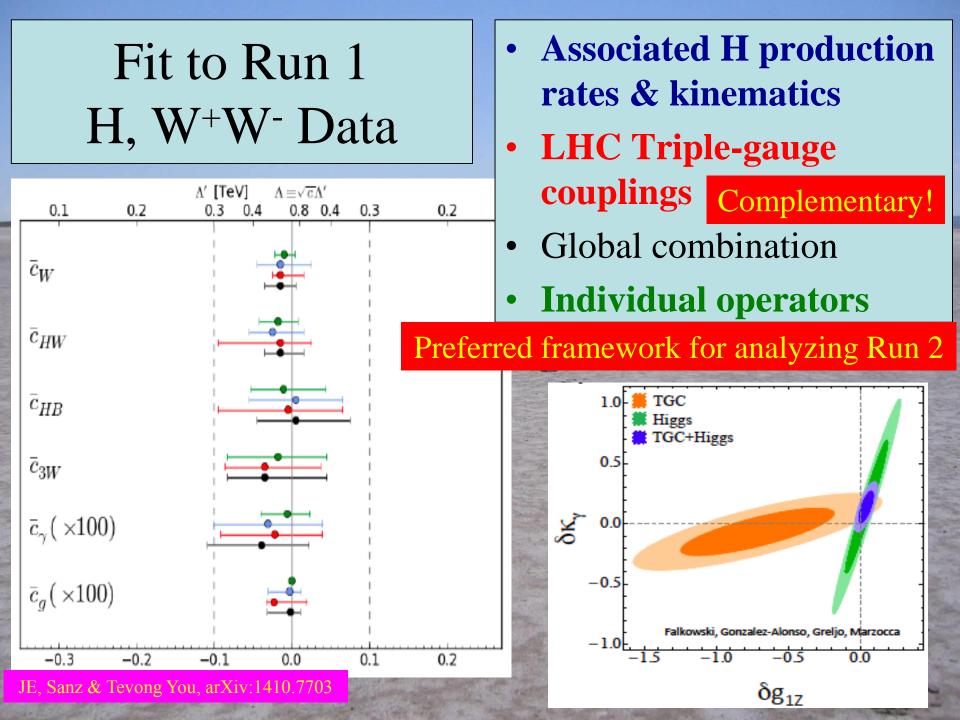
- Higher-dimensional operators as relics of higherenergy physics, e.g., dimension 6: $\mathcal{L}_{eff} = \sum_{n=1}^{\infty} \frac{f_n}{\Lambda^2} \mathcal{O}_n$
- Operators constrained by $SU(2) \times U(1)$ symmetry:
 - $\mathcal{L} \supset \frac{\bar{c}_{H}}{2v^{2}} \partial^{\mu} [\Phi^{\dagger}\Phi] \partial_{\mu} [\Phi^{\dagger}\Phi] + \frac{g'^{2} \bar{c}_{\gamma}}{m_{W}^{2}} \Phi^{\dagger}\Phi B_{\mu\nu} B^{\mu\nu} + \frac{g_{s}^{2} \bar{c}_{g}}{m_{W}^{2}} \Phi^{\dagger}\Phi G_{\mu\nu}^{a} G_{a}^{\mu\nu}$ $+ \frac{2ig \bar{c}_{HW}}{m_{W}^{2}} [D^{\mu}\Phi^{\dagger}T_{2k}D^{\nu}\Phi] W_{\mu\nu}^{k} + \frac{ig' \bar{c}_{HB}}{m_{W}^{2}} [D^{\mu}\Phi^{\dagger}D^{\nu}\Phi] B_{\mu\nu}$ $+ \frac{ig \bar{c}_{W}}{m_{W}^{2}} [\Phi^{\dagger}T_{2k}\overleftrightarrow{D}^{\mu}\Phi] D^{\nu} W_{\mu\nu}^{k} + \frac{ig' \bar{c}_{B}}{2m_{W}^{2}} [\Phi^{\dagger}\overleftrightarrow{D}^{\mu}\Phi] \partial^{\nu} B_{\mu\nu}$ $+ \frac{\bar{c}_{t}}{v^{2}} y_{t}\Phi^{\dagger}\Phi \ \Phi^{\dagger} \cdot \bar{Q}_{L}t_{R} + \frac{\bar{c}_{b}}{v^{2}} y_{b}\Phi^{\dagger}\Phi \ \Phi \cdot \bar{Q}_{L}b_{R} + \frac{\bar{c}_{\tau}}{v^{2}} y_{\tau} \ \Phi^{\dagger}\Phi \ \Phi \cdot \bar{L}_{L}\tau_{R}$
- Constrain with precision EW, Higgs data, TGCs ...

Which Operators Contribute to which Observables?

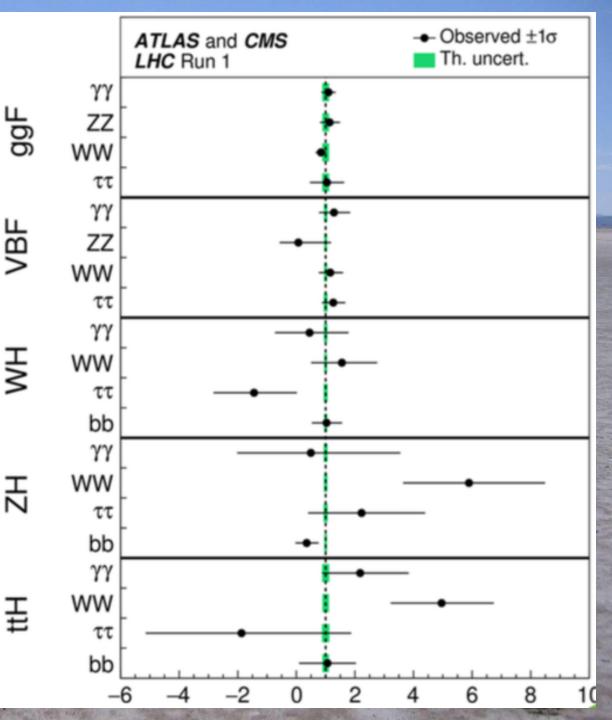
EWPTs	Higgs Physics	TGCs
$\mathcal{O}_{\mathcal{W}}$	$T = \frac{ig}{2} \left(H^{\dagger} \sigma^a \vec{D^{\mu}} H \right) D^{\nu} W^a_{\mu\nu}$	
$\mathcal{O}_B = \frac{ig'}{2} \left(H^{\dagger} D \right)$	$(H) \partial^{\nu} B_{\mu\nu}$	$\mathcal{O}_{3W} = g \frac{\epsilon_{abc}}{3!} W^{a\nu}_{\mu} W^{b}_{\nu\rho} W^{c\rho\mu}$
$\mathcal{O}_T = \frac{1}{2} \left(H^{\dagger} \overleftrightarrow{D}_{\mu} H \right)^2$	$\mathcal{O}_{HW} = ig(D^{\mu}H$	$^{\dagger}\sigma^{a}(D^{\nu}H)W^{a}_{\mu\nu}$
$\mathcal{O}_{LL}^{(3)l} = (\bar{L}_L \sigma^a \gamma^\mu L_L) \left(\bar{L}_L \sigma^a \gamma_\mu L_L \right)$	$\mathcal{O}_{HB} = ig'(D^{\mu})$	$(D^{\nu}H)B_{\mu\nu}$
$\mathcal{O}_R^e = (iH^\dagger \overset{\leftrightarrow}{D_\mu} H)(\bar{e}_R \gamma^\mu e_R)$	$\mathcal{O}_g = g_s^2 H ^2 G^A_{\mu\nu} G^{A\mu\nu}$	
$\mathcal{O}_R^u = (iH^\dagger \overset{\leftrightarrow}{D_\mu} H)(\bar{u}_R \gamma^\mu u_R)$	$\mathcal{O}_{\gamma} = g^{\prime 2} H ^2 B_{\mu\nu} B^{\mu\nu}$	
$\mathcal{O}_R^d = (iH^\dagger \overset{\leftrightarrow}{D_\mu} H)(\bar{d}_R \gamma^\mu d_R)$	$\mathcal{O}_H = \frac{1}{2} (\partial^\mu H ^2)^2$	
$\mathcal{O}_L^{(3)q} = (iH^{\dagger}\sigma^a \overset{\leftrightarrow}{D_{\mu}}H)(\bar{Q}_L \sigma^a \gamma^{\mu} Q_L)$	$\mathcal{O}_f = y_f H ^2 \bar{F}_L H^{(c)} f_R + \text{h.c.}$	
$\mathcal{O}_L^q = (iH^\dagger \overset{\leftrightarrow}{D_\mu} H)(\bar{Q}_L \gamma^\mu Q_L)$	$\mathcal{O}_6 = \lambda H ^6$	


