High energy probes and EFT at HE/HL LHC

18 June 2018

Thomas Klijnsma

On behalf of the ATLAS and CMS collaborations

Introduction

- Precision era: Looking for modifications of the standard model
 - Which manifest not per se in total yields, but rather in distortions of (differential) spectra, or in tails
- EFT: Adding operators to the SM Lagrangian
 - Dim 6 example: affects differential Higgs cross sections
 - Dim 8 example: affects anomalous quartic gauge coupling (aQGC) in VBS

Outline

Differential cross sections

- Attainable uncertainties on spectra at HL-LHC
- Interpretations in terms of Higgs coupling modifiers

VBF/VBS

- EFT for VBS
- Summary of results & projections

Introduction: Differential cross sections

- What is so interesting about the differential cross sections?
 - Measures not only the inclusive cross section, but also the shape of the distribution
 - The shape may be tested versus its Standard Model expectation
 - Relatively small coupling variations lead to significant shape distortions

Introduction: Differential cross sections

Transverse momentum p_T^H

- Sensitivity to modifications of effective Higgs
 Yukawa couplings at low p_T
- Sensitivity to finite top mass effects at high pt

Introduction: Differential cross sections

- Jet multiplicity N_{jets} & p_T
 of the first jet p^T_{jet1}
 - New physics in the loop, sensitivity at high p_T
- Rapidity ly^HI
 - Theory distribution mostly determined by the gluon PDF; possible test

The current state

 Primary measurements of differential cross sections from H to 2 photons and H to 4 leptons

Current state for 13 TeV:

	ATLAS	CMS
Н→γγ	p _T H, N _{jets} , p ^T _{jet1} , yH [1802.04146]	p _T H, N _{jets} [CMS-PAS-HIG-17-015]
H→ZZ	p _T H, N _{jets} [1712.02304]	p _T ^H , N _{jets} , p ^T _{jet1} [JHEP 1711 (2017) 047]
Combination	[ATLAS-CONF-2018-002]	

p_T^H: ATLAS

- Fleshed out combination from ATLAS
- Particular improvement in the low p_T region
- 20%-40%
 uncertainties, mostly
 statistically dominated

p_T^H: Projections from ATLAS

- ~5% uncertainties for H $\rightarrow \gamma \gamma$, between 5-10% for H $\rightarrow ZZ$
- For H \rightarrow $\gamma\gamma$, Improvement by a factor of ~8-9, really close to $\sqrt{3000/36} \simeq 9$ (scaling only stat., assuming same syst.)
- <5% uncertainty achievable with a combination

- Proper combination ongoing, but we can make an attempt:
 - Assume no correlations, and no bin-to-bin migrations

DISCLAIMER: NOT A PROPER COMBINATION; BALLPARK ESTIMATE

- Doing a very basic combination
 - No bin-to-bin correlations/migrations
 - Simple x2 fit (entries) weighted by uncertainty)
 - This is **not** a proper combination and not a CMS result
 - This study indicates a similar pattern to ATLAS: 20-30% statistically dominated uncertainties

p_T^H: Projections from CMS

- Projection available for **H** → **ZZ**
 - 5-10%
 uncertainties,
 comparable to
 ATLAS H → ZZ

p_T^H: Projections from CMS

- No proper projection for the **combination** yet, but simply scaling observed uncertainties by $\sqrt{35.9/3000}$
- Moved central values to SM expectation
- Yields ~3%
 uncertainties (a bit by construction of course),
 comparable to the
 ATLAS projections

Remarks on p_T^H

- Uncertainties of the order of a few percent seem achievable for HL-LHC, with 𝒪(10) bins up to p_T 350 GeV
- Currently, uncertainties are very statistically dominated
 - Differentials are not hit as hard by the 'systematics wall'
 - Good motivation to combine results from both experiments
- Possibility to improve further by including more decay channels in the combination: H → WW, VH → bb (planned by ATLAS), (boosted) H → bb, etc.

