Top-quark studies at the HL/HE LHC

Marco Zaro

with material and input from Matteo Cacciari, Fabrizio Caola, Alexander Mitov, Davide Pagani, Andew Papanastasiou, Emanuele Re, Ioannis Tsinikos...

Disclaimer: Everything is preliminary!

Top-pair production

Total cross-section

✓ At a 27 TeV HE-LHC the top-pair production cross-section is very large:

 $\sigma_{tot} [27 \text{ TEV}, m_{top}=173.3 \text{ GeV}] = 3727 + 119 (3.2\%) - 179 (4.8\%) [pb]$ (in NNLO QCD)

✓ This is 4x larger than at LHC 14 TeV

✓ Composition of the initial state at 27 TeV:

✓ gg = 92% , qqbar = 6% , qg = 2%

✓ Approximately the same composition of the initial state as at 14 TeV:

✓ gg = 90% , qqbar = 9% , qg = 1%

Notes on differential production

- ✓ Emphasis will be on kinematic reach for both 14 TeV and 27 TEV
- ✓ At 14 TeV (HL-LHC):
 - ✓ Top quark results for 1-dim and 2-dim distributions
 - ✓ Lepton distributions (within fiducial volume from CMS)
 - Predictions for LHCb. There is non-trivial overlap with the other experiments will try to emphasise that.
- ✓ At 27 TeV (HE-LHC):
 - ✓ No experimental input.
 - The interest is in what one can do with top quarks. Therefore, only top-quark distributions will be discussed (no decays)
 - ✓ 1dim and 2-dim distributions shown.
 - ✓ FO-NLL predictions to be compared with fixed order ones.

Cumulative in M_{tt}

14TeV

✓ All at NLO QCD.

✓ Shown is: cumulative times max luminosity

- ✓ For tops: to add EW (and possibly NNLO?)
- Decay: if feasible, may add some NNLO corrections
- Assess the advantage of calorimeter upgrade (extended lepton tracking/b-tagging)

Cumulative in P_T

Cumulative in Y_t

Cumulative in Y_{tt} (both 1d and 2d for extracting PDFs)

Asymmetry

- Preliminary studies @NLO QCD, to be upgraded at NNLO QCD+NLOEW accuracy
- Experimental proposal for differential binning {350, 500, 750, 1000, 1250, 1500, 2000, 3000, 5000, 7000, 10000, 15000}

Marco Zaro, 18-05-2018

Single-top production

N \mathcal{W} Predictions for rates at 14 and 27 TeV

		14 TeV		27 TeV			
	σ [pb]	$\Delta_7^{\mu_r,\mu_f}$	Δ_{PDF}	σ [pb]	$\Delta_7^{\mu_r,\mu_f}$	$\Delta_{ m PDF}$	
$\sigma_{ m NLO,\ t-ch,\ }t$	156	+3% -2.2%	2,3 %	447	+3% -2.6%	2 %	
$\sigma_{ m NLO, \ t-ch, \ } \overline{t}$	94	+3.1% - 2.1%	3,1 %	299	+3.1% -2.5%	2,6 %	
$\sigma_{NLO, Wt} = \sigma_{NLO, Wt}$ $\mu_{r,f} = p_{\perp,b,veto} = 50 \text{ GeV}$	36	+2.9% -4.4%	5 %	137	+3.8% -6.1%	4 %	
$\sigma_{ m NLO,\ s-ch,\ }t$	6,8	+2.7% -2.2%	1,7 %	14,8	+2.7% -3.2%	1,8 %	
$\sigma_{ m NLO,\ s-ch,\ }ar{t}$	4,3	+2.7% -2.2%	1,8 %	10,4	+2.7% -3.3%	1,8 %	

PDF4LHC15_nlo_mc, μ₀=m_t=173.2 GeV, V_{tb}=1, 5FNS

- t-channel, NNLO: very similar central value, error reduced by ~1/2 [results for LHC14: Berger, Gao, Zu, arXiv:1708.09405]
- For differential distributions: error above is in many cases underestimate
- Nevertheless, good NLO \rightarrow NNLO convergence

Total t-channel cross section

Distributions (unit-normalised)

Distributions (unit-normalised)

- \bullet Smaller effects for jet multiplicity and $cos\theta_{\text{jet,lep}}$
- Any other useful distribution?

- Constrain V_{tX} with measurements of single-top production see e.g. Alwall et al, hep-ph/0607115, Lacker et al, arXiv:1202.4694
- NLO cross-sections (in pb), computed assuming V_{tX} =1 are listed below
- Differential studies can also be performed

√s	V _{tb} =1				V _{ts} =1			V _{td} =1		
[TeV]	t+ī	t	ī	t+ī	t	ī	t+ī	t	Ŧ	
13	260	155	105	546	331	215	1230	921	308	
14	291	175	116	608	371	237	1357	1008	348	
27	910	529	381	1697	995	702	3250	2262	988	

Top-pair production in association with a vector boson

N Predictions at complete-NLO accuracy for ttW

- Subleading contributions to ttW exist beyond NLO QCD and EW.An estimate based on coupling-constants suggest them to be negligible.
- This is not the case:
 - Relative contributions /LO1 (number in parentheses are for a 100 GeV jetveto)
 - LO_{2,3} are completely negligible (LO₂ is identically zero)
 - Because of the t-W scattering, NLO₃ is positive and (much) larger than NLO₂
 - The jet veto greatly reduces the NLO₁ (QCD corrections), which is dominated by hard radiation, and only mildly affects the other contributions

