The fate of Little Higgs models with LHC Run 2 data

Jürgen R. Reuter, DESY

based on work with
D. Dercks, G. Moortgat-Pick, S. Y. Shim, M. Tonini, M. de Vries

J.R.Reuter

LTP model and LHC Run 2 data

ICHEP 2018, Seoul, 6.7.2018
The Little Big Higgs boson

- Discovery of a light Higgs boson leaves still open questions:
 1. **Nature of Electroweak Symmetry Breaking**
 2. Higgs boson potential, all the way like the Standard Model!?
 3. Does it fulfill the US-fermion/Europe-boson rule?
 4. Is there something related to the Little Hierarchy problem (strong or weak)
Old Idea: Light Higgs as a (pseudo-) Nambu-Goldstone boson of a spontaneously broken symmetry

[Georgi/Pais, ’75; Georgi/Kaplan, ’84]

Analogy: chiral symmetry breaking in QCD
Old Idea: Light Higgs as a (pseudo-) Nambu-Goldstone boson of a spontaneously broken symmetry

[Georgi/Pais, ’75; Georgi/Kaplan, ’84]

Analogy: chiral symmetry breaking in QCD

Upscale: Technicolor (ruled out by EWPO/LHC)
Old Idea: Light Higgs as a (pseudo-) Nambu-Goldstone boson of a spontaneously broken symmetry

[Georgi/Pais, ’75; Georgi/Kaplan, ’84]

Analogy: chiral symmetry breaking in QCD

Upscale: Technicolor (ruled out by EWPO/LHC)

Collective Symmetry Breaking: 3-scale model

Arkani-Hamed/Cohen/Georgi, ’01
Arkani-Hamed/Cohen/Grigore/Wacker, ’02
The Littlest Higgs Model

Based on SU(5)/SO(5) coset:

$$
\Sigma(x) = e^{2i\Pi^a(x)X^a/f \langle \Sigma \rangle}
$$

$$
Q^a_1 = \frac{1}{2} \begin{pmatrix}
\sigma^a \\
\end{pmatrix}
$$

$$
Q^a_2 = \frac{1}{2} \begin{pmatrix}
\sigma^a \\
-\sigma^{a*} \\
\end{pmatrix}
$$

$$
Y_1 = \frac{1}{10} \text{diag}(3, 3, -2, -2, -2)
$$

$$
Y_2 = \frac{1}{10} \text{diag}(2, 2, 2, -3, -3)
$$

Broken generators (24-10=14): X^a

Collective Symmetry Breaking

$$
M_{W_H} \sim g \cdot f
$$

$$
M_{Z_H} \sim g \cdot f
$$

$$
M_{A_H} \sim g \cdot f
$$

$$
M_{\Phi} \sim f
$$

$$
m_h \sim \frac{f}{16\pi^2}
$$

Local symmetry: $SU(2)_I \otimes U(1)_I \otimes SU(2)_2 \otimes U(1)_2 \rightarrow SU(2)_L \otimes U(1)_Y$

eats up 4 Nambu-Goldstones

Goldstone bosons:

$$
\Pi^a X^a = \frac{1}{\sqrt{2}} \begin{pmatrix}
h & h^T \\
h^T & h^* \\
\end{pmatrix} + \frac{1}{2} \begin{pmatrix}
\Phi & \Phi^* \\
\Phi^T & \Phi \\
\end{pmatrix}
$$

Large contributions to EWPO

Hewett/Petriello/Rizzo, '02; Csáki/Hubisz/Kribs/Meade/Terning, '03; Kilian/JRR, '03

J.R.Reuter

LTP model and LHC Run 2 data

ICHEP 2018, Seoul, 6.7.2018
T-parity: a discrete symmetry for EWPO

Discrete symmetry: T (TeV)-Parity

$T : \Pi \leftrightarrow -\Omega \Pi \Omega \quad \Omega = \text{diag}(1, 1, -1, 1, 1)$

$T^a \rightarrow T^a \quad X^a \rightarrow -X^a$

- (Almost) all new heavy particles T-odd
- Tree-level contributions to EWPO eliminated [also triplet Φ vev]
- Bounds on f relaxed from ca. 4-5 TeV to 500-600 GeV
- Only pair production of new particles at colliders
- Typical cascade decays
- Lightest T-odd particle (LTP) is stable \rightarrow Dark Matter candidate

$M_{\Phi} = 1 \text{ TeV}$

$M_{W_H} = M_{Z_H} = g f$
$= 400 - 700 \text{ GeV}$

$M_{A_H} = \frac{g' f}{\sqrt{5}}$
$= 50 - 200 \text{ GeV}$
T-parity: a discrete symmetry for EWPO

Discrete symmetry: \(T \ (\text{TeV}) \)-Parity

\[T : \Pi \mapsto -\Omega \Pi \Omega \quad \Omega = \text{diag}(1,1,-1,1,1) \quad T^a \to T^a \quad X^a \to -X^a \]

- (Almost) all new heavy particles \(T \)-odd
- Tree-level contributions to EWPO eliminated [also triplet \(\Phi \ vev \)]
- Bounds on \(f \) relaxed from ca. 4-5 TeV to 500-600 GeV
- Only pair production of new particles at colliders
- Typical cascade decays
- Lightest \(T \)-odd particle (LTP) is stable \(\to \) Dark Matter candidate

\(M_\Phi = 1 \text{ TeV} \)

\(M_{W_H} = M_{Z_H} = g f \)
\(= 400 - 700 \text{ GeV} \)

\(M_{A_H} = \frac{g' f}{\sqrt{5}} \)
\(= 50 - 200 \text{ GeV} \)

