Higgs predictions for the HL/HE-LHC: LHCHXSWG1 activities

Fabrizio Caola, IPPP Durham, for the WG1 conveners

Slides based on input from the subgroup conveners. Many thanks for their work!

ggF: inclusive results

Already now, refined theoretical description

ggF: more on ``PDF" effects

Results including N³LL_{soft} + LL_x resummation

\sqrt{s}	$\sigma_{\mathrm{N^3LO}+\mathrm{N^3LL}+\mathrm{LL}x}$	$= \sigma_t + \Delta \sigma_{bc} + \Delta \sigma_{\rm EW}$	$\delta_{ m scale}^{ m 42var}$	$\delta_{ m PDFs}$	$\delta_{ m subl.logs}$	$\frac{\sigma_{\mathrm{N}^{3}\mathrm{LO}+\mathrm{N}^{3}\mathrm{LL}+\mathrm{LL}x}}{\sigma_{\mathrm{N}^{3}\mathrm{LO}}}$	Bonvi
$13 { m TeV}$	48.93 pb	(49.26 - 2.66 + 2.33) pb	$^{+4.0}_{-3.8}\%$	$\pm 1.2\%$	$\pm 1.8\%$	1.020	ŗ,
$14 { m TeV}$	55.22 pb	(55.56 - 2.96 + 2.63) pb	$^{+4.0}_{-3.8}\%$	$\pm 1.1\%$	$\pm 1.9\%$	1.023	Ma
$27 { m TeV}$	151.6 pb	(151.6 - 7.2 + 7.2) pb	$^{+4.0}_{-4.0}\%$	$\pm 1.0\%$	$\pm 2.3\%$	1.046	rza
							ni]
					Ch	ande wirt N ³	\bigcirc

- Small impact of N³LL_{soft} resummation on top of N³LO (~1%)
- Larger ~few percent impact of small-x resummation
- It seems (to me) that the bulk of the effect comes from large modifications of the gluon in the HERA region
- Effect washed out by evolution, but not completely
- LL_x analysis, potentially large subleading effects

many thanks to G. Salam for discussions on this topic

ggF: more on ``PDF" effects

\sqrt{S}	$\sigma_{\mathrm{N^3LO}+\mathrm{N^3LL}+\mathrm{LL}x}$	$= \sigma_t + \Delta \sigma_{bc} + \Delta \sigma_{\rm EW}$	$\delta_{ m scale}^{ m 42var}$	$\delta_{ m PDFs}$	$\delta_{ m subl.logs}$	$\frac{\sigma_{\mathrm{N}^{3}\mathrm{LO}+\mathrm{N}^{3}\mathrm{LL}+\mathrm{LL}x}}{\sigma_{\mathrm{N}^{3}\mathrm{LO}}}$
$13 { m TeV}$	48.93 pb	(49.26 - 2.66 + 2.33) pb	$^{+4.0}_{-3.8}\%$	$\pm 1.2\%$	±1.8%	1.020
$14 { m TeV}$	55.22 pb	(55.56 - 2.96 + 2.63) pb	$^{+4.0}_{-3.8}\%$	$\pm 1.1\%$	$\pm 1.9\%$	1.023
$27 { m ~TeV}$	151.6 pb	(151.6 - 7.2 + 7.2) pb	$^{+4.0}_{-4.0}\%$	$\pm 1.0\%$	$\pm 2.3\%$	1.046

Small-x resummation beyond LL_x (= first non-trivial order) unavailable At this level of precision: theory error on PDF needed

many thanks to G. Salam for discussions on this topic

ggF: status and prospects

YR4, inclusive cross-section:

 $\sigma = 48.58 \, \text{pb}_{-3.27 \, \text{pb} \, (-6.72\%)}^{+2.22 \, \text{pb} \, (+4.56\%)} \, \text{(theory)} \pm 1.56 \, \text{pb} \, (3.20\%) \, \text{(PDF+}\alpha_s) \, .$

$48.58{\rm pb} =$	$16.00\mathrm{pb}$	(+32.9%)	(LO, rEFT)
	$+20.84\mathrm{pb}$	(+42.9%)	(NLO, rEFT)
	$-2.05\mathrm{pb}$	(-4.2%)	((t, b, c), exact NLO)
	$+ 9.56\mathrm{pb}$	(+19.7%)	(NNLO, rEFT)
	$+ 0.34 \mathrm{pb}$	(+0.7%)	$(NNLO, 1/m_t)$
	$+ 2.40\mathrm{pb}$	(+4.9%)	(EW, QCD-EW)
	+ 1.49 pb	(+3.1%)	$(N^{3}LO, rEFT)$