2

Cross-sections for ttW

Predictions at complete-NLO accuracy

Λ	$\sigma[{ m fb}]$	$\mathrm{LO}_{\mathrm{QCD}}$	$\rm LO_{QCD} + \rm NLO_{QCD}$	LO	LO + NLO	$\frac{\rm LO+NLO}{\rm LO_{QCD}+NLO_{QCD}}$
T	$\mu = H_T/2$	$414_{-18\%}^{+23\%}$	$628^{+11\%}_{-11\%} \ (521^{+5\%}_{-7\%})$	$418^{+23\%}_{-17\%}$	$670^{+12\%}_{-11\%}$ $(548^{+6\%}_{-7\%})$	1.07(1.05)
7	$\sigma[{ m fb}]$	$\rm LO_{QCD}$	$\rm LO_{QCD} + \rm NLO_{QCD}$	LO	LO + NLO	$\frac{\rm LO+NLO}{\rm LO_{QCD}+NLO_{QC}}$
	$\mu = H_T / 2$	$1182^{+21\%}$	$2066^{+14\%}_{-11\%}$ (1561 ^{+7\%})	$1194^{+21\%}$	$2329^{+14\%}_{11\%}$ (1750 ^{+7\%}) $1.13(1.12)$

Breakdown of contributions (w.r.t. LO₁)

$\delta[\%]$	$\mu = H_T/4$	$\mu = H_T/2$	$\mu = H_T$
$\begin{array}{c} \mathrm{LO}_2\\ \mathrm{LO}_3 \end{array}$	0.8	- 1.0	- 1.1
$\begin{array}{c} \mathrm{NLO}_1\\ \mathrm{NLO}_2\\ \mathrm{NLO}_3\\ \mathrm{NLO}_4 \end{array}$	$\begin{array}{c} 37.4(7.7)\\-4.5(-4.7)\\13.0(9.7)\\0.02(-0.00)\end{array}$	$51.8 (25.9) \\ -4.3 (-4.5) \\ 13.3 (9.9) \\ 0.03 (0.00)$	$\begin{array}{r} 64.7(41.9)\\-4.1(-4.3)\\13.6(10.1)\\0.05(0.01)\end{array}$

$\delta [\%]$	$\mu = H_T/4$	$\mu = H_T/2$	$\mu = H_T$
LO_2 LO_3	- 0.9	- 1.0	- 1.2
$\begin{array}{c} \mathrm{NLO}_1\\ \mathrm{NLO}_2\\ \mathrm{NLO}_3\\ \mathrm{NLO}_4 \end{array}$	$\begin{array}{c} 67.4(18.4)\\-5.1(-5.4)\\25.5(19.8)\\0.06(0.01)\end{array}$	74.8 (32.0) -5.0 (-5.2) 26.1 (20.2) 0.08 (0.02)	$\begin{array}{c} 82.0(44.3)\\ -4.8(-5.1)\\ 26.6(20.6)\\ 0.10(0.03)\end{array}$

Marco Zaro, 18-05-2018

Tables and results by Davide Pagani

 QCD corrections to ttW are dominated by hardjet and soft-W configurations (giant K-factors)

NI O

- A jet veto (p_T>100 GeV, |y|<2.5) disfavours these configurations, bringing more stable predictions
- NLO₃ (α_sα³) includes t-W scattering, large and positive contribution which survives jet veto:
 10/20/55% (vs NLO₁ 25/30/70%) w.r.t LO₁ at
 14/27/100 TeV, while EW (α_s²α²) corrections are ~-5%
- Complete-NLO and NLO QCD+EW bands barely overlap in large part of the phase-space Marco Zaro, 18-05-2018

Cross-sections for $t\overline{t}Z$

Frixione, Hirschi, Pagani, Shao, MZ arXiv:1504.03446

- For ttZ, corrections beyond (N)LO₂ are negligible. Use NLO QCD+EW
- For 14 TeV, see YR4 (Table 41)

Process	\sqrt{s}	$\sigma_{ m QCD}^{ m NLO}$	$\sigma_{ m QCD+EW}^{ m NLO}$	$K_{\rm QCD}$	$\delta_{\rm EW}[\%]$	Scale[%]	PDF[%]	$lpha_S$ [%]
$t\bar{t}Z$	14	1018(2.2)	1015(2.2)	1.40	-0.3	+9.6% - 11.2%	+2.7% - 2.7%	+2.8% - 2.8%

• Updated numbers for 27 TeV, with same setup

σ _{NLOQCD} [pb]	σ _{NLOQCD+EW} [pb]	KQCD	δ _{EW} [%]	Δμ [%]	ΔPDF[%]	Δa _s [%]
4.90	4.81	1.45	-2	+9.9 -10.4	±2.0	±2.0

$\mathbb{N}\mathcal{W}O$ Proposal for the four-top section:

Theory part More in Frederic Deliot's talk

I. Precision

A. The complete-NLO predictions for four-top production Frederix, Pagani, MZ, arXiv:1711.02116 New numbers for 14 and 27 TeV available

2. Four top as a probe of new physics

- A. Constraining qqtt operators in the EFT Zhang, arXiv:1708.05928 Predictions for 14TeV/3ab-1 and 27 TeV/15ab-1 available
- B. Constraining top quark flavor violation and dipole moments through three and four-top quark productions at the LHC Malekhosseini, Ghominejad, Khanpour, Najafabad, (+Ebadi, Khatibi), arXiv:1804.05598 Predictions for 14TeV/3ab⁻¹ and 27 TeV/15ab⁻¹ available
- C. Higgs width and top quark Yukawa coupling Cao, Chen, Liu, arXiv:1602.01934 Predictions for HL-LHC and FCC available. HE-LHC in progress

3. Bonus (i.e. if time and energy allows): how to use findings of I.A in BSM searches

Marco Zaro, 18-05-2018

Thank you for your attention and for your feedback!