Casimir scaling and Yang-Mills glueballs

Deog Ki Hong

Pusan National University, Busan, Korea

July 7, 2018

ICHEP 2018, Seoul

With J.-W. Lee, B. Lucini, M. Piai, and D. Vadacchino -Based on arXiv:1705.00286, Phys.Lett. B775 (2017) 89

 Also with E. Bennet et al. arXiv:1712.04220, JHEP 1803 (2018) 185.

Introduction

Glueball mass

universal ratio and confinement

Conclusion and Outlook

<ロト < 団ト < 巨ト < 巨ト < 巨ト 三 のQで 2/31

Introduction

- Solving QCD is hard, because quarks and gluons are not right degrees of freedom at low energy, though fundamental.
- Microscopic degrees are often vastly different from the macroscopic degrees of freedom due to phase transition.

 Yang-Mills theories with a few matter fields are believed to exhibit a confining phase.

The thermal average of the Polyakov loop is an order parameter of the confinement phase transition.

$$\mathcal{L}(au) = \langle I(ec{x})
angle_eta \equiv \left\langle rac{1}{N_c} \mathrm{Tr} \mathcal{P} e^{i \int_0^eta A_0(au,ec{x}) \mathrm{d} au}
ight
angle_eta = e^{-eta E_q} \, .$$

• Center symmetry: $g(\beta, \vec{x}) = h g(0, \vec{x}), h \in Z_{N_c}$.

Figure: Asakawa et al PRL '13 Figure: Braun et al EPJC '10

Glueball mass

 Calculating glueball mass is tantamout to showing the confinement gap:

Glueball mass

► Large N behavior for 4d SU(N) (Lucini+Teper+Wenger '04):

$$0^{++} \qquad \frac{m}{\sqrt{\sigma}} = 3.28(8) + \frac{2.1(1.1)}{N^2}$$
$$0^{++*} \qquad \frac{m}{\sqrt{\sigma}} = 5.93(17) - \frac{2.7(2.0)}{N^2}$$
$$2^{++} \qquad \frac{m}{\sqrt{\sigma}} = 4.78(14) + \frac{0.3(1.7)}{N^2}$$

<ロト < 部ト < 書ト < 書ト 書 のので 7/31

Glueball mass

Large N limit of lattice data:

$$\left. \frac{M_{0^{++}}}{\sqrt{\sigma}} \right|_{N \to \infty} = \sqrt{2\eta} = 3.28 \quad \rightarrow \quad \eta(\text{lattice}) = 5.4$$

<ロト < 団ト < 巨ト < 巨ト < 巨ト 三 のので 8/31

Glueball mass

Holographic QCD Calculations (Brower et al 2000):

<ロト < 目 ト < 目 ト < 目 ト 目 の Q () 9/31

Glueball mass

The string tension in Witten-Sakai-Sugimoto model:

$$\sigma = \left. \frac{1}{2\pi I_s^2} \sqrt{-g_{tt} g_{xx}} \right|_{u=u_{\rm KK}} = \frac{\lambda}{27\pi} M_{\rm KK}^2 \,.$$

• Taking $\lambda = 17$ (HRYY '07), we find

$$\eta(hQCD) = 2.49 \left(\frac{M_{0^{++}}}{M_{KK}}\right)^2 = 5.6$$

 η (lattice) = 5.4

To understand the glueball spectrum is to solve YM theory.

- Finding any regularity especially in the ground state glueball will help us to understand the confinement in YM theory.
- ▶ We conjecture a universal ratio in pure YM theories:

$$\eta(0^{++}) = \frac{m_{0^{++}}^2}{\sigma} \cdot \frac{C_2(F)}{C_2(A)}.$$

- ► To understand the glueball spectrum is to solve YM theory.
- Finding any regularity especially in the ground state glueball will help us to understand the confinement in YM theory.
- We conjecture a universal ratio in pure YM theories:

$$\eta(0^{++}) = \frac{m_{0^{++}}^2}{\sigma} \cdot \frac{C_2(F)}{C_2(A)}.$$

- ► To understand the glueball spectrum is to solve YM theory.
- Finding any regularity especially in the ground state glueball will help us to understand the confinement in YM theory.
- ▶ We conjecture a universal ratio in pure YM theories:

$$\eta(0^{++}) = \frac{m_{0^{++}}^2}{\sigma} \cdot \frac{C_2(F)}{C_2(A)}.$$

- ► To understand the glueball spectrum is to solve YM theory.
- Finding any regularity especially in the ground state glueball will help us to understand the confinement in YM theory.
- ▶ We conjecture a universal ratio in pure YM theories:

$$\eta(0^{++}) = \frac{m_{0^{++}}^2}{\sigma} \cdot \frac{C_2(F)}{C_2(A)}.$$

Universal ratio and confinement

- Confinement and monopole condensation dual Meissner effect (Mandelstam, 't Hooft 74, Seiberg-Witten '94)
 - Monopole condensation 't Hooft operator (φ) ~ κ, the intrinsic scale, responsible to all dimensional quantities in confining phase.

Universal ratio and confinement

- Confinement and monopole condensation dual Meissner effect (Mandelstam, 't Hooft 74, Seiberg-Witten '94)
- Monopole condensation 't Hooft operator $\langle \phi \rangle \sim \kappa$, the intrinsic scale, responsible to all dimensional quantities in confining phase.

Universal ratio and confinement

If the monopole condensation is responsible for the confinement, the string tube picture should hold.

> ٩ ------

String tension between a static quark and antiquark:

 $\sigma = \kappa^2 C_2(F), \quad \langle \phi \rangle \sim \kappa \,.$

The string tension can be calculated from the Wilson loop:

$$\langle W(\mathcal{C}) \rangle = \left\langle \frac{1}{N} e^{i \oint_{\mathcal{C}} A} \right\rangle = \exp\left[-\sigma LT + \cdots\right],$$

13/31

(日)

Universal ratio and confinement

If the monopole condensation is responsible for the confinement, the string tube picture should hold.

String tension between a static quark and antiquark:

 $\sigma = \kappa^2 C_2(F), \quad \langle \phi \rangle \sim \kappa \,.$

The string tension can be calculated from the Wilson loop:

$$\langle W(\mathcal{C}) \rangle = \left\langle \frac{1}{N} e^{i \oint_{\mathcal{C}} A} \right\rangle = \exp\left[-\sigma LT + \cdots\right],$$

<ロト < 回 > < 回 > < 回 > < 回 > < 三 > 三 三

Universal ratio and confinement

If the monopole condensation is responsible for the confinement, the string tube picture should hold.

String tension between a static quark and antiquark:

 $\sigma = \kappa^2 C_2(F), \quad \langle \phi \rangle \sim \kappa \,.$

The string tension can be calculated from the Wilson loop:

$$\langle W(\mathcal{C})\rangle = \left\langle \frac{1}{N} e^{i \oint_{\mathcal{C}} A} \right\rangle = \exp\left[-\sigma LT + \cdots\right],$$

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Universal ratio and confinement

Since the gluon is adjoint, we conjecture

$$m_{0^{++}}^2 = \eta \, \kappa^2 \, C_2(A) \,,$$

where η is a universal dimensionless number for YM theories.

Universal ratio and confinement

Numerical evidences from Monte Carlo simulations:

$$\eta(0^{++}) \equiv \frac{m_{0^{++}}^2}{\sigma} \cdot \frac{C_2(F)}{C_2(A)} \approx \begin{cases} 5.41(12) \,, \text{ for } d = 3+1 \,, \\ 8.444(15)(90) \text{ for } d = 2+1 \,. \end{cases}$$

<ロト < 目 > < 目 > < 目 > < 目 > 目 の Q @ 15/31

Universal ratio and confinement

New data by Bennett et al. (arXiv:1712.04220):

<ロト < 部ト < 書ト < 書ト 差 の Q () 16/31

Universal ratio and confinement

Ratio of Casimirs:

$$\frac{C_2(A)}{C_2(F)} = \begin{cases} \frac{2N^2}{N^2-1} \text{ for } SU(N) \\ \frac{2(N-2)}{N-1} \text{ for } SO(N) \\ \frac{4(N+1)}{2N+1} \text{ for } Sp(2N) . \end{cases}$$

In the large-N limit the ratio of Casimirs is universally 2.