Assume \(T \)-parity violation: \(A_H \) heavily constrained as DM candidate

DM candidate axion-like particle in mesonic sector of UV completion (+ QCD axion)

\(T \)-parity violation: Wess/Zumino/Witten anomaly in UV sector \(\text{Hill/Hill, '07} \)

In analogy to pion decays \(\pi \to \gamma \gamma \) leads to \(A_H \to WW, ZZ \)
T-parity: a discrete symmetry for EWPO

Discrete symmetry: T (TeV)-Parity

\[
T : \Pi \mapsto -\Omega \Pi \Omega \quad \Omega = \text{diag}(1, 1, -1, 1, 1) \quad T^a \rightarrow T^a \quad X^a \rightarrow -X^a
\]

- (Almost) all new heavy particles T-odd
- Tree-level contributions to EWPO eliminated
 [also triplet Φ vev]
- Bounds on f relaxed from ca. 4-5 TeV to 500-600 GeV
- Only pair production of new particles at colliders
- Typical cascade decays
- Lightest T-odd particle (LTP) is stable \rightarrow Dark Matter candidate

Assume T-parity violation: A_H heavily constrained as DM candidate

- DM candidate axion-like particle in mesonic sector of UV completion (+ QCD axion)
- T-parity violation: Wess/Zumino/Witten anomaly in UV sector
 Hill/Hill, '07
- In analogy to pion decays $\pi \rightarrow \gamma\gamma$ leads to $A_H \rightarrow WW, ZZ$

Consequences: DM bounds gone, collider phenomenology may change

- Decays to WW, ZZ (1-loop induced); to ff (2-loop induced)
 Freitas/Schwaller/Wyler, '08

\[
M_\Phi = 1 \text{ TeV}
\]

\[
M_{W_H} = M_{Z_H} = g f = 400 - 700 \text{ GeV}
\]

\[
M_{A_H} = \frac{g' f}{\sqrt{5}} = 50 - 200 \text{ GeV}
\]

J.R.Reuter
LTP model and LHC Run 2 data
ICHEP 2018, Seoul, 6.7.2018
Signatures and constraints on the LHT model

\[m_t = \frac{\lambda_1 \lambda_2}{\lambda_1^2 + \lambda_2^2} v = \frac{\lambda_2 R}{\sqrt{1 + R^2}} v \]
\[M_{T^+} = \frac{m_t}{v} f(1 + R^2) \frac{f(1 + R^2)}{R} = M_{T^-} \sqrt{1 + R^2} \]
\[M_{u,-} = \sqrt{2} \kappa_q f \left(1 - \frac{1}{8} \frac{v^2}{f^2} \right) \]
\[M_{d,-} = \sqrt{2} \kappa_q f \]
\[M_{\ell/\nu,-} = \sqrt{2} \kappa_{\ell} f \]

- New heavy particles: vector-like T-odd/even quarks, T-odd vectors, LTP (A_H)
- SUSY-like search signatures: mono-jets + MET, multi-jets (+MET), jets+leptons (+MET)
- Deviations in coupling constants at level of $\approx 5\%$ (v^2/f^2)

Modified HVV couplings:

\[2 \frac{m_V^2}{v} \left(1 + \mathcal{O}(v^2/f^2) \right) h V \cdot V \]

Modified ttH couplings:

\[\frac{m_t^2}{v} \left[(1 + \mathcal{O}(v^2/f^2)) h t \bar{t} \right. \]
\[+ \mathcal{O}(v^2/f^2) h t \gamma^5 t \]

Modified Vff couplings:

\[\frac{g}{c_W} \sum_f \bar{f} \gamma^\mu \left[(1 + \mathcal{O}(v^2/f^2)) g_L^{SM} P_L \right. \]
\[+ (1 + \mathcal{O}(v^2/f^2)) g_R^{SM} P_R \left. \right] f Z_\mu \]

κ_q, κ_ℓ, f, $R = \frac{\lambda_1}{\lambda_2}$
Electroweak Precision Observables

- M_H
- M_W
- Γ_W
- M_Z
- Γ_Z
- O_had^0
- R_lep^0
- $A_{FB}^{0,l}$
- $A_{\ell}(\text{LEP})$
- $A_{\ell}(\text{SLD})$
- $\sin^2(\phi)^{\text{lept}}_{\text{eff}}(Q^2_{FB})$
- $A_{FB}^{0,c}$
- $A_{FB}^{0,b}$
- A_{c}
- A_{b}
- R_{ℓ}^0
- R_b^0
- m_c
- m_b
- m_t

$\Delta \alpha_{\text{had}}^{(5)}(M_Z^2)$

$\frac{(O_{\text{fit}} - O_{\text{meas}})}{\sigma_{\text{meas}}}$
Electroweak Precision Observables

- M_H, M_W, Γ_W, M_Z, Γ_Z
- O^0_{had}
- R^0_{lep}
- A^0_{FB}
- $A_f (\text{LEP})$
- $A_f (\text{SLD})$
- $\sin^2(\phi)_{\text{eff}}^{\text{lept}} (Q_{\text{FB}})$
- A^0_{c}
- A^0_{b}
- A_{b}
- R^0_{c}
- R^0_{b}
- m_c
- m_b
- m_t
- $\Delta \alpha^{(5)}_{\text{had}} (M^2_Z)$

$(O_{\text{fit}} - O_{\text{meas}}) / \sigma_{\text{meas}}$

Exclusions
- 95% CL
- 99% CL

LHT EWPT exclusion contours

J.R. Reuter
LTP model and LHC Run 2 data
ICHEP 2018, Seoul, 6.7.2018
Electroweak Precision Observables

- Accidental cancellation to EWPO for $R \approx 1$
- Bounds from 4-fermion contact interactions (later)
- Exclusion limits at 95% CL:
 \[
 f \gtrsim 405 \text{ GeV}
 \]
 \[
 M_W \gtrsim 270 \text{ GeV}
 \]
 \[
 M_T \gtrsim 554 \text{ GeV}
 \]
Constraints from Higgs measurements

- Main driver of constraints from Higgs data: **invisible decay channel** $H \rightarrow A_H A_H$
- **Modifications of gluon fusion, vector boson fusion, top-associated production**
- **Minor effect: modifications in branching ratios** (LHC cannot disentangle these!)

