Phenomenological consequences of Higgs inflation in the NMSSM at the electroweak scale

Sebastian Paßehr^{1,2}

in collaboration with Wolfgang G. Hollik², Stefan Liebler³, Gudrid Moortgat-Pick^{2,4}, Georg Weiglein²

¹Sorbonne Université, CNRS, LPTHE Paris, ²DESY Hamburg, ³KIT Karlsruhe, ⁴University Hamburg

ICHEP 2018

COEX Seoul, South Korea 6th of July 2018

1 From cosmology to the model

2 The setup

③ Combined analysis

4 Conclusions and outlook

Higgs inflation

- inflation required by cosmology
- instead of new field use Higgs boson as inflaton
- SM becomes unnatural [Barbon, Espinosa, arXiv:0903.0355]
- scale-free extension of the SM in canonical superconformal supergravity [Einhorn, Jones, arXiv:0912.2718] [Ferrera, Kallosh, Linde, Marrani, Van Proeyen, arXiv:1004.0712, arXiv:1008.2942] inflation triggered by non-minimal coupling to Einstein gravity:

$$\mathcal{L}_{\chi} = -6 \int d^2\theta \, \mathcal{E} \left[R + \frac{\chi(\hat{\Phi}) R}{4} - \frac{1}{4} \left(\bar{\mathcal{D}}^2 - 8 R \right) \hat{\Phi}^{\dagger} \hat{\Phi} + \mathcal{W}(\hat{\Phi}) \right] + \text{h.c.} + \dots$$

only possible choice: $X = \chi \hat{H}_u \cdot \hat{H}_d$

• MSSM no viable model for inflation [Einhorn, Jones, arXiv:0912.2718] additional scalar singlet + stabilisator term at high energy works [Ferrera, Kallosh, Linde, Marrani, Van Proeyen, arXiv:1008.2942] [Lee, arXiv:1005.2735]

\mathbb{Z}_3 invariant NMSSM:

• two Higgs doublets, one Higgs singlet:

$$H_{u} = \begin{pmatrix} \eta_{u}^{+} \\ v_{u} + \frac{1}{\sqrt{2}} (\sigma_{u} + i \phi_{u}) \end{pmatrix}, \quad H_{d} = \begin{pmatrix} v_{d} + \frac{1}{\sqrt{2}} (\sigma_{d} + i \phi_{d}) \\ \eta_{d}^{-} \end{pmatrix}, \quad S = v_{s} + \frac{1}{\sqrt{2}} (\sigma_{s} + i \phi_{s})$$

• superpotential

$$\mathcal{W} = \lambda \, S \, H_u \cdot H_d + rac{1}{3} \, \kappa \, S^3 + ext{Yukawa}$$

dynamically generated term $\mu_{\rm eff} = \lambda v_s$ solves μ -problem of MSSM

The NMSSM with inflation

• term $X = \chi H_u \cdot H_d$ breaks \mathbb{Z}_3 symmetry, appears in Kähler potential

$$\mathcal{K} = -3 \log \left[1 - \frac{1}{3} \left(|S|^2 + |H_d|^2 + |H_d|^2 \right) - \frac{1}{2} \chi \left(H_u \cdot H_d + h. c. \right) \right]$$

• superpotential changed: [Ferrera, Kallosh, Linde, Marrani, Van Proeyen, arXiv:1008.2942]

$$\mathcal{W}
ightarrow \mathcal{W} \exp\left(rac{X}{M_{\mathsf{P}}^2}
ight) = \mathcal{W} + rac{1}{M_{\mathsf{P}}^2} raket{\mathcal{W}_{\mathsf{hidden}}} X pprox \mathcal{W} + m_{3/2} X$$

• can be accommodated by more general NMSSM with superpotential

$$\mathcal{W} = \lambda S H_u \cdot H_d + \frac{1}{3} \kappa S^3 + \frac{3}{2} m_{3/2} \chi H_u \cdot H_d +$$
Yukawa