YR4, main sources of uncertainty

δ (scale)	$\delta(\text{trunc})$	δ (PDF-TH)	$\delta(\mathrm{EW})$	$\delta(t,b,c)$	$\delta(1/m_t)$
$+0.10 \text{ pb} \\ -1.15 \text{ pb}$	$\pm 0.18~{ m pb}$	$\pm 0.56~\mathrm{pb}$	$\pm 0.49~\mathrm{pb}$	$\pm 0.40~\mathrm{pb}$	$\pm 0.49~\mathrm{pb}$
$+0.21\% \\ -2.37\%$	$\pm 0.37\%$	$\pm 1.16\%$	$\pm 1\%$	$\pm 0.83\%$	$\pm 1\%$

ggF: status and prospects

YR4, inclusive cross-section:

 $\sigma = 48.58 \, \text{pb}_{-3.27 \, \text{pb} \, (-6.72\%)}^{+2.22 \, \text{pb} \, (+4.56\%)} \, \text{(theory)} \pm 1.56 \, \text{pb} \, (3.20\%) \, \text{(PDF+}\alpha_s) \, .$

ggF: more differential

Good control over Higgs pt distribution

ggF: boosted

$\sigma_{gg}(p_{\perp} > p_{\perp,cut}) =$	1 fb	1 ab
bb	~900 GeV	~2.4 TeV
ττ	~600 GeV	~1.8 TeV
eµvv	~300 GeV	~1.1 TeV
γγ	~300 GeV	~1.1 TeV
e+e-h+h-	~60 GeV	~600 GeV

ggF: boosted

Ongoing work: predictions including all channels

- Recent result: NLO predictions with top-mass effects.
 Scale variation: ~ 20% [1801.08226, 1802.02981, 1802.00349]
- Ongoing work for LHC13 recommendation
- Studies can be extender to HL/HE
- Significant progress beyond this: likely very slow...

VBF: see A. Karlberg's talk

slides from A. Karlberg

VBF Higgs Production at the HL-/HE-LHC

Alexander Karlberg

In collaboration with Juan M. Cruz-Martinez CERN

Inclusive results¹

\sqrt{s}	$\sigma_{\rm DIS}^{\rm (incl)}$ [pb]	$\delta_{EW}[\%]$	$\sigma_\gamma[fb]$	$\sigma_{s-channel}[fb]$
13 TeV	3.928	-5.3	35.3	1412
14 TeV	4.461	-5.4	40.7	1555
27 TeV	12.41	-6.2	129	3495

- Growth of electroweak corrections with energy as expected.
- *γ* contribution at 1% at all energies. Reduction compare to YR4.
- s-channel contribution relatively smaller at 27 TeV

¹Thanks to Alexander Mueck et al. for EW results from HAWK

Slide 2/6 — Alexander Karlberg — VBFH@HL-/HE-LHC

VBF cuts

- The VBF cross section is very sensitive to the jet definition (here anti- k_t , R = 0.4)
- This is due to p_{t,j} ~ m_W for all collider energies
- With 30 GeV jets, ~ 30% of the signal is lost
- With 50 GeV jets, that increases to almost 70%

Detector acceptance

- The typical VBF topology consists of two forward jets
- The higher the collider energy the more forward they tend to be
- With current CMS and ATLAS detectors $\sim 20\%^2$ of the jets will be lost at 27 TeV

 $^2At~14$ TeV the number is $\sim 5\%$

Detector acceptance

- Imposing "typical" VBF cuts of $m_{jj} > 600$ GeV, $\Delta y_{jj} > 4.5$ and $y_{j_1}y_{j_2} < 0$ makes the situation even worse
- This is expected as we now force the jets to be forward
- With current CMS and ATLAS detectors ~ 30% of the VBF events will be lost at 27 TeV

VBF conclusion

- The VBF program at HE-LHC will be very dependent on the jet definition and rapidity reach of the ATLAS and CMS detectors
 - In a "worst case" scenario of $p_{T,j} > 50$ GeV and no increase in rapidity reach compared to now, $\sim 80-85\%$ of the VBF signal is lost before VBF cuts are applied
- One thing we are currently considering: Will "typical" VBF cuts change a lot at 27 TeV?
 - We have already carried out some studies for signal, but i is curcial to also study the ggHjj background in detail

VH: predictions for total rates

 NNLO QCD + NLOEW [thanks to R. Harlander, S. Dittmaier & collaborators] for providing input]

- Same baseline of YR4, but LUXqed_plus_PDF4LHC15_nnlo PDF set
- m_H=125.09 GeV [124.59, 125.59 available]