Signal strength modifier in channel i

$$
\mu^i = \frac{n^i_S}{n^i_{SM,i}} = \sum_{prod.} \frac{n^i_{S,p} \sigma^i_{p}}{\sigma^i_{SM} \text{BR}^i_{SM}} \rightarrow [c_g \zeta_g^i + c_V \zeta_V^i + c_t \zeta_t^i] \frac{\text{BR}_i}{\text{BR}^i_{SM}}
$$

<table>
<thead>
<tr>
<th>ATLAS</th>
<th>$m_H = 125.36$ GeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>$H \rightarrow \gamma \gamma$</td>
<td>$\mu = 1.17^{+0.28}_{-0.26}$</td>
</tr>
<tr>
<td>$H \rightarrow ZZ^*$</td>
<td>$\mu = 1.46^{+0.40}_{-0.34}$</td>
</tr>
<tr>
<td>$H \rightarrow WW^*$</td>
<td>$\mu = 1.18^{+0.24}_{-0.21}$</td>
</tr>
<tr>
<td>$H \rightarrow \tau \tau$</td>
<td>$\mu = 1.44^{+0.42}_{-0.37}$</td>
</tr>
<tr>
<td>$H \rightarrow bb$</td>
<td>$\mu = 0.63^{+0.39}_{-0.37}$</td>
</tr>
<tr>
<td>$H \rightarrow \mu \mu$</td>
<td>$\mu = -0.7^{+3.7}_{-3.7}$</td>
</tr>
<tr>
<td>$H \rightarrow Z\gamma$</td>
<td>$\mu = 2.7^{+4.6}_{-4.5}$</td>
</tr>
<tr>
<td>Combined</td>
<td>$\mu = 1.18^{+0.15}_{-0.14}$</td>
</tr>
</tbody>
</table>

|$\sigma = 7$ TeV, 4.5-4.7 fb$^{-1}$

|$\sigma = 8$ TeV, 20.3 fb$^{-1}$

The diagram illustrates the signal strength modifier μ for various Higgs decay channels, with total uncertainty indicated for each case.
Constraints from Higgs measurements

- Main driver of constraints from Higgs data: invisible decay channel $H \rightarrow A_H A_H$
- Modifications of gluon fusion, vector boson fusion, top-associated production
- Minor effect: modifications in branching ratios (LHC cannot disentangle these!)

Signal strength modifier in channel i

$$
\mu^i = \frac{n^i_S}{n^{SM,i}_S} = \sum_{prod.} \frac{n^i_{S,p} \sigma^{SM}_{p} BR_{SM}^{i}}{\sigma^{SM}_{p} BR_{SM}^{i}} \rightarrow \left[c_g \zeta^i_g + c_V^2 \zeta^i_V + c_t \zeta^i_t\right] \frac{BR_i}{BR_{SM}^i}
$$

- Independent of R
- Collective symmetry breaking

\[\begin{array}{c|c|c|c|c}
\text{ATLAS} & \text{Total uncertainty} & \text{Theory} & \text{Stat.}\ \\
\hline
m_H & 125.36 \text{ GeV} & \rightarrow & \rightarrow & \rightarrow \\
\hline
H \rightarrow \gamma\gamma & & & & \\
\mu = 1.17 & 0.28 & -0.28 & 0.26 & \\
\hline
H \rightarrow ZZ^* & & & & \\
\mu = 1.46 & 0.40 & -0.34 & \\
\hline
H \rightarrow WW^* & & & & \\
\mu = 1.18 & 0.30 & -0.24 & -0.35 & \\
\hline
H \rightarrow \tau\tau & & & & \\
\mu = 1.44 & -0.30 & 0.29 & 0.29 & 0.27 & \\
\hline
H \rightarrow bb & & & & \\
\mu = 0.63 & -0.29 & -0.39 & -0.37 & \\
\hline
H \rightarrow \mu\mu & & & & \\
\mu = -0.7 & -0.37 & 0.08 & -0.07 & \\
\hline
H \rightarrow Z\gamma & & & & \\
\mu = 2.7 & 4.6 & 3.7 & \\
\hline
\text{Combined} & & & & \\
\mu = 1.18 & -0.15 & -0.14 & \\
\end{array}\]
Constraints from Higgs measurements

- Main driver of constraints from Higgs data: invisible decay channel $H \rightarrow A_H A_H$
- Modifications of gluon fusion, vector boson fusion, top-associated production
- Minor effect: modifications in branching ratios (LHC cannot disentangle these!)