- Precision electroweak
- Higgs
- Diboson production

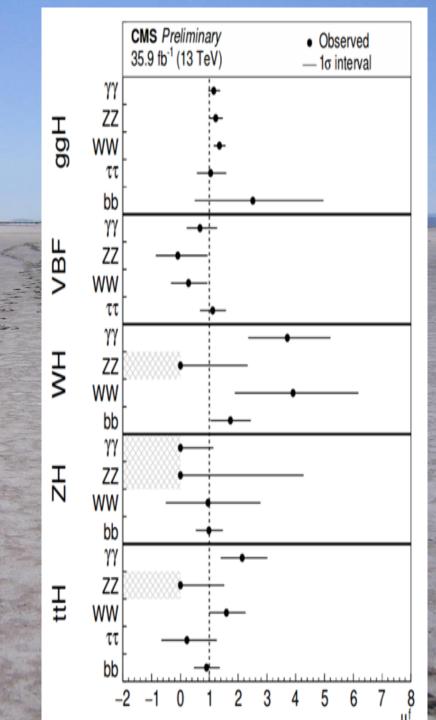
JE, Sanz & Tevong You, arXiv:1410.7703

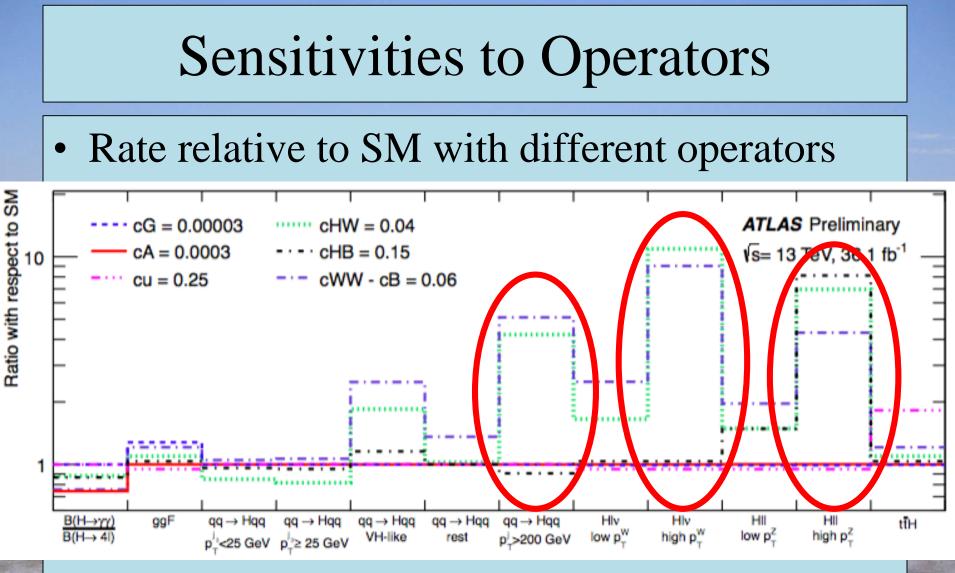

In SILH basis

Previous Fit to Electroweak Precision Data



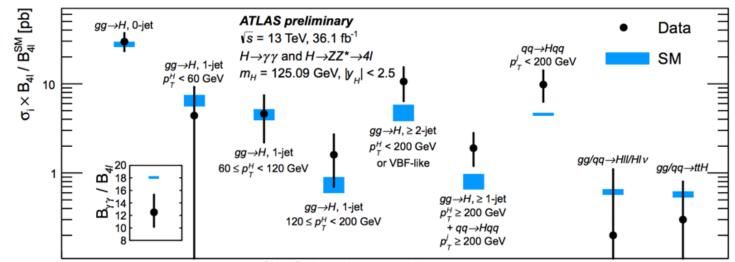
Fits to individual dimension-6 operators
Global fit to all operators together


H Production Measurements in Run 1


- Open questions:
 - H→bb?
 - 2.6σ @ LHC
 - 2.85 @ FNAL
 - H**→ 7**µ?
 - ttH production?
 - tH production?

H Production Measurements in Run 2

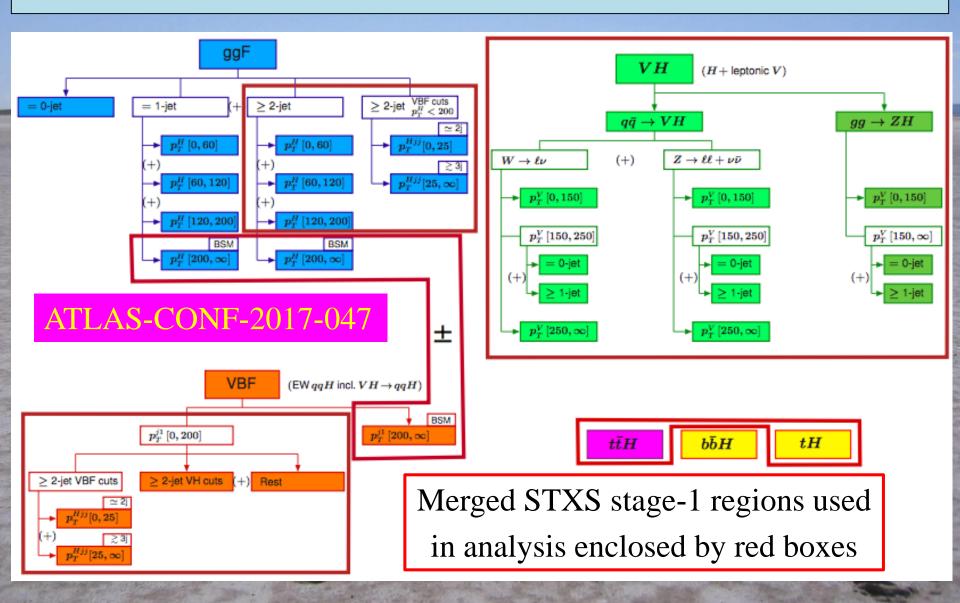
Improvements in:
− H→bb
− ttH



- Higher sensitivity at higher p_T
- But lower statistics

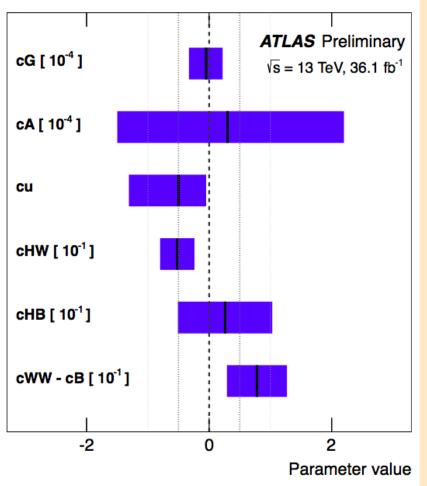
Next-Generation Analysis

- Previously assumed
 - EW precision >> diboson >> Higgs precision
- No longer justified, theoretically unsatisfactory
- Kinematic information encoded in Simplified Template Cross Sections (STXSs)

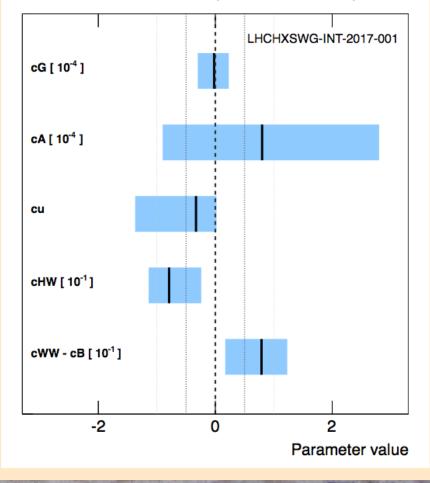


Simplified template cross section measurements

Simplified Template Cross Sections (STXSs)


		Cross-section region	$\sum_i A_i c_i$					
		$gg \to H$ (0-jet)						
		$gg ightarrow H$ (1-jet, $p_T^H < 60 { m ~GeV})$	$56c'_g$					
	Tool to use	$gg \rightarrow H \ (1\text{-jet}, \ 60 \leq p_T^H < 120 \ \text{GeV})$						
•	1001 to use	$gg \rightarrow H$ (1-jet, $120 \leq p_T^H < 200 \text{ GeV})$	$56c'_g + 18$ c3G $+ 11$ c2G					
	information on	$gg ightarrow H$ (1-jet, $p_T^H \ge 200 { m ~GeV})$	$56c'_g+52$ c3G $+34$ c2G					
	information on	$gg ightarrow H ~(\geq 2 ext{-jet},~ p_T^H < 60~ ext{GeV})$	$56c'_g$					
	1 • ,•	$gg \rightarrow H~(\geq 2\text{-jet},~60 \leq p_T^H < 120~\mathrm{GeV})$	$56c'_g + 8$ c3G $+ 7$ c2G					
	kinematics	$gg \rightarrow H~(\geq 2\text{-jet},~120 \leq p_T^H < 200~{ m GeV})$	$56c'_g+23$ c3G $+18$ c2G					
		$gg ightarrow H \;(\geq 2 ext{-jet},\; p_T^H \geq 200 \; ext{GeV})$	$56c'_g+90$ c3G $+68$ c2G					
	Known	$gg ightarrow H \ (\geq 2 ext{-jet VBF-like}, \ p_T^{j_3} < 25 \ ext{GeV})$	$56c'_g$					
•	KIIOWII	$gg \rightarrow H \ (\geq 2\text{-jet VBF-like}, \ p_T^{\jmath_3} \geq 25 \ { m GeV})$	$56c'_g + 9$ c3G $+ 8$ c2G					
	1	$qq ightarrow Hqq~({ m VBF-like},~p_T^{j_3} < 25~{ m GeV})$	$-1.0 { m cH} - 1.0 { m cT} + 1.3 { m cWW} - 0.023 { m cB} - 4.3 { m cHW}$					
	dependences		-0.29 cHB $+ 0.092$ cHQ $- 5.3$ cpHQ $- 0.33$ cHu $+ 0.12$ cHd					
	•	$qq ightarrow Hqq~(ext{VBF-like},~p_T^{j_3} \geq 25~ ext{GeV})$	$-1.0 tm{cm} - 1.1 tm{cm} + 1.2 tm{cW} - 0.027 tm{cm} - 5.8 tm{cm}$					
	on operator	,	-0.41 cHB + 0.13 cHQ - 6.9 cpHQ - 0.45 cHu + 0.15 cHd					
	•	$qq ightarrow Hqq \; (p_T^j \ge 200 { m GeV})$	$-1.0 tm{ch} - 0.95 tm{cT} + 1.5 tm{cW} - 0.025 tm{cB} - 3.6 tm{cHW}$					
	coefficients		-0.24 cHB + 0.084 cHQ - 4.5 cpHQ - 0.25 cHu + 0.1 cHd					
	coefficients	$qq \rightarrow Hqq \ (60 \le m_{jj} < 120 \text{ GeV})$	-0.99 tm cm = 1.2 tm cm + 7.8 tm cw = 0.19 tm cm = 31 tm cm w					
			-2.4 cHB + 0.9 cHQ - 38 cpHQ - 2.8 cHu + 0.9 cHd					
6		$qq \rightarrow Hqq \; ({ m rest})$	$-1.0 tm{cm} - 1.0 tm{cm} + 1.4 tm{cWW} - 0.028 tm{cm} - 6.2 tm{cm}$					
	Hays, Sanz & Zemaityte,		-0.42 cHB + 0.14 cHQ - 6.9 cpHQ - 0.42 cHu + 0.16 cHd					
		$gg/qar{q} ightarrow ttH$	$-0.98 { m cH}+2.9 { m cu}+0.93 { m cG}+310 { m cuG}$					
	HCHXSWG-INT-2017-01		+27c3G - 13c2G					

Used in ATLAS Higgs EFT Analysis



EFT vs STXS Comparison

Observed HEL constraints with $H \rightarrow ZZ^{*}$ and $H \rightarrow \gamma\gamma$

Fit to ATLAS STXS measurements (ATLAS-CONF-2017-047)