							_
		14 TeV			27 TeV		
	σ [pb]	Δ_{μ_r,μ_f}	Δ_{PDF}	σ [pb]	Δ_{μ_r,μ_f}	$\Delta_{ m PDF}$	
W+H	0.91	+0.6% - 0.8%	1.8%	2.0	+0.4% -1.0%	1.8%	wov
W-H	0.59	+0.6% - 0.7%	2.0%	1.4	+0.4% - 0.9%	2.0%	
I+v H	0.10	+0.6% - 0.7%	1.7%	0.23	+0.4% -1.0%	1.7%	
γ-induced only	4.6 10 ⁻³			1.5 10 ⁻²			with γ
I-⊽ H	0.07	+0.5% - 0.6%	1.9%	0.16	+0.3% -0.9%	1.9%	
γ-induced only	3.1 10 ⁻³			1.1 10-2			

- Photon contribution under full control
- Marginally larger impact at 27 TeV
- Good perturbative control, but <u>beware of tiny error in inclusive numbers</u>

VH: predictions for total rates

- NNLO QCD + NLOEW [thanks to R. Harlander, S. Dittmaier & collaborators for providing input]
- Same baseline of YR4, but LUXqed_plus_PDF4LHC15_nnlo PDF set
- m_H=125.09 GeV [124.59, 125.59 available]

VH: more differential results

- NNLOPS available. In most cases small ~2/3% shower effects
- Larger corrections to exclusive observables
- Jet bins still poorly understood

14

VH: more differential results

Semi-boosted region: shape corrections from radiation off $H \rightarrow bb$

- Bulk of the effect captured by PS
- Interesting (non-trivial) dependence on y_b [arXiv:1712.06954]
- Recent results, more studies needed

ttH: prediction for total rates

NLO QCD + NLOEW results

$M_{\rm H}[{\rm GeV}]$	$\sigma_{\rm QCD+EW}^{\rm NLO}[{\rm fb}]$	Scale[%]	$\alpha_s[\%]$	PDF[%]	PDF+ α_s [%]
124.59	619.3	+6.1 - 9.2	± 1.9	± 2.9	± 3.5
125.09	612.8	+6.0 - 9.2	± 1.9	± 2.9	± 3.5
125.59	605.6	+6.1 - 9.2	± 1.9	± 2.9	± 3.5

Table 1: NLO QCD+EW cross sections for $t\bar{t}H$ production at the 14 TeV LHC.

$M_{\rm H}[{\rm GeV}]$	$\sigma_{\rm QCD+EW}^{\rm NLO}[{\rm pb}]$	Scale[%]	$\alpha_s[\%]$	PDF[%]	PDF+ α_s [%]
124.59	2.90	+7.9 - 9.0	± 1.8	± 2.1	± 2.8
125.09	2.86	+7.8 - 9.0	± 1.8	± 2.1	± 2.8
125.59	2.84	+7.8 - 9.0	± 1.8	± 2.1	± 2.8

Table 2: NLO QCD+EW cross sections for $t\bar{t}H$ production at the 27 TeV LHC.

- Dominant ambiguity: scale variation
- Can only be improved by NNLO calculation → well beyond what we can do today
- Although unrealistic in the near future, foreseeable on HL-LHC timescales
- Reasonable expectation: factor of 2 improvement on theoretical prediction

ttH: main problem

Poor theoretical modeling of ttbb and ttW+jets backgrounds via Monte Carlo generators

Selection	Tool	$\sigma_{\rm NLO}[{\rm fb}]$	$\sigma_{\rm NLO+PS} [{\rm fb}]$	$\sigma_{ m NLO+PS}/\sigma_{ m NLO}$	
$n_b \ge 1$	SHERPA+OPENLOOPS	$12820^{+35\%}_{-28\%}$	$12939^{+30\%}_{-27\%}$	1.01	
	MADGRAPH5_AMC@NLO		$13833^{+37\%}_{-29\%}$	1.08	
	POWHEL		$10073_{-29\%}^{+45\%}$	0.79	
$n_b \ge 2$	SHERPA+OPENLOOPS	$2268^{+30\%}_{-27\%}$	$2413^{+21\%}_{-24\%}$	1.06	
	MadGraph5_aMC@NLO		$3192^{+38\%}_{-29\%}$	1.41	
	POWHEL		$2570^{+35\%}_{-28\%}$	1.13	

Shower effects enhanced in the signal region

- Big ongoing effort of the ttH subgroup to investigate this issue (uncertainty estimate, improvements...)
- Unrealistic to expect major developments for the report
- Estimate on a 5-10y timescale: background uncertainties reduced by a factor 2~3.

Conclusions

- Cross-section predictions for all the main channels available for HL/HE-LHC
- Major obstacles / estimates for improvement are becoming clear
- Several LHC13 studies going on, many could be easily extended to HL(HE)-LHC
- Other studies ongoing (off-shell, differential distributions, detector reach, fiducial region definition...)

Many thanks to the subgroup conveners and all the people who contributed for providing these results