Signal strength modifier in channel i

$$\mu^i = \frac{n^i_S}{n^i_{SM}} = \frac{1}{\prod \sigma^i_{p} \frac{BR^i_{SM}}{BR^i_{SM}}} \left[c_g \zeta_g^i + c_V \zeta_V^i + c_t \zeta_t^i \right] \frac{BR^i_{SM}}{BR^i_{SM}}$$

ATLAS

$m_H = 125.36$ GeV

<table>
<thead>
<tr>
<th>Channel</th>
<th>μ</th>
<th>Total uncertainty</th>
</tr>
</thead>
<tbody>
<tr>
<td>$H \rightarrow \gamma \gamma$</td>
<td>$1.17+0.28$</td>
<td>+0.20</td>
</tr>
<tr>
<td>$H \rightarrow ZZ^*$</td>
<td>$1.46+0.40$</td>
<td>+0.19</td>
</tr>
<tr>
<td>$H \rightarrow WW^*$</td>
<td>$1.18+0.24$</td>
<td>+0.21</td>
</tr>
<tr>
<td>$H \rightarrow \tau \tau$</td>
<td>$1.44+0.42$</td>
<td>+0.29</td>
</tr>
<tr>
<td>$H \rightarrow bb$</td>
<td>$0.63+0.39$</td>
<td>+0.01</td>
</tr>
<tr>
<td>$H \rightarrow jj$</td>
<td>$0.71+0.37$</td>
<td>+0.01</td>
</tr>
<tr>
<td>$H \rightarrow ZZ$</td>
<td>$2.7+4.6$</td>
<td>+0.82</td>
</tr>
<tr>
<td>Combined</td>
<td>$1.18+0.15$</td>
<td>+0.00</td>
</tr>
</tbody>
</table>

Signal strength modifier in channel i

$$\mu^i = \frac{n^i_S}{n^i_{SM,i}} = \sum \frac{n^i_{S,p} \sigma^i_{p} \frac{BR^i_{SM}}{BR^i_{SM}}}{\prod \sigma^i_{p} \frac{BR^i_{SM}}{BR^i_{SM}}} = \left[c_g \zeta_g^i + c_V \zeta_V^i + c_t \zeta_t^i \right] \frac{BR^i_{SM}}{BR^i_{SM}}$$
Constraints from Higgs measurements

- Main driver of constraints from Higgs data: invisible decay channel $H \rightarrow A_H A_H$
- Modifications of gluon fusion, vector boson fusion, top-associated production
- Minor effect: modifications in branching ratios (LHC cannot disentangle these!)

Signal strength modifier in channel i

$$\mu^i = \frac{n_S^i}{n_{SM}^i} = \sum_{\text{prod.}} \frac{n_S^i p \sigma_p^{SM \text{BR}^i_{SM}}}{\sigma_p^{SM \text{BR}^i_{SM}}} \left[c_g \zeta_g^i + c_V^2 \zeta_V^i + c_t^2 \zeta_t^i \right] \frac{\text{BR}^i_{SM}}{\text{BR}^i_{SM}}$$

EWPT/Higgs data:

$$f \gtrsim 694 \text{ GeV}$$
Direct searches: Topologies & Benchmarks

Notation:

\[q_H := \{d_H, u_H, s_H, c_H, b_H, t_H\} \]
\[\ell_H := \{e_H, \mu_H, \tau_H, \nu_{eH}, \nu_{\mu H} \nu_{\tau H}\} \]
\[V_H := \{W_H, Z_H, A_H\} \]
\[T^\pm := T\text{-even/odd top partners} \]

Production processes:

1. \(pp \rightarrow q_H q_H, q_H \bar{q}_H, \bar{q}_H q_H \)
2. \(pp \rightarrow q_H V_H \)
3. \(pp \rightarrow \ell_H \bar{\ell}_H \)
4. \(pp \rightarrow V_H V_H \)
5. \(pp \rightarrow T^+ \bar{T}^+, T^- \bar{T}^- \)
6. \(pp \rightarrow T^+ q, \bar{T}^+_q, T^+_W, \bar{T}^- W^\pm \)

2 \times 2 \times 3 different benchmark scenarios:

<table>
<thead>
<tr>
<th>Sector</th>
<th>Model</th>
<th>Constraint</th>
<th>Phenomenology</th>
<th>Considered Topology</th>
</tr>
</thead>
</table>
| \(f_H \) | Fermion Universality | \(\kappa_\ell = \kappa_q \) | • mass degeneracy of \(q_H, \ell_H \)
• \(\ell_H \) production negligible | Exclude process 3 |
| \(f_H \) | Heavy \(q_H \) | \(\kappa_q = 3.0 \) | • \(q_H \) decoupled
• \(\ell_H \) production relevant | Exclude processes 1, 2 |
| \(f_H \) | Light \(\ell_H \) | \(\kappa_\ell = 0.2 \) | • \(\ell_H \) very light
• \(V_H \) branching ratios change | Exclude process 3 |
| \(T^\pm \) | Light \(T^\pm \) | \(R = 1.0 \) | • \(T^\pm \) are light/accessible | Include process 4, 5 |
| \(T^\pm \) | Heavy \(T^\pm \) | \(R = 0.2 \) | • \(T^\pm \) are heavy/inaccessible | Exclude process 4, 5 |
| \(A_H \) | TPC | No TPV | • \(A_H \) is stable and invisible | \(A_H \) stable |
| \(A_H \) | TPV | With TPV | • \(A_H \) is unstable | \(A_H \rightarrow VV \) decays |
Toolchain for event simulation and recasting

- Steering program and Recasting tool: CheckMate2
 [Dercks/Desai/Kim/Rolbiecki/Tattersall/Weber, ’16]
- Model file for LHT model via UFO format
 [Degrande et al., ’12]
- Partonic events: MG5_aMC@NLO
 [Alwall et al., ’10] and
 WHIZARD v2.5
 [Kilian/Ohl/JRR, ’10]
- Clustering, jet selection: FastJet v3.3
 [Cacciari/Salam/Soyez, ’11]
- Parton shower and hadronization: Pythia v8.2
 [Sjöstrand/Mrenna/Skands, ’08]
- Fast detector simulation: Delphes v3.2
 [de Favereau et al., ’14]
Toolchain for event simulation and recasting