- p_T spectrum can be used to fit Kt VS. Cg
 - Modify Lagrangian:

$$\mathcal{L} = \mathcal{L}_{ ext{SM}} \, + \, rac{lpha_S}{\pi v} c_g h G^a_{\mu
u} G^{a,\mu
u}$$
 (dim-6)

$$(\kappa_t = 1, c_g = 0) \sim SM,$$

 $(\kappa_t = 0, c_g = \sim 1/12) \sim$ point-like coupling of the Higgs to gluons

- p_T spectrum can be used to fit Kt VS. Cg
 - Modify Lagrangian:

$$\mathcal{L} = \mathcal{L}_{ ext{SM}} \, + \, rac{lpha_S}{\pi v} c_g h G^a_{\mu
u} G^{a,\mu
u}$$

$$(\kappa_t = 1, c_g = 0) \sim SM,$$

 $(\kappa_t = 0, c_g = 0.007) \sim$ point-like coupling of the Higgs to gluons

- p_T spectrum can be used to fit Kt VS. Cg
 - Modify Lagrangian:

$$\mathcal{L} = \mathcal{L}_{ ext{SM}} \, + \, rac{lpha_S}{\pi v} c_g h G^a_{\mu
u} G^{a,\mu
u}$$

$$(\kappa_t = 1, c_g = 0) \sim SM,$$

 $(\kappa_t = 0, c_g = 0.007) \sim$ point-like coupling of the Higgs to gluons

- p_T spectrum can be used to fit K_t vs. C_q
 - Modify Lagrangian:

1.8 1.6 1.4 1.2

0.8 0.6 0.4 0.2

$$\mathcal{L} = \mathcal{L}_{ ext{SM}} \, + \, rac{lpha_S}{\pi v} c_g h G^a_{\mu
u} G^{a,\mu
u}$$

50

CMS 35.9 fb⁻¹

CMS 3000 fb⁻¹

100

- p_T spectrum can be used to fit Kt VS. Cg
 - Modify Lagrangian:

1.8 1.6 1.4 1.2

0.8 0.6 0.4 0.2

$$\mathcal{L} = \mathcal{L}_{ ext{SM}} \, + \, rac{lpha_S}{\pi v} c_g h G^a_{\mu
u} G^{a,\mu
u}$$

CMS 35.9 fb⁻¹

CMS 3000 fb⁻¹

In this plot, missing strong discrimination power from >400 GeV 150 $p_T(H)$ [GeV]

VBS / VBF

VBS / VBF

VBS / VBF

 VBF

 Not sure if Higgs is solely responsible

diverge

 Explore high energy, see if Higgs preserves unitarity at all energies Without the Higgs (or some $_{V_4}$ other NP), cross sections Not sure if Higgs is

H

Quartic Gauge Coupling, only few diagrams allowed in the SM:

Any other couplings would be NP

Parametrizable via EFT

Explore high energy, see if Higgs preserves unitarity at all energies

solely responsible

diverge

ETH zürich (PA 23

EFT approach

Add higher dimension operators to the SM Lagrangian:

$$\mathcal{L} = \mathcal{L}_{\text{SM}} + \sum_{i} \frac{c^{(6)}}{\Lambda^2} \mathcal{O}_i^{(6)} + \sum_{j} \frac{c^{(8)}}{\Lambda^2} \mathcal{O}_j^{(8)} + \dots$$

• Compare measurements under \mathcal{L} vs. $\mathcal{L}_{\mathrm{SM}}$, look for NP!