Chris Hays

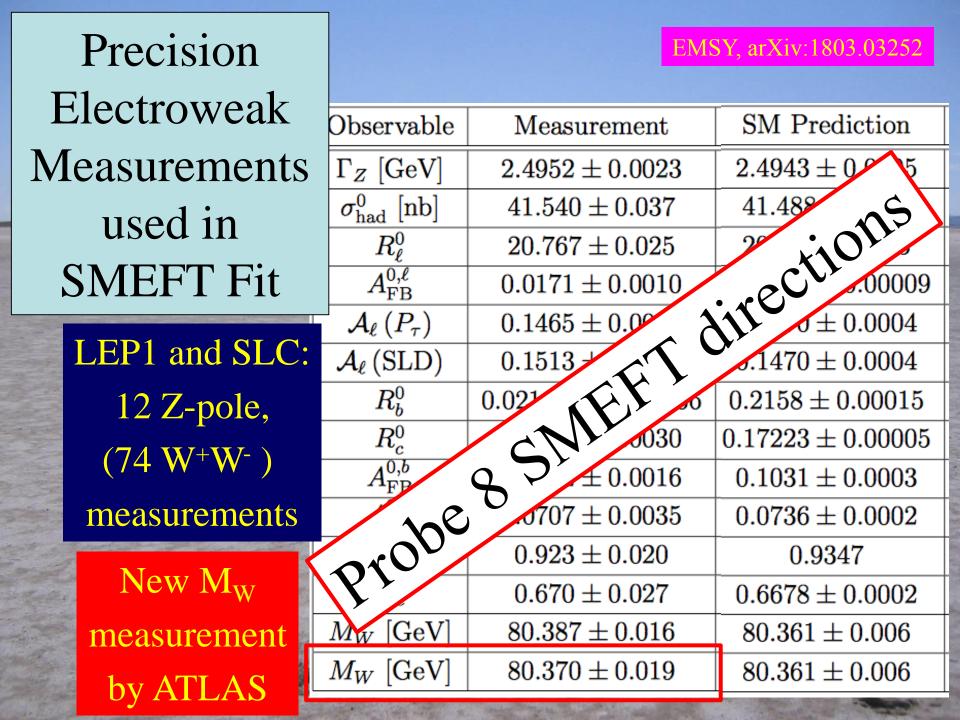
Analysis Framework

- Leading dimension-6 operators: $\mathcal{L}_{\text{SMEFT}} \supset \mathcal{L}_{\text{SM}} + \sum_{i} \frac{c_i}{\Lambda_i^2} \mathcal{O}_i$
- Work to linear order in operator coefficients
- Assume $U(3)^5$ symmetry for fermion operators
- Use G_F , M_Z , α as input parameters
- Use STXS Stage-1 as far as possible
- First attempt, so many caveats:
 STXS framework being extended, Higher-order corrections, Theoretical uncertainties, ...

Dimension-6 Operators in Warsaw Basis

• Involved in precision electroweak, diboson data

$$\begin{split} \mathcal{L}_{\text{SMEFT}}^{\text{Warsaw}} \supset \frac{\bar{C}_{Hl}^{(3)}}{v^2} (H^{\dagger}i\overleftrightarrow{D}_{\mu}^{I}H)(\bar{l}\tau^{I}\gamma^{\mu}l) + \frac{\bar{C}_{Hl}^{(1)}}{v^2} (H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{l}\gamma^{\mu}l) + \frac{\bar{C}_{ll}}{v^2}(\bar{l}\gamma_{\mu}l)(\bar{l}\gamma^{\mu}l) \\ &+ \frac{\bar{C}_{HD}}{v^2} \left| H^{\dagger}D_{\mu}H \right|^2 + \frac{\bar{C}_{HWB}}{v^2} H^{\dagger}\tau^{I}H W_{\mu\nu}^{I}B^{\mu\nu} \\ &+ \frac{\bar{C}_{He}}{v^2} (H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{e}\gamma^{\mu}e) + \frac{\bar{C}_{Hu}}{v^2} (H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{u}\gamma^{\mu}u) + \frac{\bar{C}_{Hd}}{v^2} (H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{d}\gamma^{\mu}d) \\ &+ \frac{\bar{C}_{Hq}}{v^2} (H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{q}\tau^{I}\gamma^{\mu}q) + \frac{\bar{C}_{Hq}}{v^2} (H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{q}\gamma^{\mu}q) + \frac{\bar{C}_{W}}{v^2} \epsilon^{IJK} W_{\mu}^{I\nu} W_{\nu}^{J\rho} W_{\rho}^{K\mu} \end{split}$$

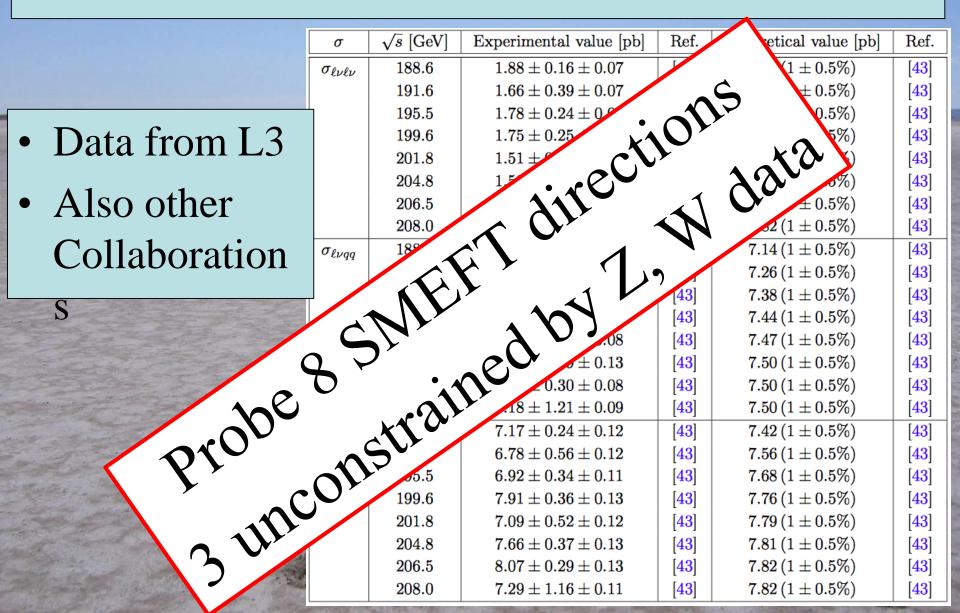

• Operators affecting Higgs observables

$$\begin{split} \mathcal{L}_{\text{SMEFT}}^{\text{Warsaw}} &\supset \frac{\bar{C}_{eH}}{v^2} (H^{\dagger}H) (\bar{l}eH) + \frac{\bar{C}_{dH}}{v^2} (H^{\dagger}H) (\bar{q}dH) + \frac{\bar{C}_{uH}}{v^2} (H^{\dagger}H) (\bar{q}u\tilde{H}) \\ &+ \frac{\bar{C}_G}{v^2} f^{ABC} G^{A\nu}_{\mu} G^{B\rho}_{\nu} G^{C\mu}_{\rho} + \frac{\bar{C}_{H\square}}{v^2} (H^{\dagger}H) \Box (H^{\dagger}H) + \frac{\bar{C}_{uG}}{v^2} (\bar{q}\sigma^{\mu\nu}T^A u) \tilde{H} G^A_{\mu\nu} \\ &+ \frac{\bar{C}_{HW}}{v^2} H^{\dagger}H W^I_{\mu\nu} W^{I\mu\nu} + \frac{\bar{C}_{HB}}{v^2} H^{\dagger}H B_{\mu\nu} B^{\mu\nu} + \frac{\bar{C}_{HG}}{v^2} H^{\dagger}H G^A_{\mu\nu} G^{A\mu\nu} \,. \end{split}$$

Dimension-6 Operators in SILH Basis

• Involved in precision electroweak, diboson and Higgs data

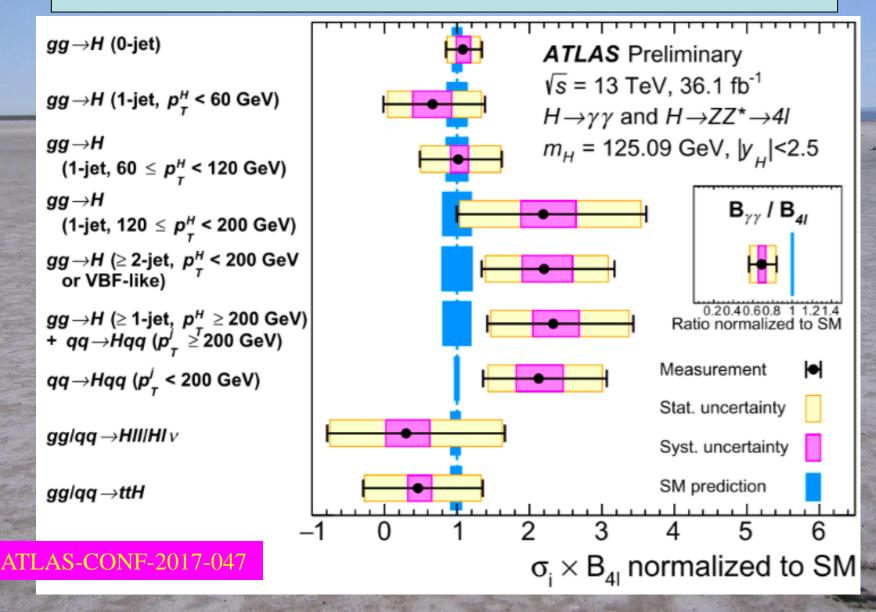
$$\begin{aligned} \mathcal{L}_{\text{SMEFT}}^{\text{SILH}} &\supset \frac{\bar{c}_W}{m_W^2} \frac{ig}{2} \left(H^{\dagger} \sigma^a \overset{\leftrightarrow}{D^{\mu}} H \right) D^{\nu} W_{\mu\nu}^a + \frac{\bar{c}_B}{m_W^2} \frac{ig'}{2} \left(H^{\dagger} \overset{\leftrightarrow}{D^{\mu}} H \right) \partial^{\nu} B_{\mu\nu} + \frac{\bar{c}_T}{v^2} \frac{1}{2} \left(H^{\dagger} \overset{\leftrightarrow}{D}_{\mu} H \right)^2 \\ &+ \frac{\bar{c}_U}{v^2} 2(\bar{L}\gamma_{\mu}L)(\bar{L}\gamma^{\mu}L) + \frac{\bar{c}_{He}}{v^2} (iH^{\dagger} \overset{\leftrightarrow}{D_{\mu}} H)(\bar{e}_R \gamma^{\mu} e_R) + \frac{\bar{c}_{Hu}}{v^2} (iH^{\dagger} \overset{\leftrightarrow}{D_{\mu}} H)(\bar{u}_R \gamma^{\mu} u_R) \\ &+ \frac{\bar{c}_{Hd}}{v^2} (iH^{\dagger} \overset{\leftrightarrow}{D_{\mu}} H)(\bar{d}_R \gamma^{\mu} d_R) + \frac{\bar{c}'_{Hq}}{v^2} (iH^{\dagger} \sigma^a \overset{\leftrightarrow}{D_{\mu}} H)(\bar{Q}_L \sigma^a \gamma^{\mu} Q_L) \\ &+ \frac{\bar{c}_{Hq}}{v^2} (iH^{\dagger} \overset{\leftrightarrow}{D_{\mu}} H)(\bar{Q}_L \gamma^{\mu} Q_L) + \frac{\bar{c}_{HW}}{m_W^2} ig(D^{\mu}H)^{\dagger} \sigma^a (D^{\nu}H) W_{\mu\nu}^a + \frac{\bar{c}_{HB}}{m_W^2} ig'(D^{\mu}H)^{\dagger} (D^{\nu}H) B_{\mu\mu} \\ &+ \frac{\bar{c}_{3W}}{m_W^2} g^3 \epsilon_{abc} W_{\mu}^{a\nu} W_{\nu\rho}^b W^{c\rho\mu} + \frac{\bar{c}_g}{m_W^2} g_s^2 |H|^2 G_{\mu\nu}^A G^{A\mu\nu} + \frac{\bar{c}_\gamma}{m_W^2} g'^2 |H|^2 B_{\mu\nu} B^{\mu\nu} \\ &+ \frac{\bar{c}_H}{v^2} \frac{1}{2} (\partial^{\mu} |H|^2)^2 - \sum_{f=e,u,d} \frac{\bar{c}_f}{v^2} y_f |H|^2 \bar{F}_L H^{(c)} f_R \\ &+ \frac{\bar{c}_{3G}}{m_W^2} g_s^3 f_{ABC} G_{\mu}^{A\nu} G_{\nu}^{B\rho} G_{\rho}^{C\mu} - \frac{\bar{c}_{uG}}{m_W^2} 4 g_s y_u H^{\dagger} \cdot \bar{Q}_L \gamma^{\mu\nu} T_a u_R G_{\mu\nu}^A. \end{aligned}$$