New parameters

- additional term appears as an MSSM-like μ term with $\mu = \frac{3}{2} m_{3/2} \chi$
- approximate value of $\chi\approx 10^5\,\lambda$ (last 60 e-folds of inflation, COBE normalization of scalar perturbations) [Ferrera, Kallosh, Linde, Marrani, Van Proeyen, arXiv:1008.2942] [Lee, arXiv:1005.2735]
- additional soft-breaking term

$$-\mathcal{L}_{\text{soft}} = \left[A_{\lambda} \,\lambda \,S \,H_{u} \cdot H_{d} + \frac{1}{3} \,A_{\kappa} \,\kappa \,S^{3} + \frac{B_{\mu} \,\mu \,H_{u} \cdot H_{d}}{H_{d}} + \text{h. c.}\right] + m_{H_{d}}^{2} \,|H_{d}|^{2} + m_{H_{u}}^{2} \,|H_{u}|^{2} + m_{s}^{2} \,|S|^{2}$$

- additional Z₃-breaking parameters possible, in the following: equal to zero at tree level
 → superpotential parameters zero at all orders
 - \rightarrow running of soft-breaking parameters in general small

further studies in extended NMSSM or GNMSSM:

[Ellwanger, Hugonie, Teixeira, arXiv:0910.1785] [Ross, Schmidt-Hoberg, arXiv:1108.1284] [Ross, Schmidt-Hoberg, Staub, arXiv:1205.1509] [Kaminska, Ross, Schmidt-Hoberg, arXiv:1308.4168] [Badziak, Wagner, arXiv:1611.02353] **1** From cosmology to the model

2 The setup

③ Combined analysis

Onclusions and outlook

Sebastian Paßehr (LPTHE Paris)

Phenomenolgy in the NMSSM with Inflation

Seoul, 06.07.18

- NMSSM with \mathbb{Z}_3 -breaking μ , B_μ terms, all parameters considered to be real
- compare phenomenology with \mathbb{Z}_3 -preserving NMSSM \rightarrow focus set on μ (and B_{μ})
- take into account constraints from:
 - vacuum stability
 - SM-like Higgs at 125 GeV
 - observed Higgs data with HiggsSignals
 - limits on extended Higgs sector with HiggsBounds
 - neutralino and chargino masses (higgsinos)
 - sfermion mixing (charge-, color-breaking minima)

Vacuum stability

• minimization conditions of Higgs potential

$$\left.\frac{\partial V}{\partial h}\right|_{\rm vev} \stackrel{!}{=} 0$$

may be misleading

- scenarios with different minima at large field values possible
- check for global minimum = electroweak minimum
- other minima may be viable as well (meta-stable with long life time)
- minima typically hard to find analytically
 → numerical minimization of tree-level Higgs potential
- μ term in general increases allowed parameter region
- substitution of A_λ by charged Higgs mass m_{H^\pm}

Vacuum stability – example

light blue: stable vacuum, purple: long-lived metastable vacuum, red: short-lived metastable vacuum, rose: instable vacuum (tachyons) value of A_{κ} has severe impact (singlet states), region around $\mu_{\text{eff}} = 0$ not accessible, in most scenarios: sign $A_{\kappa} = -$ sign μ_{eff} , non-zero μ : allow scenarios impossible in NMSSM

• at tree level:

SM-like Higgs mass shifted upwards compared to MSSM (same as in NMSSM),

 $\mu+\mu_{\rm eff}$ appears in singlet–doublet mixing,

 $\mu/\mu_{\rm eff}$ appears in diagonal elements of singlets

- full one-loop corrections: $\overline{\text{DR}}$ scheme for μ , B_{μ} (and also λ , κ , A_{κ} , μ_{eff})
- additional two-loop corrections in the MSSM-limit with FeynHiggs: important mass shifts of $\mathcal{O}(\alpha_t \alpha_s, \alpha_t^2)$ to SM-like state
- masses determined from poles of

$$\hat{\Delta}\left(k^{2}\right) = -i\left[k^{2}\mathbf{1} - M_{\text{tree}}^{2} + \hat{\Sigma}^{(1\text{L})}\left(k^{2}\right) + \hat{\Sigma}_{\text{MSSM}}^{(\alpha_{t}\alpha_{s},\alpha_{t}^{2})}(0)\right]^{-1}$$

Higgs masses – example

Sebastian Paßehr (LPTHE Paris)