- Steering program and Recasting tool: CheckMate2
 [Dercks/Desai/Kim/Rolbiecki/Tattersall/Weber, ’16]

- Model file for LHT model via UFO format [Degrande et al., ’12]

- Partonic events: MG5_aMC@NLO [Alwall et al., ’10] and
 WHIZARD v2.5 [Kilian/Ohl/JRR, ’10]

- Clustering, jet selection: FastJet v3.3 [Cacciari/Salam/Soyez, ’11]

- Parton shower and hadronization: Pythia v8.2 [Sjöstrand/Mrenna/Skands, ’08]

- Fast detector simulation: Delphes v3.2 [de Favereau et al., ’14]

All used searches that have been recasted here:

<table>
<thead>
<tr>
<th>CM identifier</th>
<th>Final State</th>
<th>Designed for</th>
<th>Lum.</th>
<th>SR</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>atlas_conf_2016_096</td>
<td>(\not{E}_T + 2-3 \ell)</td>
<td>(\tilde{\chi}^\pm, \tilde{\chi}^0, \tilde{\ell})</td>
<td>13.3</td>
<td>8</td>
<td>ATLAS-CONF-2016-096</td>
</tr>
<tr>
<td>atlas_conf_2016_054</td>
<td>(\not{E}_T + 1 \ell + (b)-j)</td>
<td>(\tilde{q}, \tilde{g})</td>
<td>14.8</td>
<td>10</td>
<td>ATLAS-CONF-2016-054</td>
</tr>
<tr>
<td>atlas_conf_2017_022</td>
<td>(\not{E}_T + 0 \ell + 2-6 j)</td>
<td>(\tilde{q}, \tilde{g})</td>
<td>36.1</td>
<td>24</td>
<td>ATLAS-CONF-2017-022</td>
</tr>
<tr>
<td>atlas_conf_2017_039</td>
<td>(\not{E}_T + 2-3 \ell)</td>
<td>(\tilde{\chi}^\pm, \tilde{\chi}^0, \tilde{\ell})</td>
<td>36.1</td>
<td>37</td>
<td>ATLAS-CONF-2017-039</td>
</tr>
</tbody>
</table>
13 TeV recasting results: Fermion Universality

\[
\begin{align*}
\kappa_q = & \frac{m(q_H)}{m(q)} = 1 \text{ TeV} \\
\kappa_q = & \frac{m(q_H)}{m(q)} = 2 \text{ TeV} \\
\kappa_q = & \frac{m(q_H)}{m(q)} = 3 \text{ TeV} \\
\kappa_q = & \frac{m(Z_H)}{m(q_H)} = 0 \text{ TeV} \\
\kappa_q = & \frac{m(Z_H)}{m(q_H)} = 1 \text{ TeV} \\
\kappa_q = & \frac{m(Z_H)}{m(q_H)} = 5 \text{ TeV} \\
\end{align*}
\]

\((\text{Fermion Universality}) \oplus (\text{Heavy } T^\pm) \oplus (\text{TPC})\)
13 TeV recasting results: Fermion Universality

(Fermion Universality) \(\oplus \) (Light \(T^\pm \)) \(\oplus \) (TPC)

- **High \(f \):** bounds follow \(M(q_H) \) isocontours, \(f \times \kappa < f \kappa_{\text{max}} \), with \(f \kappa_{\text{max}} \sim 1.5/2 \) TeV (Run 1/Run 2)
- **Most effective analysis:** search for 2 Jets + MET from \(pp \rightarrow q_H q_H \rightarrow j j A_H A_H + X \)
- **Low \(f \):** independent of \(\kappa \), large \(\kappa \): \(q_H \) too heavy; \(V_H \) production, \(M(V_H) \gtrsim 600 \) GeV, \(f \gtrsim 900 \) GeV
- **Light \(T^\pm \):** if kinematically accessible improve \(f \)-bound to \(f \gtrsim 1.3 \) TeV
- **TPV:** \(q_H \) isocontours slightly weakened (more \(V \)), \(f \)-bound improved (!) \([\ell \text{ take over } j \text{ analyses}]\)
13 TeV recasting results: Fermion Universality

(Fermion Universality) ⊕ (Heavy T^\pm) ⊕ (TPV)

- **High f:** bounds follow $M(q_H)$ isocontours, $f \times \kappa < f \kappa_{\text{max}}$, with $f \kappa_{\text{max}} \sim 1.5/2$ TeV (Run 1/Run 2)
- Most effective analysis: search for 2 Jets + MET from $pp \rightarrow q_H q_H \rightarrow j j A_H A_H + X$
- **Low f:** independent of κ, large κ: q_H too heavy; V_H production, $M(V_H) \gtrsim 600$ GeV, $f \gtrsim 900$ GeV
- **Light T^\pm:** if kinematically accessible improve f-bound to $f \gtrsim 1.3$ TeV
- **TPV:** q_H isocontours slightly weakened (more V), f-bound improved (!) [ℓ take over j analyses]
Bounds from 4-fermion operators

- Low-energy bounds: flavor observables (kaon, D-, B-physics) \[\text{Blanke et al., '06, '15} \]

- Mirror fermions generate 4-fermion operators via box diagrams \[\text{Hubisz/Meade/Noble/Perelstein, '06} \]
Bounds from 4-fermion operators

- Low-energy bounds: flavor observables (kaon, D-, B-physics) [Blanke et al., ’06, ’15]
- Mirror fermions generate 4-fermion operators via box diagrams [Hubisz/Meade/Noble/Perelstein, ’06]