EFT approach

Add higher dimension operators to the SM Lagrangian:

$$\mathcal{L} = \mathcal{L}_{SM} + \sum_{i} \frac{c^{(6)}}{\Lambda^2} \mathcal{O}_i^{(6)} + \sum_{j} \frac{c^{(8)}}{\Lambda^2} \mathcal{O}_j^{(8)} + \dots$$

- Compare measurements under \mathcal{L} vs. $\mathcal{L}_{\mathrm{SM}}$, look for NP!
- dim-8 operators needed to induce (anomalous) QGC without TGC vertices
 - Modifications of existing SM vertices, and newly allowed vertices

Experimental aspects of VBS

Experimental aspects of VBS

- Currently statistically limited at high energy
- General prospects of HL LHC:
 - Better statistics in the tail
 Harsh pileup conditions
 - Better forward coverage
 - Availability of differential cross sections

VBS: Same-sign WW → IvIv

- ssWW largest σ_{EW}/σ_{QCD}
- Recent 5.5
 (5.7) σ
 observed
 - (expected)
 significance
 by CMS
- Increased reach projected at HL-LHC

VBS: Same-sign WW → IvIv

95% CLs @ 3000 fb⁻¹

	•			
	Phase I	Phase II	Phase I aged	Run-I results
	\bullet (TeV $^{-4}$)	(TeV^{-4})	(TeV^{-4})	(TeV^{-4})
S_0	2.47	2.49	2.85	43 [12]
S_1	8.19	8.25	9.45	131 [12]
M_0	1.88	1.76	2.03	131 [12]
M_1	2.54	2.38	2.72	1.7 [38] 💍
M_6	3.78	3.54	4.05	69 [12] 🙎
M_7	3.42	3.24	3.75	73 [12]
$\mid T_0$	0.17	0.17	0.19	69 [12] SMP-1 73 [12] -14-008 3.4 [39] -2.4 [12] -8
T_1	0.078	0.070	0.080	2.4 [12]
T_2	0.25	0.23	0.25	7.1 [12]

95% CLs @ 35.9 fb⁻¹

	Observed limits (TeV ⁻⁴)	Expected limits (TeV
f_{S0}/Λ^4	[-7.7, 7.7]	[-7.0, 7.2]
f_{S1}/Λ^4	[-21.6, 21.8]	[-7.0, 7.2] $[-19.9, 20.2]$ $[-5.6, 5.5]$ $[-7.9, 8.5]$
f_{M0}/Λ^4	[-6.0, 5.9]	[-5.6, 5.5]
f_{M1}/Λ^4	[-8.7, 9.1]	[-7.9, 8.5]
f_{M6}/Λ^4	[-11.9, 11.8]	[-11.1, 11.0]
f_{M7}/Λ^4	[-13.3, 12.9]	[-11.1, 11.0] [-12.4, 11.8] [-0.58, 0.61]
f_{T0}/Λ^4	[-0.62, 0.65]	[-0.58, 0.61]
f_{T1}/Λ^4	[-0.28, 0.31]	[-0.26, 0.29]
f_{T2}/Λ^4	[-0.89, 1.02]	[-0.80, 0.95]

 Projected limits on dim-8 operators show much stronger constraints

VBS: Same-sign WW → IvIv

Forward tracking upgrades: **15%** precision improvement of cross section

[ATL-PHYS-PUB-2017-023]

95% CLs @ 3000 fb⁻¹

	Phase I	Phase II	Phase I aged	Run-I results
	• (TeV $^{-4}$)	(TeV^{-4})	(TeV^{-4})	$\left \text{ (TeV}^{-4} \right) \right $
S_0	2.47	2.49	2.85	43 [12]
S_1	8.19	8.25	9.45	131 [12]
M_0	1.88	1.76	2.03	131 [12]
M_1	2.54	2.38	2.72	1.7 [38] 💍
M_6	3.78	3.54	4.05	69 [12] 🙎
M_7	3.42	3.24	3.75	69 [12] SMP-14-008
T_0	0.17	0.17	0.19	3.4 [39]
T_1	0.078	0.070	0.080	2.4 [12]
T_2	0.25	0.23	0.25	7.1 [12]