Large-N universality (Lovelace '82; Imoto-Sakai-Sugimoto '10) implies η is at least universal in the large N.

Universal ratio and confinement

Ratio of Casimirs:

$$\frac{C_2(A)}{C_2(F)} = \begin{cases} \frac{2N^2}{N^2 - 1} \text{ for } SU(N) \\ \frac{2(N-2)}{N-1} \text{ for } SO(N) \\ \frac{4(N+1)}{2N+1} \text{ for } Sp(2N) . \end{cases}$$

▶ In the large-N limit the ratio of Casimirs is universally 2.

Large-N universality (Lovelace '82; Imoto-Sakai-Sugimoto '10) implies η is at least universal in the large N.

Universal ratio and confinement

Ratio of Casimirs:

$$\frac{C_2(A)}{C_2(F)} = \begin{cases} \frac{2N^2}{N^2 - 1} \text{ for } SU(N) \\ \frac{2(N-2)}{N-1} \text{ for } SO(N) \\ \frac{4(N+1)}{2N+1} \text{ for } Sp(2N) \end{cases}$$

In the large-N limit the ratio of Casimirs is universally 2.

Large-N universality (Lovelace '82; Imoto-Sakai-Sugimoto '10) implies η is at least universal in the large N.

Universal ratio and confinement

Excited states don't show universal behavior:

<ロト < 部ト < 目ト < 目ト 目 のQで 18/31

Bethe-Salpeter equations

The Bethe-Salpeter amplitude for a color-singlet bound state:

$$\overset{r\mu
u}{R}(x_1,x_2;P)=\langle 0|\; T\!A^{\mu\,a}(x_1)A^{
u\,a}(x_2)\,|R(P,\lambda)
angle\,,$$

$$\left[\partial^2 - \mathcal{P}^2\right] \chi_{\mathcal{P}}(x) = \int \mathrm{d}^4 y \, V(x-y) \chi_{\mathcal{P}}(y) \,,$$

Bethe-Salpeter equations

To get the Regge behavior for the radial excitations, we take

$$V(x-y) = \frac{1}{2}k x^2 \delta^4(x-y).$$

If the string tube picture holds for the glueball state,

 $\sqrt{k} \sim \sigma(A) = C_2(A)\kappa^2$.

• The glueball mass becomes $(n = 1, 2, \cdots)$

$$M_{0^{++}}^2 \sim C_2(A)\kappa^2(n+1)$$

<ロト < 部ト < 目ト < 目ト 目 のQで 20/31

Bethe-Salpeter equations

To get the Regge behavior for the radial excitations, we take

$$V(x-y) = \frac{1}{2}k x^2 \delta^4(x-y)$$

If the string tube picture holds for the glueball state,

 $\sqrt{k} \sim \sigma(A) = C_2(A)\kappa^2$.

• The glueball mass becomes $(n = 1, 2, \cdots)$

$$M_{0^{++}}^2 \sim C_2(A)\kappa^2(n+1)$$

<ロト < 団ト < 巨ト < 巨ト < 巨ト 三 のへで 20/31

Bethe-Salpeter equations

To get the Regge behavior for the radial excitations, we take

$$V(x-y) = \frac{1}{2}k x^2 \delta^4(x-y).$$

If the string tube picture holds for the glueball state,

 $\sqrt{k} \sim \sigma(A) = C_2(A)\kappa^2$.

• The glueball mass becomes $(n = 1, 2, \cdots)$

$$M_{0^{++}}^2 \sim C_2(A)\kappa^2(n+1).$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣○

20/31

Bethe-Salpeter equations

• Corrections to the area law: for $|x| \gg \kappa^{-1}$

$$\frac{1}{2}\left(C_2(A)\kappa^2 x - \frac{\alpha}{x}\right)^2 \approx \frac{1}{2}C_2(A)^2\kappa^4 x^2 - \alpha C_2(A)\kappa^2,$$

where $\alpha = \pi/12$ is the universal coefficient of Lüscher term. The ground state glueball mass then gets a correction as

$$M_{0^{++}}^2 \sim C_2(A)\kappa^2 \ (2-lpha) \ ,$$

<ロト < 部ト < 書ト < 書ト 差 うへで 21/31

Bethe-Salpeter equations

• Corrections to the area law: for $|x| \gg \kappa^{-1}$

$$\frac{1}{2}\left(C_2(A)\kappa^2 x - \frac{\alpha}{x}\right)^2 \approx \frac{1}{2}C_2(A)^2\kappa^4 x^2 - \alpha C_2(A)\kappa^2,$$

where $\alpha = \pi/12$ is the universal coefficient of Lüscher term.