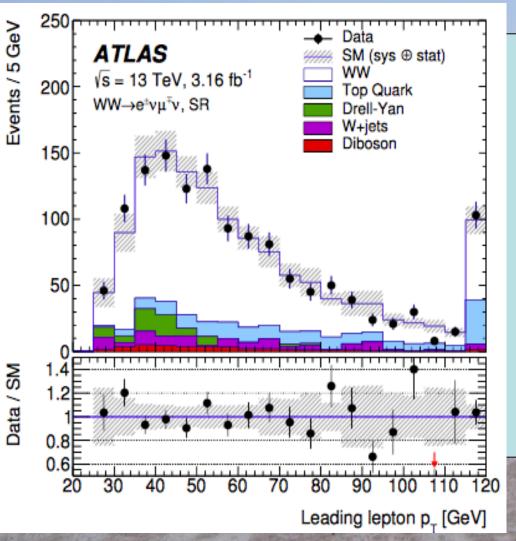
Measurements used in Global SMEFT Fit

• ATLAS + CMS Higgs data from LHC Run 1

Production	Decay	Signal Strength	Production	Decar	nal Strength
ggF	$\gamma\gamma$	$1.10\substack{+0.23\\-0.22}$	Wh Wh JIT		1.4 ± 1.4
$gg\mathrm{F}$	ZZ	$1.13\substack{+0.34 \\ -0.31}$	Wh	chi	1.0 ± 0.5
$gg\mathrm{F}$	WW	0.84 ± 0.17	111		$0.5\substack{+3.0 \\ -2.5}$
$gg\mathrm{F}$	au au	1.0 ± 0.6	a Qu	WW	$5.9^{+2.6}_{-2.2}$
VBF	$\gamma\gamma$	1.3 ± 0.5	K V	au au	$2.2^{+2.2}_{-1.8}$
VBF	ZZ	01	Zh	bb	0.4 ± 0.4
VBF	WW	Su	tth	$\gamma\gamma$	$2.2^{+1.6}_{-1.3}$
VBF	au au	10.4	tth	WW	$5.0^{+1.8}_{-1.7}$
Wh	X	C .5 ^{+1.3}	tth	au au	$-1.9\substack{+3.7 \\ -3.3}$
Wh .	010	$1.6^{+1.2}_{-1.0}$	tth	bb	1.1 ± 1.0
pp		$2.7^{+4.6}_{-4.5}$	pp	$\mu\mu$	0.1 ± 2.5


LEP 2 W⁺W- Measurements used

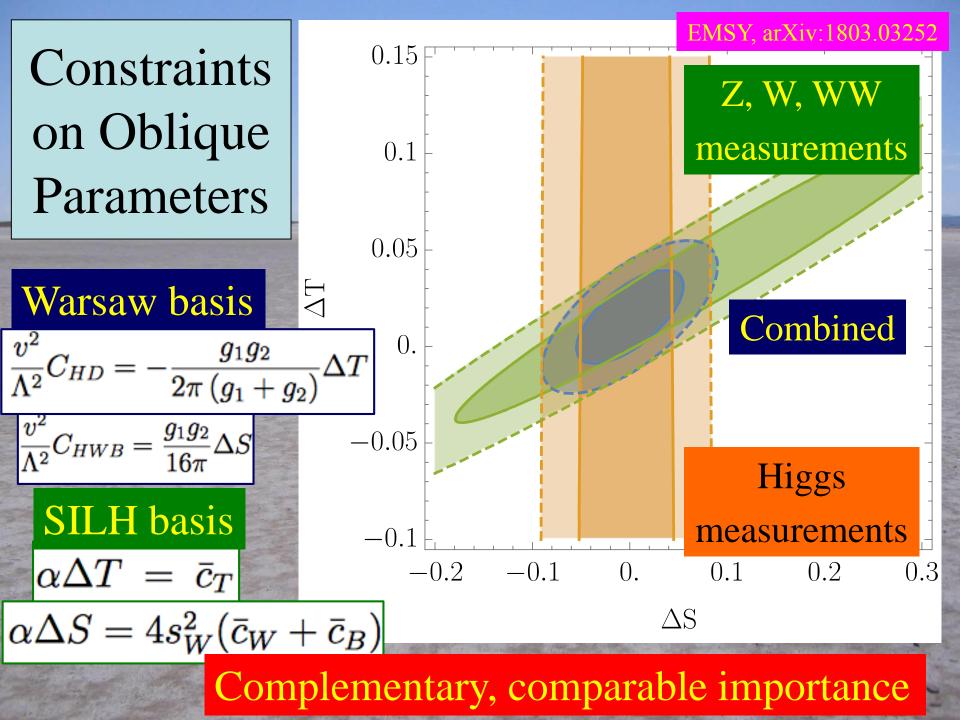
Run 2 Higgs			CMS		ATL	AS	
		Production	Decay	Sig. Stren.	Production	Decay	S' en.
vie	asurements	1-jet, $p_T > 450$	$bar{b}$	$2.3^{+1.8}_{-1.6}$	pp	$ \frac{\mu\mu}{\tau_h} $ $ \frac{\tau_h}{2\ell ss + 1\tau_h} $	<u> </u>
	1 •	Zh	$b\overline{b}$	0.9 ± 0.5	Zh		
	used in	Wh	$bar{b}$	1.7 ± 0.7	Wh	*1	<u>59</u>
		$t\bar{t}h$	$b \overline{b}$	$-0.19^{+0.80}_{-0.81}$	tīh		$4_{-0.61}$
C 1	MEFT Fit	$t\bar{t}h$	$1\ell + 2\tau_h$	$-1.20^{+1.50}_{-1.47}$	tīh	CV /	1.7 _{-1.9}
\mathbf{O}		$t\bar{t}h$	$2\ell ss + 1\tau_h$	$0.86\substack{+0.79\\-0.66}$	$ \lambda v$	h_h	-0.0 _{-1.5}
		$tar{t}h$	$3\ell + 1\tau_h$	$1.22^{+1.34}_{-1.00}$		$2\ell ss + 1\tau_h$ $2\ell ss + 1\tau_h$	$1.0_{-1.3}$ $3.5_{-1.3}^{+1.7}$
		$t\bar{t}h$	$2\ell ss$	$1.7\substack{+0.6 \\ -0.5}$		$\frac{2css + 17h}{3\ell}$	$1.8^{+0.9}_{-0.7}$
	Include all	$t\bar{t}h$	3ℓ	1.0*		2lss	$1.5^{+0.7}_{-0.6}$
	morade un	$t\bar{t}h$	4ℓ		ggF	WW	$1.21^{+0.22}_{-0.21}$
	available	0-jet	WW	CN'	VBF	WW	$0.62^{+0.37}_{-0.36}$
	available	1-jet		∇^{r}	$B(h \to \gamma \gamma) / B(h)$	$\rightarrow 4\ell$)	$0.69^{+0.15}_{-0.13}$
A COLOR	1 in a matical	2-jet	\ '	.0	0-jet	4ℓ	$1.07^{+0.27}_{-0.25}$
	kinematical	VBF 2-je		4 ± 0.8	1-jet, $p_T < 60$	4ℓ	$0.67^{+0.72}_{-0.68}$
	• • •			$2.1^{+2.3}_{-2.2}$	1-jet, $p_T \in (60, 120)$	4ℓ	$1.00\substack{+0.63\\-0.55}$
	information	VBF 2-10		-1.4 ± 1.5	1-jet, $p_T \in (120, 200)$	4ℓ	$2.1^{+1.5}_{-1.3}$
		\mathcal{O}	$\gamma\gamma$	$\frac{1.11\substack{+0.19\\-0.18}}{0.5\substack{+0.6\\-0.5}}$	2-jet	4ℓ	$2.2^{+1.1}_{-1.0}$
the state	$+ 1 W^+W^-$		$\gamma\gamma$	$0.5_{-0.5}$ 2.2 ± 0.9	"BSM-like"	4ℓ	$2.3^{+1.2}_{-1.0}$
and in		Vh	$\gamma\gamma$	$\frac{2.2 \pm 0.9}{2.3^{+1.1}_{-1.0}}$	VBF, $p_T < 200$	4ℓ	$2.14^{+0.94}_{-0.77}$
all is a	measurement	ggF	$\frac{\gamma\gamma}{4\ell}$	$\frac{2.3_{-1.0}}{1.20_{-0.21}^{+0.22}}$	Vh lep	4ℓ	$0.3^{+1.3}_{-1.2}$
		0-jet	$\tau \tau$	$1.20_{-0.21}$ 0.84 ± 0.89	tīh	4ℓ	$0.51^{+0.86}_{-0.70}$
and the	at high p _T	boosted	$\tau \tau$	$1.17^{+0.47}_{-0.40}$	Wh	WW	$3.2^{+4.4}_{-4.2}$
	at mgn p _T	VBF	$\tau \tau$	$\frac{1.11_{-0.40}}{1.11_{-0.35}^{+0.34}}$	Use S	STXS	