Phenomenolgy in the NMSSM with Inflation

Seoul, 06.07.18

12 / 19

Neutralino masses

$$\mathcal{M}_{\chi} = egin{pmatrix} \mathcal{M}_{1} & 0 & -\mathcal{M}_{Z}\,s_{\mathsf{w}}\,c_{eta} & \mathcal{M}_{Z}\,s_{\mathsf{w}}\,s_{eta} & 0 \ \cdot & \mathcal{M}_{2} & \mathcal{M}_{Z}\,c_{\mathsf{w}}\,c_{eta} & -\mathcal{M}_{Z}\,c_{\mathsf{w}}\,s_{eta} & 0 \ \cdot & \cdot & 0 & -(\mu+\mu_{\mathsf{eff}}) & -\lambda\,\mathsf{v}\,s_{eta} \ \cdot & \cdot & 0 & -\lambda\,\mathsf{v}\,c_{eta} \ \cdot & \cdot & \cdot & 0 & -\lambda\,\mathsf{v}\,c_{eta} \ \cdot & \cdot & \cdot & \cdot & 2\,rac{\kappa}{\lambda}\,\mu_{\mathsf{eff}} \end{pmatrix}$$

sum $\mu + \mu_{\text{eff}}$ in MSSM-like higgsino mass terms (analogous for charged), term $\frac{\kappa}{\lambda} \mu_{\text{eff}}$ in singlino mass term,

for $\mu \neq 0$ all neutralino/chargino masses constant by shifting and rescaling

$$\begin{split} \mu_{\rm eff} &\to \mu_{\rm eff}' - \mu, \\ \frac{\kappa}{\lambda} &\to \frac{\kappa'}{\lambda} \frac{\mu_{\rm eff}'}{\mu_{\rm eff}' - \mu} \end{split}$$

Sebastian Paßehr (LPTHE Paris)

Phenomenolgy in the NMSSM with Inflation

Higgs production and decays

• production:

in general: SM-normalized effective couplings of a Higgs boson to gluons, light-singlet scenario: NMSSM version of SusHi $_{\rm [Liebler, arXiv:1502.07972]}$

- decays: SM-normalized effective couplings
- mixing: employ Z matrix in the algorithm of Ref. [Domingo, Drechsel, SP, arXiv:1706.00437]
- relevant couplings λ_{ijk} of $\phi_{i,j,k} \in (\sigma_d, \sigma_u, \sigma_s, A, \phi_s)$ containing μ and/or μ_{eff} :

$$\lambda_{113} = \lambda_{223} = \lambda_{344} = \lambda_{355} = -2\lambda(\mu + \mu_{\text{eff}})$$
$$\lambda_{123} = -\lambda_{345} = \lambda A_{\lambda} + 2\kappa \mu_{\text{eff}}$$

(in addition: couplings to charged Higgs)

• sensitive decays: $s^0 \rightarrow h^0 h^0$, $H^0 \rightarrow s^0 h^0$, $A^0 \rightarrow s^0 a_s$ (h^0 , H^0 , s^0 , A^0 , a_s denote states with most contribution of this type, mixing matrices appear and are relevant)

Higgs decays – example

red bar: $\kappa > 0.5$

scenario with large κ and very small λ and μ_{eff} , but large mixing of h^0 and s^0 (not possible in NMSSM due to constraints on higgsino mass)

1 From cosmology to the model

2 The setup

③ Combined analysis

Onclusions and outlook

Sebastian Paßehr (LPTHE Paris)

Phenomenolgy in the NMSSM with Inflation

Seoul, 06.07.18

Dependence on κ/λ over $\mu + \mu_{\rm eff}$

grey bar: LEP-limit for chargino masses, green background: allowed by HiggsSignals and HiggsBounds

singlet masses very sensitive to A_{κ} (like NMSSM), SM-like Higgs with 125 GeV only in region with stable vacuum (light blue)

Sebastian Paßehr (LPTHE Paris)

Phenomenolgy in the NMSSM with Inflation

Dependence on B_{μ} over $\mu + \mu_{eff}$

non-zero B_{μ} may cause instable vacua,

differences between tachyons at tree level and loop level can be large

 \rightarrow large loop corrections,

for some scenarios: more two-loop (or higher-order) corrections necessary

- Higgs inflation in extension of NMSSM by $\mathbb{Z}_3\text{-breaking }\mu$ term
- vacuum stability and SM-like Higgs at 125 GeV significantly constrain parameter space
- parameter rescaling to keep impact of μ on Higgs masses small, but: decay widths of singlets strongly affected
- attributes of singlet-like Higgs bosons required to distinguish inflation-inspired model from standard NMSSM
- light singlet scenarios which do not exist in standard NMSSM