The ground state glueball mass then gets a correction as

$$M_{0^{++}}^2 \sim C_2(A)\kappa^2 (2-\alpha)$$
,

Scale anomaly

Pure YM theory in 4d is scale invariant classically.

- The scale symmetry is anomalous, however, because broken by quantum effects.
- The scale symmetry is also spontaneously broken in YM theories, since the vacuum develops an expectation value for the confinement order parameter.

Scale anomaly

- Pure YM theory in 4d is scale invariant classically.
- The scale symmetry is anomalous, however, because broken by quantum effects.
- The scale symmetry is also spontaneously broken in YM theories, since the vacuum develops an expectation value for the confinement order parameter.

Scale anomaly

- Pure YM theory in 4d is scale invariant classically.
- The scale symmetry is anomalous, however, because broken by quantum effects.
- The scale symmetry is also spontaneously broken in YM theories, since the vacuum develops an expectation value for the confinement order parameter.

Scale anomaly

- If the scale anomaly is parametrically small, compared to the condensate of the order parameter, then there should be a Nambu-Goldstone boson associated with scale symmetry:
- By Goldstone theorem, the dilatation current should create a state, dilaton:

$$\langle 0 | D^{\mu} | D(p) \rangle = -f_D p^{\mu} e^{-ip \cdot x};$$

The scale anomaly in pure YM theory is given as

$$\partial^\mu D_\mu = -rac{eta(g)}{2g}\,F^a_{\mu
u}F^{a\,\mu
u}\,.$$

Scale anomaly

- If the scale anomaly is parametrically small, compared to the condensate of the order parameter, then there should be a Nambu-Goldstone boson associated with scale symmetry:
- By Goldstone theorem, the dilatation current should create a state, dilaton:

$$\langle 0 | D^{\mu} | D(p) \rangle = -f_D p^{\mu} e^{-ip \cdot x};$$

The scale anomaly in pure YM theory is given as

$$\partial^{\mu}D_{\mu}=-rac{eta(g)}{2g}\,F^{a}_{\mu
u}F^{a\,\mu
u}$$

Scale anomaly

- If the scale anomaly is parametrically small, compared to the condensate of the order parameter, then there should be a Nambu-Goldstone boson associated with scale symmetry:
- By Goldstone theorem, the dilatation current should create a state, dilaton:

$$\left< 0 \right| D^{\mu} \left| D(p) \right> = - f_D p^{\mu} e^{-i p \cdot x}$$
 ;

The scale anomaly in pure YM theory is given as

$$\partial^{\mu}D_{\mu} = -rac{\beta(g)}{2g}F^{a}_{\mu
u}F^{a\,\mu
u}$$

Scale anomaly

The anomalous WT identity relates:

$$\int_{x} \left\langle 0 \right| \mathrm{T} \, \theta^{\mu}_{\mu}(x) \theta^{\nu}_{\nu}(y) \left| 0 \right\rangle = -4 \left\langle \theta^{\mu}_{\mu}(y) \right\rangle = -16 \mathcal{E}_{\mathrm{vac}} \, .$$

 Since all the gluons contribute to the vacuum energy equally and additively,

$$4\mathcal{E}_{\mathrm{vac}} = \left\langle \theta^{\mu}_{\mu} \right\rangle = -\beta \ C_2(A) \kappa^4 \,.$$

<ロト < 部ト < 書ト < 書ト 差 うへで 24/31

Scale anomaly

The anomalous WT identity relates:

$$\int_{X} \left\langle 0 \right| \mathrm{T} \, \theta^{\mu}_{\mu}(x) \theta^{\nu}_{\nu}(y) \left| 0 \right\rangle = -4 \left\langle \theta^{\mu}_{\mu}(y) \right\rangle = -16 \mathcal{E}_{\mathrm{vac}} \, .$$