I

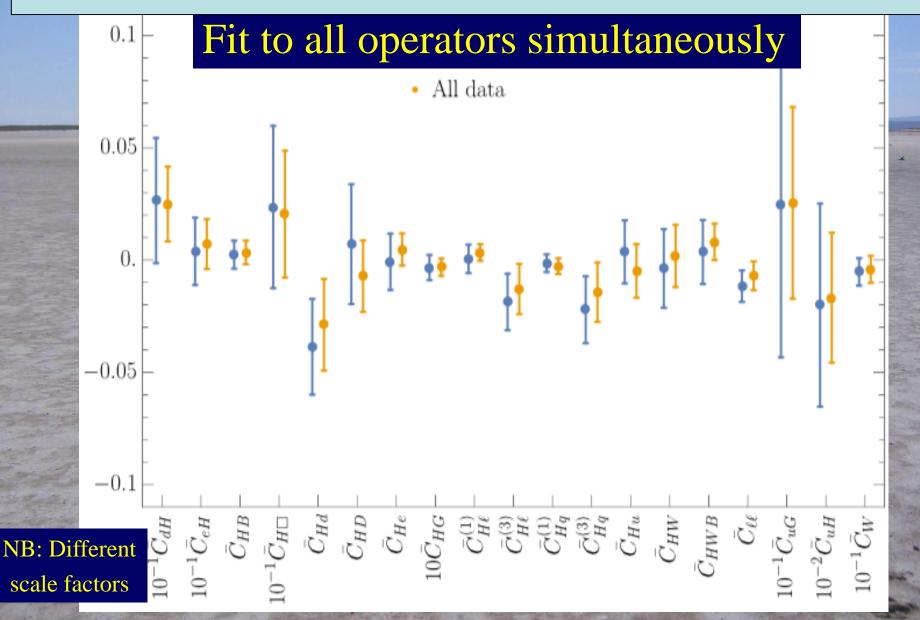
ATLAS STXS Measurements

EMSY, arXiv:1803.03252

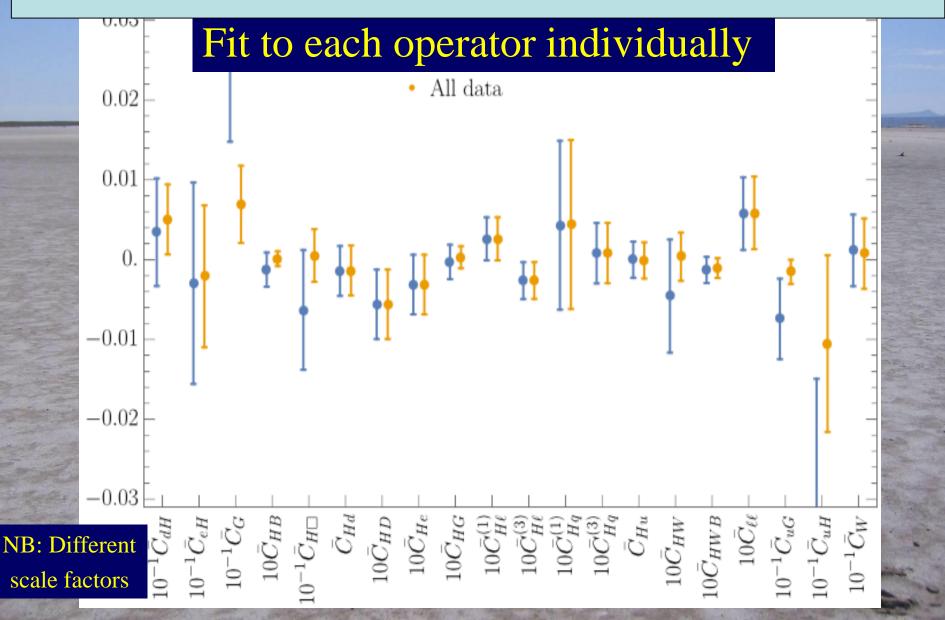
LHC W⁺W⁻ at large p_T

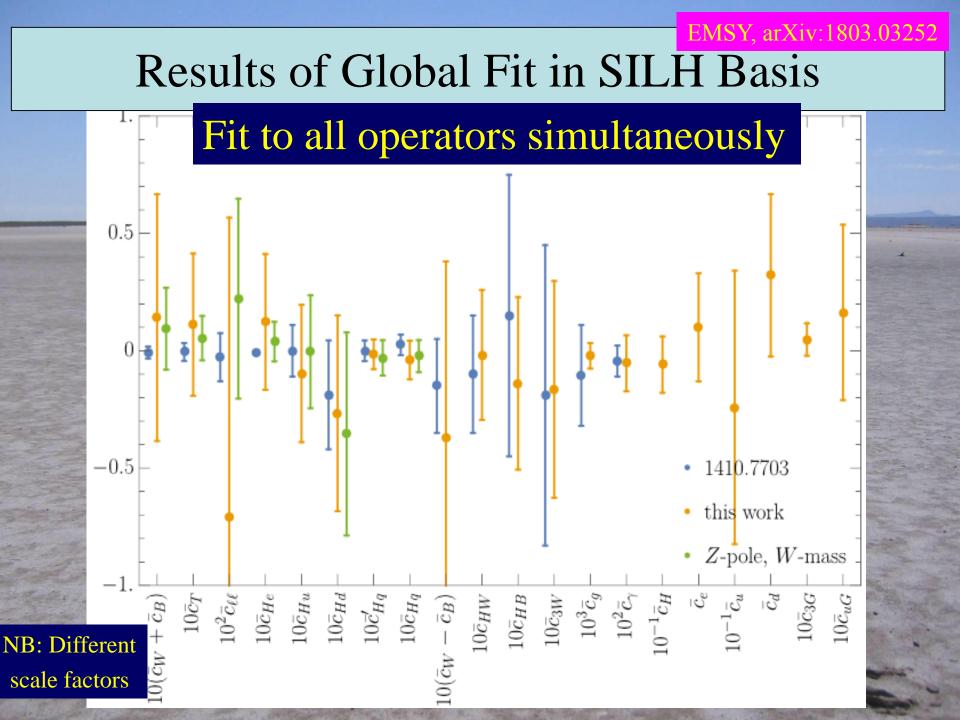


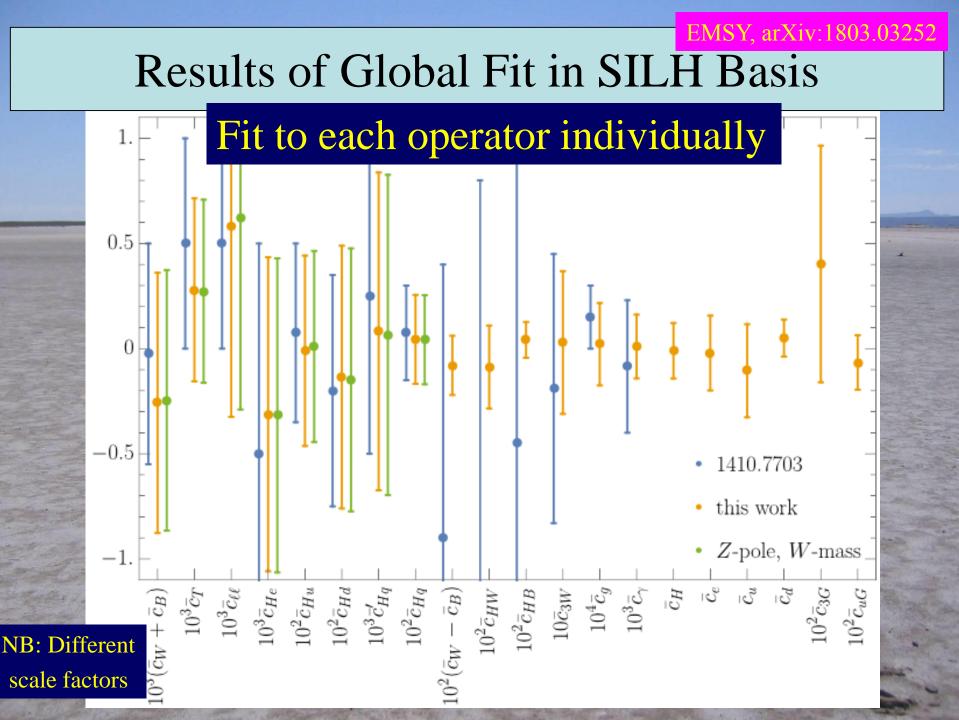
- Overflow bin only
- Most sensitive to d=6
- Dependence on SILH operator coefficients:


$$1-1.4c_{3W}-4.3c_{HW}-1.5c_{W}$$

• Quadratic terms


small




Results of Global Fit in Warsaw Basis

Results of Global Fit in Warsaw Basis

EMSY, arXiv:1803.03252

Warsaw basis

Numerical results from SMEFT Fit

С	oefficient	Central value	1-σ
	$ar{C}_{dH}$	0.33	0.15
	\bar{C}_{eH}	0.06	0.10
	\bar{C}_G	0.09	0.06
	$ar{C}_{HB}$	0.003	0.005
	$ar{C}_{H\square}$	0.50	0.27
	$ar{C}_{Hd}$	-0.036	0.017
	$ar{C}_{HD}$	-0.001	0.014
L	$ar{C}_{He}$	0.002	0.007
	$ar{C}_{HG}$	0.0002	0.0003
,	$ar{C}^{(1)}_{H\ell}$	0.002	0.003
	$ar{C}^{(3)}_{H\ell}$	-0.015	0.011
	$ar{C}^{(1)}_{Hq}$	-0.002	0.003
	$ar{C}_{Hq}^{(3)}$	-0.017	0.013
	\bar{C}_{Hu}	0.000	0.011
	$ar{C}_{HW}$	-0.002	0.014
	$ar{C}_{HWB}$	0.006	0.007
	$ar{C}_{\ell\ell}$	-0.009	0.006
	$ar{C}_{uG}$	0.7	0.4
	$ar{C}_{uH}$	-4.8	2.6
	$ar{C}_W$	-0.05	0.06
1	land and a lot of the	Mary Mary States	and the second second