Diagram:

- Mirror fermions
- Goldstone bosons of heavy gauge bosons

\[
\begin{align*}
\bar{\psi}_L & \rightarrow \psi'_{L} \\
\psi_{L} & \rightarrow \phi_{VH} \\
\phi_{VH} & \rightarrow \psi_{c} \\
\psi_{c} & \rightarrow \phi_{VH} \\
\phi_{VH} & \rightarrow \bar{\psi}'_{L}
\end{align*}
\]
Bounds from 4-fermion operators

- Low-energy bounds: flavor observables (kaon, D-, B-physics)
[Blanke et al., ’06, ’15]

- Mirror fermions generate 4-fermion operators via box diagrams
[Hubisz/Meade/Noble/Perelstein, ’06]

\[O_{4\text{-}\text{ferm.}} = -\frac{\kappa_{q,\ell}^2}{128\pi^2 f^2} \left(\overline{\psi}_L \gamma^\mu \psi_L \right) \left(\overline{\psi}'_L \gamma_\mu \psi'_L \right) \]
Bounds from 4-fermion operators

- Low-energy bounds: flavor observables (kaon, D-, B-physics) [Blanke et al., ’06, ’15]

- Mirror fermions generate 4-fermion operators via box diagrams [Hubisz/Meade/Noble/Perelstein, ’06]

\[\mathcal{O}_{4\text{-ferm.}} = -\frac{k_{q,\ell}^2}{128\pi^2 f^2} (\overline{\psi}_L \gamma^\mu \psi_L) (\overline{\psi}_L' \gamma^\mu \psi_L') \]

Strongest constraints still from LEP:
\[\Lambda [\overline{e}e(\overline{q}q)] \gtrsim 26.4 \text{ TeV} \]

LHC Dijet Bounds:
\[\Lambda [(\overline{q}q)(\overline{q}q)] \gtrsim 15.7 \text{ TeV} \]

\[\Rightarrow \text{EWPO} \]
LHC Run 2 and EWPO/Higgs Results
LHC Run 2 and EWPO/Higgs Results

(Light ℓ_H) \oplus (Light T^\pm) \oplus (T-parity conservation)
Conclusions / Summary

✦ Little Higgs models explain light Higgs as (pseudo-)Nambu-Goldstone boson
✦ Solves (little) hierarchy breaking by collective symmetry breaking
✦ EFT description of coset space, most commonly embedded in Composite Model
✦ Inclusion of discrete symmetry (T-parity) for EWPO and DM
✦ Constraints on parameter space from EWPO / Higgs data / direct searches
✦ 4-fermion operators give strict bounds (complimentary to direct searches)
✦ With LHC Run 2 scales go up into TeV range: $f \gtrsim 1.3$ TeV
✦ LHC bounds & LUX / Xenon direct detection (almost) rule LHT DM
✦ Prospects for 14 TeV HL-LHC: exclusion 1.5-1.8 TeV [preliminary]
✦ Higgs data (except for $H \rightarrow A_H A_H$) irrelevant \Rightarrow need for a lepton collider
ONE RING TO FIND THEM ...
ONE RING TO RULE THEM OUT ?
BACKUP SLIDES
T-parity: a discrete symmetry for Dark Matter

- Lightest T-odd particle A_H (50-200 GeV)
- Dominant decay via s-channel Higgs exchange
 \[A_H \rightarrow h \rightarrow WW, ZZ, hh \]
 [Hubisz/Meade, '03]
- Constraints from overclosure of universe
- Heavy lepton/quark coannihilation helps
 [Yang/Wang/Shu, '13]
T-parity: a discrete symmetry for Dark Matter

- Lightest T-odd particle A_H (50-200 GeV)
- Dominant decay via s-channel Higgs exchange $A_H \rightarrow h \rightarrow WW, ZZ, hh$ Hubisz/Meade, ’03
- Constraints from overclosure of universe
- Heavy lepton/quark coannihilation helps Yang/Wang/Shu, ’13
T-parity: a discrete symmetry for Dark Matter

- Lightest \(T \)-odd particle \(A_H \) (50-200 GeV)
- Dominant decay via s-channel Higgs exchange
 \[A_H \to h \to WW, ZZ, hh \]
 Hubisz/Meade, ’03
- Constraints from overclosure of universe
- Heavy lepton/quark coannihilation helps
 Yang/Wang/Shu, ’13

Severe constraints from direct detection
 Yang/Wang/Shu, ’13; Wu/Yang/Zhang, ’16
T-parity violation
T-parity violation

\[
\Gamma(A_H \rightarrow ZZ) = \left(\frac{N g'}{80 \sqrt{3} \pi^3} \right)^2 \left(1 - \frac{4m_Z^2}{M_{A_H}^2} \right)^{\frac{5}{2}} \frac{M_{A_H}^3 m_Z^2}{f^4}
\]

\[
\Gamma(A_H \rightarrow W^+ W^-) = \left(\frac{N g'}{40 \sqrt{3} \pi^3} \right)^2 \left(1 - \frac{4m_W^2}{M_{A_H}^2} \right)^{\frac{5}{2}} \frac{M_{A_H}^3 m_W^2}{f^4}
\]

\[
\Gamma(A_H \rightarrow f f) = \left(\frac{N_C f M_{A_H}}{48 \pi} \right) \left(1 - \frac{4m_f^2}{M_{A_H}^2} \right)^{\frac{1}{2}}
\]

\[
\left[c_-^2 \left(1 - \frac{4m_f^2}{M_{A_H}^2} \right) + c_+^2 \left(1 + \frac{2m_f^2}{M_{A_H}^2} \right) \right]
\]
Cross Sections & Branching ratios (I)