95% CLs @ 35.9 fb⁻¹

	Observed limits (TeV ⁻⁴)	Expected limits (TeV
f_{S0}/Λ^4	[-7.7, 7.7]	[-7.0, 7.2]
f_{S1}/Λ^4	[-21.6, 21.8]	
f_{M0}/Λ^4	[-6.0, 5.9]	[-19.9, 20.2] $[-5.6, 5.5]$ $[-7.9, 8.5]$
$f_{\rm M1}/\Lambda^4$	[-8.7, 9.1]	[-7.9, 8.5]
f_{M6}/Λ^4	[-11.9, 11.8]	[-11.1, 11.0]
f_{M7}/Λ^4	[-13.3, 12.9]	[-11.1, 11.0] [-12.4, 11.8] [-0.58, 0.61]
f_{T0}/Λ^4	[-0.62, 0.65]	[-0.58, 0.61]
f_{T1}/Λ^4	[-0.28, 0.31]	[-0.26, 0.29]
f_{T2}/Λ^4	[-0.89, 1.02]	[-0.80, 0.95]

Projected limits on dim-8 operators show much stronger constraints

VBS: WZ → IVII

- Larger σ than VBS ZZ, while still able to construct m_{VV}
- Attainable sensitivity in the tails at high lumi
- Much better precision on the cross section
- 5σ discovery values:

[ATLAS-PHYS-PUB-2013-006]

	$300{\rm fb^{-1}}$	$3000{\rm fb^{-1}}$
f_{T1}/Λ^4	1.3 TeV^{-4}	$0.6 \mathrm{TeV^{-4}}$

VBS: ZZ → IIII

- Fully reconstructable final state
- 13 TeV CMS result, reaching up to mzz ~1600 GeV

Coupling	Exp. lower	Exp. upper	Obs. lower	Obs. upper
$f_{ m T0}/\Lambda^4$	-0.53	0.51	-0.46	0.44
$f_{ m T1}/\Lambda^4$	-0.72	0.71	-0.61	0.61
$f_{ m T2}/\Lambda^4$	-1.4	1.4	-1.2	1.2
$f_{ extsf{T8}}/\Lambda^4$	-0.99	0.99	-0.84	0.84
$f_{ m T9}/\Lambda^4$	-2.1	2.1	-1.8	1.8

Projection from ATLAS
 (m_{jj} > 1 TeV)

- Projections for VBF
 - Good for precision measurements of the Higgs signal strength, and couplings to other particles

Conclusion

- HL-LHC opens up some interesting avenues for NP-searches at high energy
 - Deviations in differential spectra at high pT can be fitted to Higgs coupling modifiers, e.g. κ_t/c_a
 - NP-potential in the tails of VBS
- EFT in both cases a good framework for interpretation
 - Interpretation by theorists or experimentalists?
- Both cases currently limited by statistics
 - 3 ab⁻¹ of data opens up possibilities for new measurements, and would provide competitive limits on Higgs couplings

Back up

Introduction

Transverse momentum p_T^H

- Sensitivity to modifications of effective Higgs Yukawa couplings
- Sensitivity to finite top mass effects
- Jet multiplicity N_{jets} & p_T of the first jet p^T_{jet1}
 - New physics in the loop, sensitivity at high p_T

Rapidity ly^HI

 Theory distribution mostly determined by the gluon PDF; possible test

Banfi, Martin, Sanz (201 [1308.4771]

- Can use the p_T spectra to fit kb vs. Kc
 - Simply vary Kb vs. k_c until the spectrum matches the observed spectrum the best
 - What can we do with this at 3 ab-1?

Can use the p_T spectra to fit kb vs. Kc

> Simply vary Kb vs. k_c until the spectrum matches the observed spectrum the best

 What can we do with this at 3 ab⁻¹?

Can use the p_T spectra to fit kb vs. Kc

> Simply vary Kb vs. k_c until the spectrum matches the observed spectrum the best

 What can we do with this at 3 ab⁻¹?

- Theorist fit on ATLAS combined pTspecturm indicates κ_c sensitivity of order [-10, 10] @ 68% CL
- Projections*:
 - \sim [-1.5, 4.0] @ 300 fb⁻¹
 - \sim [-0.5, 3.0] @ 3000 fb⁻¹

- *: Some side notes:
- Optimistic projections for theory uncertainties
- Assuming also H → WW
- Correlations taken from 8 TeV case