SILH basis

Coefficient	Central value	1-σ
\bar{c}_{3G}	0.005	0.003
\bar{c}_{3W}	-0.018	0.023
\bar{c}_d	0.36	0.15
\bar{c}_e	0.09	0.11
$ar{c}_g$	0.00002	0.00002
$ar{c}_H$	-1.1	0.6
$ar{c}_{HB}$	-0.013	0.018
$ar{c}_{Hd}$	-0.035	0.017
\bar{c}_{He}	0.007	0.013
$ar{c}_{Hq}$	-0.003	0.004
\overline{c}'_{Hq}	-0.003	0.003
\bar{c}_{Hu}	-0.03	0.013
\bar{c}_{HW}	0.002	0.014
$\bar{c}_{\ell\ell}$	-0.009	0.006
$ar{c}_T$	0.005	0.013
$ar{c}_u$	-4.7	2.6
$ar{c}_{uG}$	0.031	0.016
$\bar{c}_W - \bar{c}_B$	-0.04	0.04
$\bar{c}_W + \bar{c}_B$	0.003	0.024
\bar{c}_{γ}	-0.001	0.0006

EMSY, arXiv:1803.03252

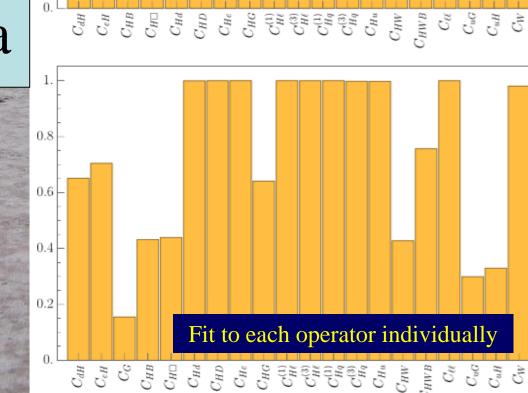
Impacts of Measurements in Warsaw Basis

Coefficient	Z -pole + m_W	WW at LEP2 $$	Higgs Run1	Higgs Run2	LHC WW high- p_T
\bar{C}_{dH}	×	<u> </u>	36	64	X
$ar{C}_{eH}$	×	×	49.6	50.4	×
$ar{C}_G$	×	×	2.3	97.7	×
\bar{C}_{HB}	×	×	19	81	×
$\bar{C}_{H\Box}$	×	×	19.7	80.3	0.01
\bar{C}_{Hd}	99.88	×	0.04	0.07	×
$ar{C}_{HD}$	99.92	0.06	×	×	×
$ar{C}_{He}$	99.99	0.01	×	×	×
$ar{C}_{HG}$	×	×	34	66	0.02
$ar{C}^{(1)}_{H\ell}$	99.97	0.03	×	×	×
$ar{C}^{(3)}_{H\ell}$	99.56	0.41	×	×	0.01
$\bar{C}^{(1)}_{Hq}$	99.98	×	0.01	0.01	×
	98.6	0.96	0.19	0.23	0.07
C_{Hu}	99.5	×	0.2	0.3	0.04
$ar{C}_{HW}$	×	×	18	82	×
$ar{C}_{HWB}$	57.9	0.02	8.2	33.9	×
$\bar{C}_{\ell\ell}$	99.66	0.32	×	0.01	0.01
\bar{C}_{uG}	×	×	7.8	92.2	×
$ar{C}_{uH}$	×		9.5	90.5	**
\bar{C}_W	×	96.2	×	×	3.8

Improvements with Run 2 Data

EMSY, arXiv:1803.03252

Warsaw basis

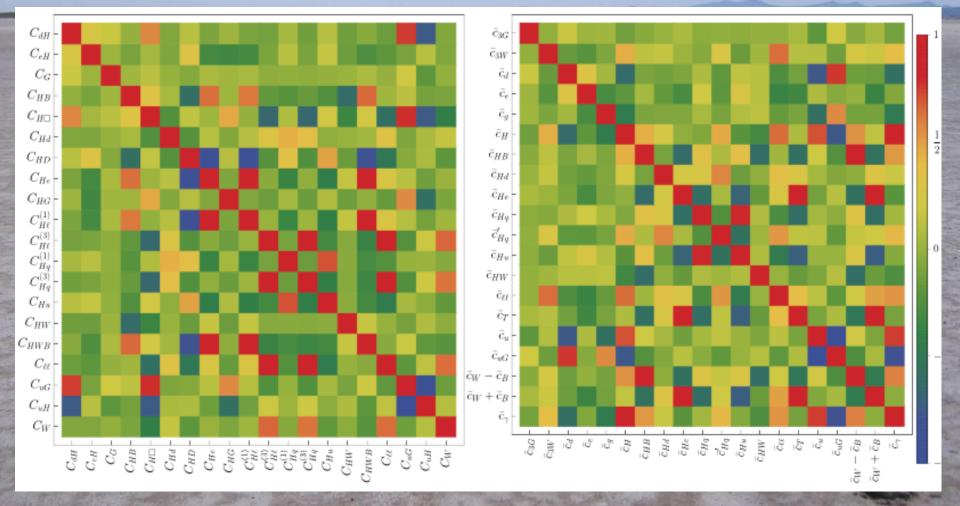

1.

0.8

0.6

0.4

0.2


Fit to all operators simultaneously

Correlations in Global SMEFT Fit

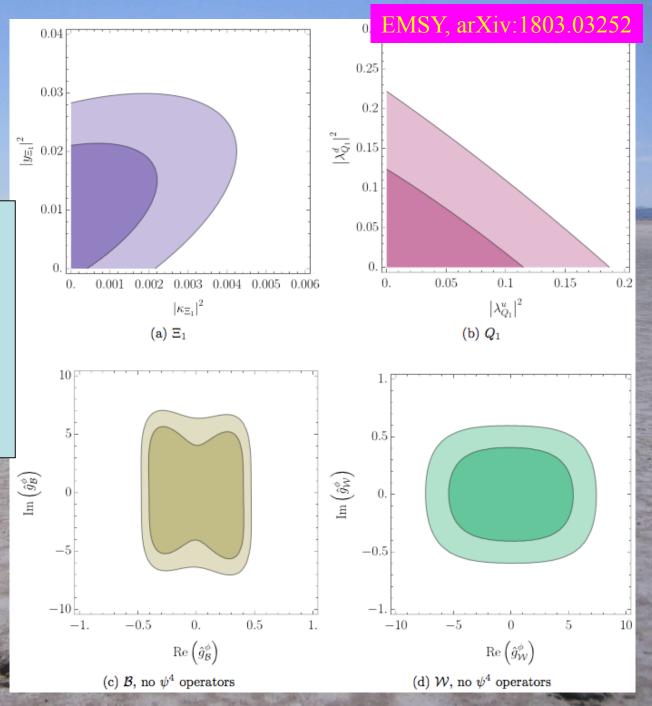
Warsaw basis

SILH basis

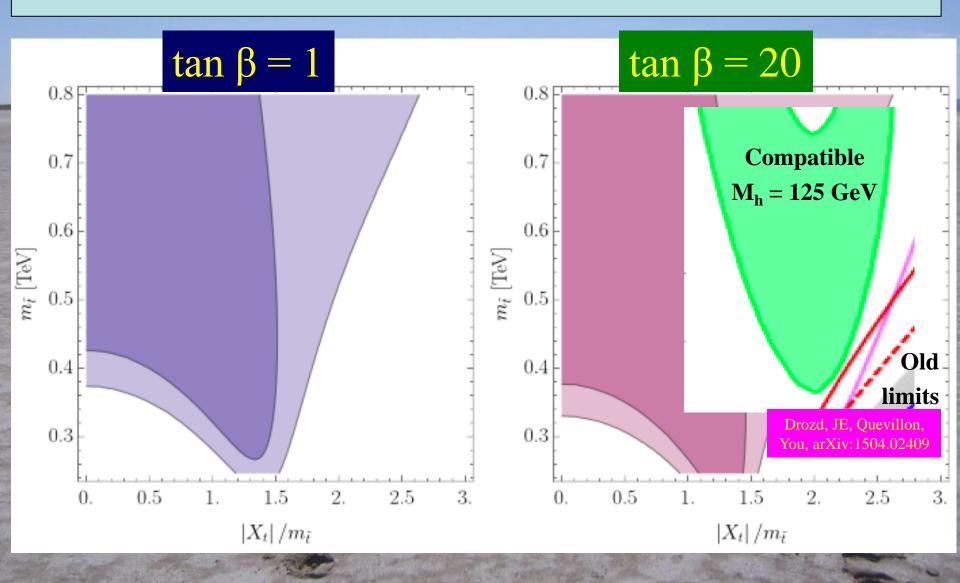
EMSY, arXiv:1803.03252

Simple Extensions of the Standard Model

Name	Spin	SU(3)	SU(2)	U(1)	Name	Spin	SU(3)	SU(2)	U(1)
S	0	1	1	0	Δ_1	$\frac{1}{2}$	1	2	$-\frac{1}{2}$
\mathcal{S}_1	0	1	1	1	Δ_3	$\frac{1}{2}$	1	2	$-\frac{1}{2}$
arphi	0	1	2	$\frac{1}{2}$	Σ	$\frac{1}{2}$	1	3	0
Ξ	0	1	3	0	Σ_1	$\frac{1}{2}$	1	3	-1
Ξ1	0	1	3	1	U	$\frac{1}{2}$	3	1	$\frac{2}{3}$
\mathcal{B}	1	1	1	0	D	$\frac{1}{2}$	3	1	$-\frac{1}{3}$
\mathcal{B}_1	1	1	1	1	Q_1	$\frac{1}{2}$	3	2	$\frac{1}{6}$
\mathcal{W}	1	1	3	0	Q_5	$\frac{1}{2}$	3	2	$-\frac{5}{6}$
\mathcal{W}_1	1	1	3	1	Q_7	$\frac{1}{2}$	3	2	$\frac{7}{6}$
N	$\frac{1}{2}$	1	1	0	T_1	$\frac{1}{2}$	3	3	$-\frac{1}{3}$
E	$\frac{1}{2}$	1	1	-1	T_2	$\frac{1}{2}$	3	3	$\frac{2}{3}$