(Fermion Universality/Light ℓH) \oplus (Light T^\pm)

Left: fixed κ
Full line: $f = 1$ TeV
Dashed: $f = 2$ TeV

Right: fixed f
Full line: $\kappa = 1$ TeV
Dashed: $\kappa = 2$ TeV

(Heavy qH) \oplus (Light T^\pm)

13 TeV
Cross Sections & Branching ratios (I)

(Fermion Universality/Light ℓ_H) \oplus (Light T^{\pm}) 13 TeV

Left: fixed κ
- Full line: $f = 1$ TeV
- Dashed: $f = 2$ TeV

Right: fixed f
- Full line: $\kappa = 1$ TeV
- Dashed: $\kappa = 2$ TeV

destructive t-q_H-channel interference w./ s-channel
Cross Sections & Branching ratios (II)

Branching ratios have very small f dependence (only small f, mass effects)

$\frac{d_H}{u_H}$, very similar: u_H [FU,Lℓ]

$\frac{\ell_H}{v_H}$, very similar: v_H [FU]

T^+ [Light T^-]

Light T^{-}:

$\text{BR}(T^{-} \rightarrow tA_H) = 1$

Light ℓ_H:

$\text{BR}(\ell_H/v_H \rightarrow \ell/vA_H) = 1$

W_H, very similar: Z_H [FU,Hq]

W_H, very similar: Z_H [Lℓ]
Cross Sections 8 TeV

(Fermion Universality/Light \mathcal{L}_H) \oplus (Light T^\pm) 8 TeV

(Fixed f)
Full line: $f = 1$ TeV
Dashed: $f = 2$ TeV

Left: fixed κ

Right: fixed f
Full line: $\kappa = 1$ TeV
Dashed: $\kappa = 2$ TeV
Cross Sections 14 TeV

(Fermion Universality/Light ℓ^H) \oplus (Light T^\pm)

Left: fixed κ
Full line: $f = 1$ TeV
Dashed: $f = 2$ TeV

Right: fixed f
Full line: $\kappa = 1$ TeV
Dashed: $\kappa = 2$ TeV
13 TeV recasting results: Heavy q_H

\[(\text{Heavy } q_H) \oplus (\text{Heavy } T^\pm) \oplus \text{(TPC)}\]
13 TeV recasting results: Heavy q_H

\[(\text{Heavy } q_H) \oplus (\text{Light } T^\pm) \oplus (\text{TPC}) \]

- $q_H \rightarrow q V_H \rightarrow \ell H \rightarrow \ell V_H$; multijets \rightarrow multileptons

- $\sigma(pp \rightarrow q_H q_H)$ 2-3 orders of magnitudes larger than $\sigma(pp \rightarrow \ell_H \ell_H)$

- Limits for large f similar to FU: exclusions $f \gtrsim 950$ GeV (1350 GeV with T^\pm)

- $\kappa \lesssim 0.5$: $V_H \rightarrow \ell_H \ell$ now open; covered by multilepton analysis; $f \gtrsim 1.9$ TeV

- Only very tiny changes for TPV
(Heavy q_H) \oplus (Heavy T^\pm) \oplus (TPV)

- $q_H \to qV_H \Longrightarrow \ell_H \to \ell V_H$; multijets \Longrightarrow multileptons
- $\sigma(pp \rightarrow q_Hq_H) 2$-$3$ orders of magnitudes larger than $\sigma(pp \rightarrow \ell_H\ell_H)$
- Limits for large f similar to FU: exclusions $f \gtrsim 950$ GeV (1350 GeV with T^\pm)
- $\kappa \lesssim 0.5$: $V_H \to \ell_H\ell$ now open; covered by multilepton analysis; $f \gtrsim 1.9$ TeV
- Only very tiny changes for TPV
13 TeV recasting results: Heavy q_H

(Heavy q_H) \oplus (Light T^\pm) \oplus (TPV)

$\quad q_H \rightarrow q \nu_H \rightarrow \ell_H \rightarrow \ell \nu_H$; multijets \rightarrow multileptons

$\sigma(pp \rightarrow q_H q_H)$ 2-3 orders of magnitudes larger than $\sigma(pp \rightarrow \ell_H \ell_H)$

Limits for large f similar to FU: exclusions $f \gtrsim 950$ GeV (1350 GeV with T^\pm)

$\kappa \lesssim 0.5$: $V_H \rightarrow \ell_H \ell_H$ now open; covered by multilepton analysis; $f \gtrsim 1.9$ TeV

Only very tiny changes for TPV
13 TeV recasting results: Light ℓ_H

(Light ℓ_H) \oplus (Heavy T^\pm) \oplus (TPC)
13 TeV recasting results: Light ℓ_H

(Light ℓ_H) \oplus (Light T^\pm) \oplus (TPC)

- 2 main exclusion regions, intersect at $f \approx 1.6$ TeV and $\kappa_q \approx 1.2$
- $\kappa_q > 0.5$: 3ℓ search, $pp \rightarrow q_H q_H \rightarrow jjV_HV_H \rightarrow jj\ell\ell\ell\ell A_H A_H$
- $\kappa_q < 0.5$: V_H have hadronic decays, multi-jet analyses dominate
- Large-κ bound stronger due to leptons compared to Fermion Universality
- Presence of T^\pm leads only to marginal changes
- TPV: bounds slightly weakened due to smaller MET cut efficiency
13 TeV recasting results: Light ℓ_H

\[(\text{Light } \ell_H) \oplus (\text{Heavy } T^\pm) \oplus (\text{TPV})\]