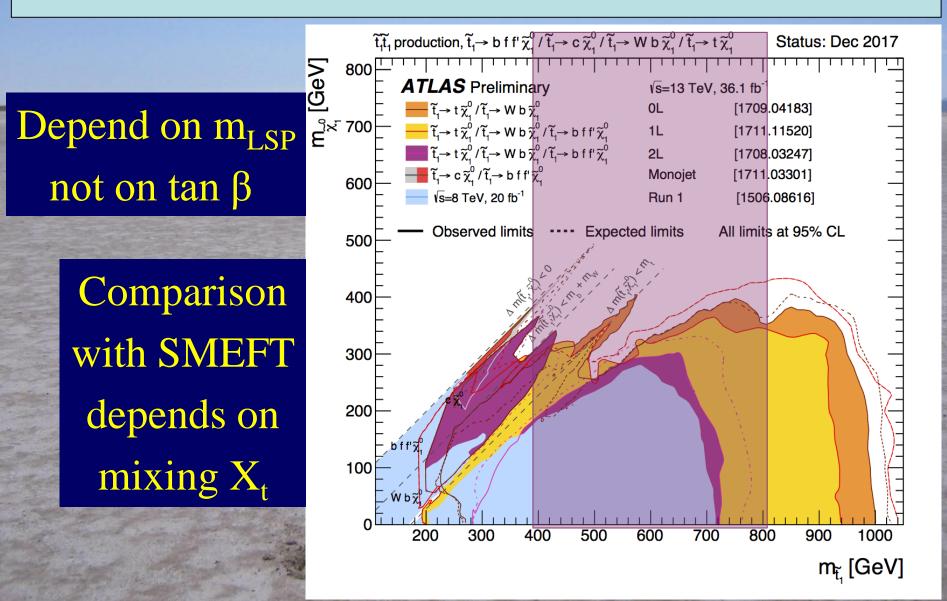

de Blas, Criado, Perez-Victoria & Santiago, arXiv:1711.10391

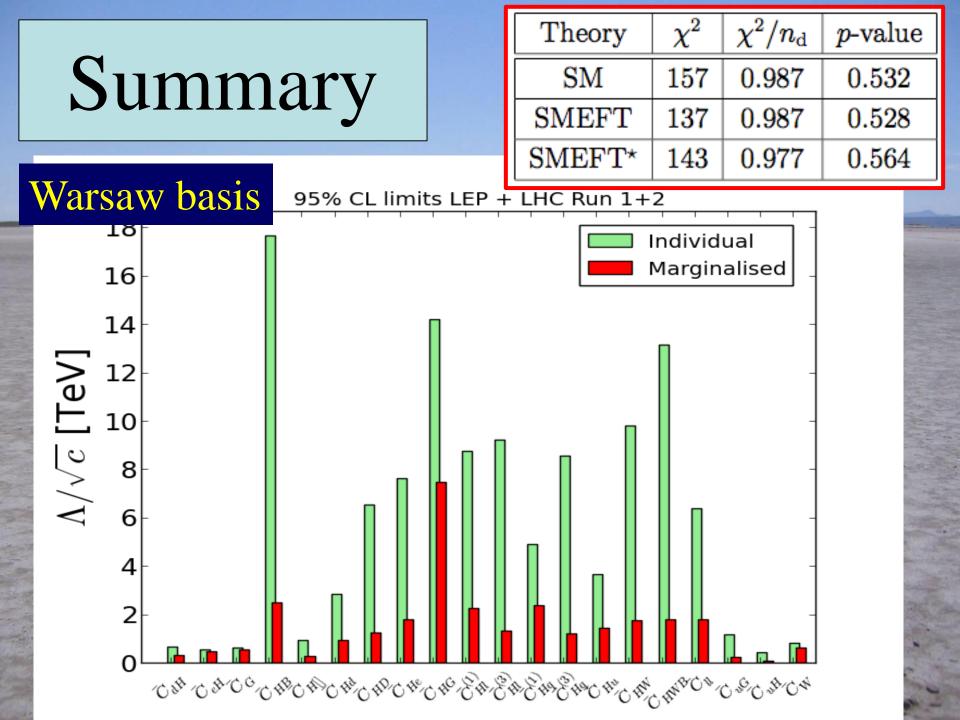
EMSY, arXiv:1803.03252


Numerical Constraints on Extensions

Model	χ^2	$\chi^2/n_{ m d}$	Coupling	Mass / TeV
SM	157	0.987	-	-
\mathcal{S}_1	156	0.986	$ y_{\mathcal{S}_1} ^2 = (6.3 \pm 5.9) \cdot 10^{-3}$	$M_{\mathcal{S}_1} = (9.0, 49)$
φ , Type I	156	0.986	$Z_6 \cdot \cos\beta = -0.64 \pm 0.59$	$M_{arphi} = (0.9, 4.3)$
Ξ	155	0.984	$\left \kappa_{\Xi} ight ^{2}=(4.2\pm3.4)\cdot10^{-3}$	$M_{\Xi} = (12, 35)$
N	155	0.978	$ \lambda_N ^2 = (1.8 \pm 1.2) \cdot 10^{-2}$	$M_N = (5.8, 13)$
\mathcal{W}_1	155	0.984	$\left \hat{g}^{\phi}_{\mathcal{W}_1} ight ^2 = (3.3 \pm 2.7) \cdot 10^{-3}$	$M_{\mathcal{W}_1} = (4.1,\ 13)$
E	156.9	0.993	$ \lambda_E ^2 = (2.0 \pm 9.7) \cdot 10^{-3}$	$M_E = (9.2, \infty)$
Δ_3	156	0.990	$ \lambda_{\Delta_3} ^2 = (0.8 \pm 1.1) \cdot 10^{-2}$	$M_{\Delta_3}=(7.3,\infty)$
Σ	156.7	0.992	$\left \lambda_{\Sigma} ight ^{2}=(0.9\pm2.0)\cdot10^{-2}$	$M_{\Sigma}=(5.9,\infty)$
Q_5	156	0.990	$ \lambda_{Q_5} ^2 = 0.08 \pm 0.10$	$M_{Q_5}=(2.4,\infty)$
T_2	156.8	0.992	$ \lambda_{T_2} ^2 = (2.0 \pm 5.1) \cdot 10^{-2}$	$M_{T_2}=(3.8,\infty)$
S	157	0.993	$ y_{\mathcal{S}} ^2 < 0.32$	$M_S > 1.8$
Δ_1	157	0.993	$ \lambda_{\Delta_1} ^2 < 5.7 \cdot 10^{-3}$	$M_{\Delta_1} > 13$
Σ_1	157	0.993	$ \lambda_{\Sigma_1} ^2 < 7.3 \cdot 10^{-3}$	$M_{\Sigma_1}>12$
U	157	0.993	$\left \lambda_U ight ^2 < 2.8\cdot 10^{-2}$	$M_U > 6.0$
D	157	0.993	$ \lambda_D ^2 < 1.4\cdot 10^{-2}$	$M_D > 8.4$
Q_7	157	0.993	$ \lambda_{Q_7} ^2 < 7.7 \cdot 10^{-2}$	$M_{Q_7} > 3.6$
T_1	157	0.993	$ \lambda_{T_1} ^2 < 0.13$	$M_{T_1} > 3.0$
\mathcal{B}_1	157	0.993	$\left \hat{g}^{\phi}_{\mathcal{B}_1} ight ^2 < 2.4 \cdot 10^{-3}$	$M_{{\cal B}_1}>21$

Constraints on SM Extensions




SMEFT Constraints on Light Stops

EMSY, arXiv:1803.03252

Direct Constraints on Light Stops

Supplement on dimension-8 operators

Light-by-Light Scattering in QED

 Electron (charged particle) loops induce light-by-light scattering: γ

• First calculations:

Bemerkungen zur Diracschen Theorie des Positrons.

Von W. Heisenberg in Leipzig.

(Eingegangen am 21. Juni 1934.)

Folgerungen aus der Diracschen Theorie des Positrons.

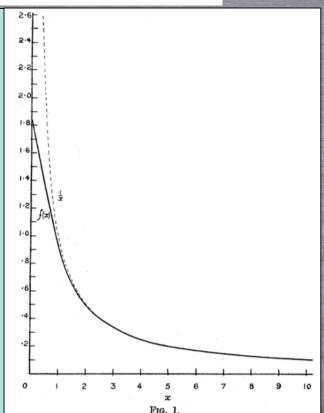
Von W. Heisenberg und H. Euler in Leipzig.

Mit 2 Abbildungen. (Eingegangen am 22. Dezember 1935.)

$$\mathfrak{L} = \frac{1}{2} \left(\mathfrak{E}^2 - \mathfrak{B}^2 \right) + \frac{e^2}{h c} \int_{0}^{\infty} e^{-\eta} \frac{\mathrm{d} \eta}{\eta^3} \left\{ i \eta^2 \left(\mathfrak{E} \mathfrak{B} \right) \cdot \frac{\cos \left(\frac{\eta}{|\mathfrak{E}_k|} \sqrt{\mathfrak{E}^2 - \mathfrak{B}^2 + 2i (\mathfrak{E} \mathfrak{B})} \right) + \mathrm{konj}}{\cos \left(\frac{\eta}{|\mathfrak{E}_k|} \sqrt{\mathfrak{E}^2 - \mathfrak{B}^2 + 2i (\mathfrak{E} \mathfrak{B})} \right) - \mathrm{konj}} + |\mathfrak{E}_k|^2 + \frac{\eta^2}{3} \left(\mathfrak{B}^2 - \mathfrak{E}^2 \right)$$

Born-Infeld Theory

Foundations of the New Field Theory.

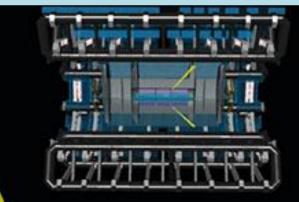

By M. BORN and L. INFELD,[†] Cambridge.

(Communicated by R. H. Fowler, F.R.S.-Received January 26, 1934.)

• Original Born-Infeld modification of QED:

$$L = b^2 \left(\sqrt{1 + \frac{1}{b^2} (H^2 - E^2)} - 1 \right).$$

- Based on "unitarian" idea of maximum electromagnetic field, cf, velocity of light
- Limit on Coulomb potential

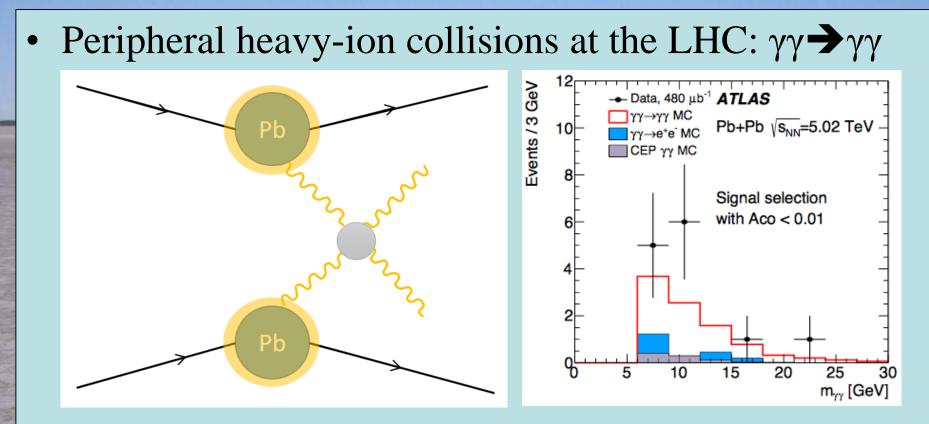

Born-Infeld & String Theory

• Original Born-Infeld modification of QED: Born & Infeld 1934

$$\mathcal{L}_{\text{QED}} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} \to \mathcal{L}_{\text{BI}} = \beta^2 \left(1 - \sqrt{1 + \frac{1}{2\beta^2} F_{\mu\nu} F^{\mu\nu} - \frac{1}{16\beta^4} (F_{\mu\nu} \tilde{F}^{\mu\nu})^2} \right)$$

- Derived from string theory: Fradkin & Tseytlin 1985 in D dimensions: $\int d^{D}y \left[\det \left(\delta_{\mu\nu} + 2\pi \alpha' F_{\mu\nu} \right) \right]^{1/2}$ 4 dimensions: $[\det(\delta_{\mu\nu} + \overline{F}_{\mu\nu})]^{1/2} = [1 + \frac{1}{2}\overline{F}_{\mu\nu}^2 + \frac{1}{16}(\overline{F}_{\mu\nu}\overline{F}_{\mu\nu}^*)^2]^{1/2}$ • Limiting gauge field $\leftarrow \rightarrow$ brane velocity = light $\mathcal{L}_{BI} \propto \sqrt{1 - (2\pi lpha' e \mathbf{E})^2} \quad \leftrightarrow \quad \mathcal{L}_{particle} \propto \sqrt{1 - v^j v_j}$ • Mass scale $M = \sqrt{\beta}$
 - ← → 1/distance between branes, \geq TeV?