- 2 main exclusion regions, intersect at $f \approx 1.6$ TeV and $\kappa_q \approx 1.2$
- $\kappa_q > 0.5$: 3ℓ search, $pp \rightarrow q_H q_H \rightarrow j j V_H V_H \rightarrow j j \ell\ell\ell\ell A_H A_H$
- $\kappa_q < 0.5$: V_H have hadronic decays, multi-jet analyses dominate
- Large-κ bound stronger due to leptons compared to Fermion Universality
- Presence of T^\pm leads only to marginal changes
- TPV: bounds slightly weakened due to smaller MET cut efficiency
13 TeV recasting results: Light ℓ_H

(Light ℓ_H) \oplus (Light T^\pm) \oplus (TPV)

- 2 main exclusion regions, intersect at $f \approx 1.6$ TeV and $\kappa_q \approx 1.2$
- $\kappa_q > 0.5$: 3ℓ search, $pp \rightarrow q_H q_H \rightarrow jj V_H V_H \rightarrow jj \ell\ell\ell\ell A_H A_H$
- $\kappa_q < 0.5$: V_H have hadronic decays, multi-jet analyses dominate
- Large-κ bound stronger due to leptons compared to Fermion Universality
- Presence of T^\pm leads only to marginal changes
- TPV: bounds slightly weakened due to smaller MET cut efficiency
Prospects for 14 TeV HL-LHC

<table>
<thead>
<tr>
<th>CM identifier</th>
<th>Final State</th>
<th>Designed for</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>atlas_2014_010_hl_3l</td>
<td>$E_T + 3 \ell$</td>
<td>$\tilde{\chi}^\pm, \tilde{\chi}^0$</td>
<td>ATL-PHYS-PUB-2014-010</td>
</tr>
<tr>
<td>atlas_phys_2014_010_sq_hl</td>
<td>$E_T + 0 \ell + 2-6 j$</td>
<td>\tilde{q}, \tilde{g}</td>
<td>ATL-PHYS-PUB-2014-010</td>
</tr>
<tr>
<td>dilepton_hl</td>
<td>$E_T + 2 \ell$</td>
<td>$\tilde{\chi}^\pm, \tilde{\ell}$</td>
<td>based on 1403.5294</td>
</tr>
</tbody>
</table>

(Fermion Universality) \oplus (Heavy T^\pm) \oplus (TPC)

q_H mass bounds improves by 1.0-1.5 TeV: $M(q_H) \gtrsim 3$-4 TeV

14 TeV \quad 3,000 / fb
Prospects for 14 TeV HL-LHC

<table>
<thead>
<tr>
<th>CM identifier</th>
<th>Final State</th>
<th>Designed for</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>atlas.2014.010.hl.3l</td>
<td>$E_T + 3 \ell$</td>
<td>$\tilde{\chi}^\pm, \tilde{\chi}^0$</td>
<td>ATL-PHYS-PUB-2014-010</td>
</tr>
<tr>
<td>atlas.phys.2014.010_sq.hl</td>
<td>$E_T + 0 \ell + 2-6 j$</td>
<td>\tilde{q}, \tilde{g}</td>
<td>ATL-PHYS-PUB-2014-010</td>
</tr>
<tr>
<td>dilepton.hl</td>
<td>$E_T + 2 \ell$</td>
<td>$\tilde{\chi}^\pm, \tilde{\ell}$</td>
<td>based on 1403.5294</td>
</tr>
</tbody>
</table>

(Heavy q_H) \oplus (Heavy T^\pm) \oplus (TPC)

14 TeV 3,000 / fb

Relatively moderate improvements for ℓ_H mass bounds
Prospects for 14 TeV HL-LHC

<table>
<thead>
<tr>
<th>CM identifier</th>
<th>Final State</th>
<th>Designed for</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>atlas.2014.010.hl.3l</td>
<td>$\not{E}_T + 3 \ell$</td>
<td>$\tilde{\chi}^\pm, \tilde{\chi}^0$</td>
<td>ATL-PHYS-PUB-2014-010</td>
</tr>
<tr>
<td>atlas_phys.2014.010_sq.hl</td>
<td>$\not{E}_T + 0 \ell + 2\text{-}6j$</td>
<td>\tilde{q}, \tilde{g}</td>
<td>ATL-PHYS-PUB-2014-010 based on 1403.5294</td>
</tr>
<tr>
<td>dilepton.hl</td>
<td>$\not{E}_T + 2 \ell$</td>
<td>$\tilde{\chi}^\pm, \tilde{\ell}$</td>
<td></td>
</tr>
</tbody>
</table>

(Light ℓ_H) \oplus (Heavy T^\pm) \oplus (TPC)

Little improvement compared to 13 TeV
LHC Run 2 and EWPO/Higgs Results

(Fermion Universality) \(\oplus \) (Heavy \(T\pm \)) \(\oplus \) (\(T\)-parity conservation)
LHC Run 2 and EWPO/Higgs Results

(Fermion Universality) \oplus (Light T^\pm) \oplus (T-parity conservation)
LHC Run 2 and EWPO/Higgs Results

(Heavy q_H) \oplus (Heavy T^{\pm}) \oplus (T-parity conservation)
LHC Run 2 and EWPO/Higgs Results

(Heavy q_H) \oplus (Light T^\pm) \oplus (T-parity conservation)
LHC Run 2 and EWPO/Higgs Results

\[(\text{Light } \ell_H) \oplus (\text{Heavy } T^\pm) \oplus (T\text{-parity conservation})\]
LHC Run 2 and EWPO/Higgs Results

\[(\text{Light } \ell_H) \oplus (\text{Light } T^\pm) \oplus (T\text{-parity conservation})\]