Light-by-Light Scattering

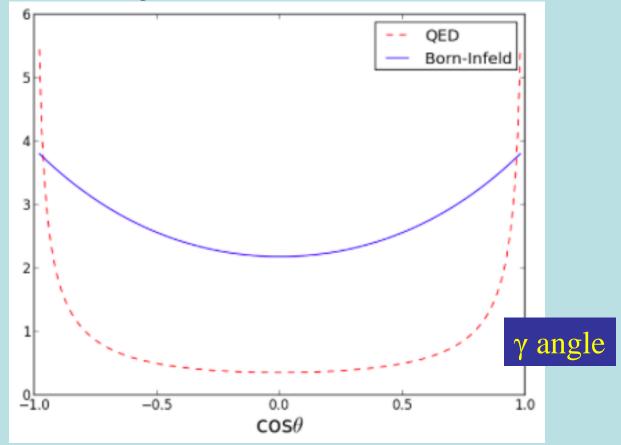


Run: 287931 Event: 461251458 2015-12-13 09:51:07 CEST

A window on dimension-8 operators

ATLAS Collaboration, arXiv:1702.01625, Nature Physics, doi:10.1038/nphys4208

First Measurement of Light-by-Light Scattering

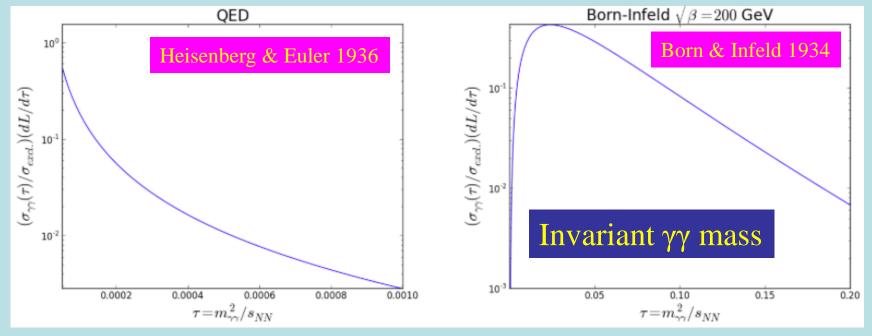


- Expected in ordinary QED from fermion loops
- ATLAS measurement agrees with QED
- Can be used to constrain nonlinearities in Born-Infeld

Light-by-Light Scattering: QED vs Born-Infeld

JE, Mavromatos & You, arXiv:1703.08450

• Characteristic angular distributions

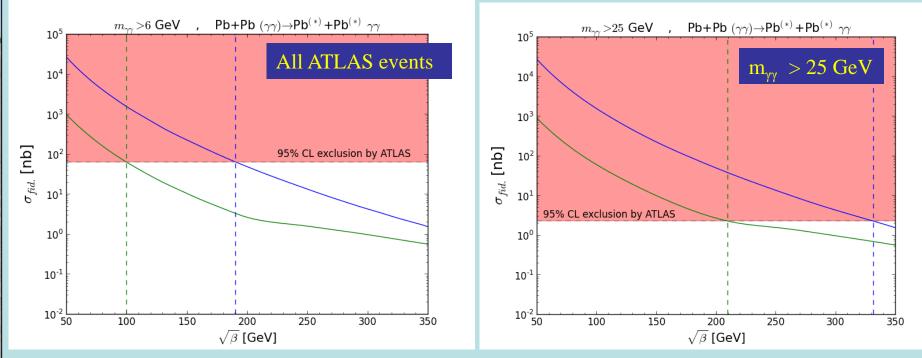


• Born-Infeld more isotropic, larger γγ masses

Light-by-Light Scattering: QED vs Born-Infeld

JE, Mavromatos & You, arXiv:1703.08450

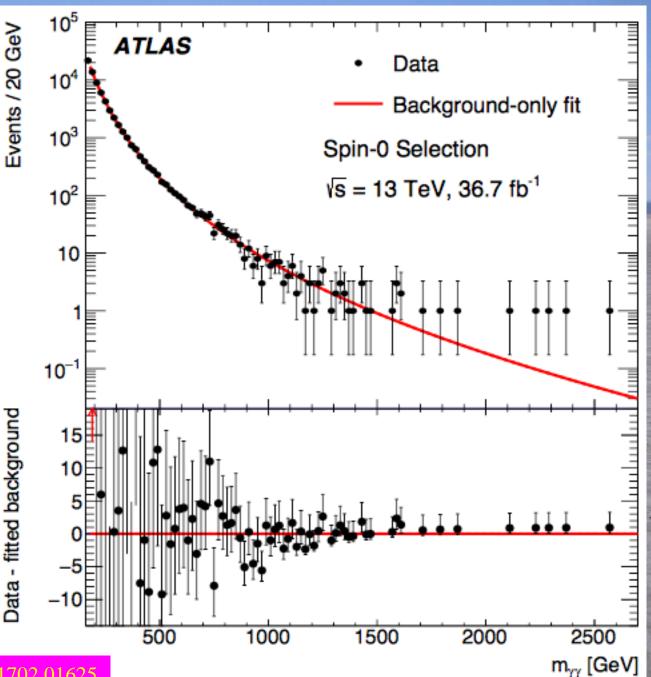
Characteristic mass distributions



- Born-Infeld → larger γγ masses
- Conservative constraint: use total # of ATLAS events
- Plausible approach: cut $m_{\gamma\gamma} > 25$ GeV (no events)

Constraint on Born-Infeld Scale

JE, Mavromatos & You, arXiv:1703.08450

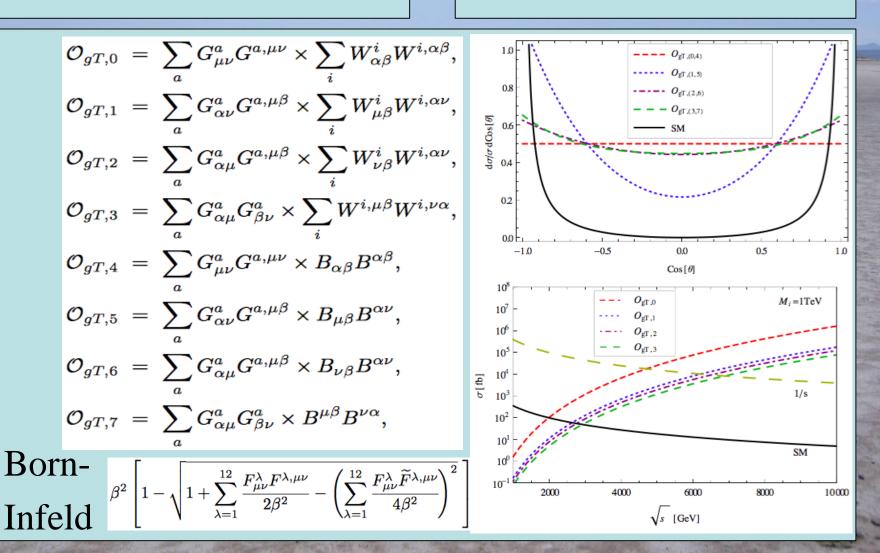

• ATLAS constraint on $\sigma(\gamma\gamma \rightarrow \gamma\gamma)$ constrains $M = \sqrt{\beta}$

- All events with $m_{\gamma\gamma} \leq M$: limit $M \approx 100, 210 \text{ GeV}$
- Assume $\sigma = 1/m_{\gamma\gamma}^2$ at higher masses: M \approx 190,330 GeV
- Entering range of low-scale brane models

Production of Isolated $\gamma\gamma$ at LHC

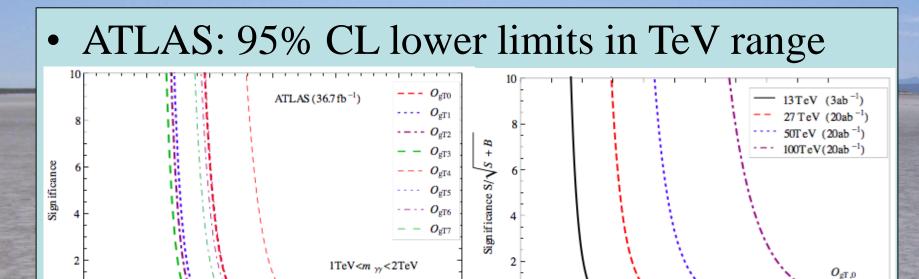
- Data agree with SM
- Can be used to constrain dimension-8 ggyy operators

Collaboration. arXiv:1702.01625


- fitted

JE & Ge, arXiv:1802.02416

Effects of Dimension-8 ggyy Operators


Dimension-8 operators

Cross sections

IE & Ge, arXiv:1802.02416

Constraints from Collider Data

 Sou 100 150 200 250 30 0 5 10 *M_i* [GeV]
 Prospective sensitivities of future colliders in multi-TeV range

• Unique window on dimension-8 physics

Summary

- EFTs are good to look for new physics in a model-independent way ③
- Proven track record (weak and strong forces)
- SMEFT good way to analyze LHC & other data in a global way (EW + H + diboson)
- LHC Run 2 data significant step forward
- No hint yet of any deviation from SM $\ensuremath{\mathfrak{S}}$
- Much more data to come S