 Since all the gluons contribute to the vacuum energy equally and additively,

$$4\mathcal{E}_{\mathrm{vac}} = \left\langle \theta^{\mu}_{\mu} \right\rangle = -\beta \ C_2(A) \kappa^4 \,.$$

▲口 ▶ ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ 二 臣

24/31

Scale anomaly

▶ If the scale anomaly is parametrically small or $\beta \ll 1$, there should be a light dilaton that saturates

$$\int_{X} \left< 0
ight| \mathrm{T} \, heta_{\mu}^{\mu}(x) heta_{
u}^{
u}(y) \left| 0 \right> pprox f_{D}^{2} m_{D}^{2} \, .$$

► We have PCDC relation:

$$f_D^2 m_D^2 = -4 \left< \partial_\mu D^\mu \right> = -16 \, \mathcal{E}_{
m vac} = 4 eta \; C_2(A) \kappa^4 \, .$$

• The dilaton decay constant $f_D \sim \langle \phi \rangle \sim \kappa$, since it depends on the scale that breaks the scale symmetry spontaneously.

Scale anomaly

▶ If the scale anomaly is parametrically small or $\beta \ll 1$, there should be a light dilaton that saturates

$$\int_{x} \langle 0 | \mathrm{T} \, \theta^{\mu}_{\mu}(x) \theta^{\nu}_{\nu}(y) \, | 0 \rangle \approx f_{D}^{2} m_{D}^{2}$$

We have PCDC relation:

$$f_D^2 m_D^2 = -4 \left\langle \partial_\mu D^\mu \right\rangle = -16 \, \mathcal{E}_{
m vac} = 4 eta \, C_2(A) \kappa^4 \, .$$

The dilaton decay constant $f_D \sim \langle \phi \rangle \sim \kappa$, since it depends on the scale that breaks the scale symmetry spontaneously.

Scale anomaly

▶ If the scale anomaly is parametrically small or $\beta \ll 1$, there should be a light dilaton that saturates

$$\int_{x} \langle 0 | \mathrm{T} \, \theta^{\mu}_{\mu}(x) \theta^{\nu}_{\nu}(y) \, | 0 \rangle \approx f_{D}^{2} m_{D}^{2}$$

We have PCDC relation:

$$f_D^2 m_D^2 = -4 \left\langle \partial_\mu D^\mu \right\rangle = -16 \, \mathcal{E}_{
m vac} = 4 eta \, C_2(A) \kappa^4 \, .$$

• The dilaton decay constant $f_D \sim \langle \phi \rangle \sim \kappa$, since it depends on the scale that breaks the scale symmetry spontaneously.

Scale anomaly

If we identify the ground state glueball as dilaton,

 $m_{0^{++}}^2 (= m_D^2) \propto \beta \ C_2(A) \kappa^2$.

• The ground state glueball mass becomes parametrically small, when the anomaly or $\beta \rightarrow 0$.

lt should be dilaton, if $\beta \rightarrow 0$.

Scale anomaly

If we identify the ground state glueball as dilaton,

 $m_{0^{++}}^2 (= m_D^2) \propto \beta \ C_2(A) \kappa^2$.

• The ground state glueball mass becomes parametrically small, when the anomaly or $\beta \rightarrow 0$.

lt should be dilaton, if $\beta \rightarrow 0$.

Scale anomaly

If we identify the ground state glueball as dilaton,

 $m_{0^{++}}^2 (= m_D^2) \propto \beta \ C_2(A) \kappa^2$.

• The ground state glueball mass becomes parametrically small, when the anomaly or $\beta \rightarrow 0$.

• It should be dilaton, if
$$\beta \rightarrow 0$$
.

Scale anomaly

- The assumption that 0⁺⁺ saturates the WT identity is equivalent to the existence of dilaton EFT for 0⁺⁺.
 - The casimir scaling observed numerically suggest that 0⁺⁺ is indeed dilaton and the excited glueball states have little overlap with operator θ^μ_µ.

Scale anomaly

- The assumption that 0⁺⁺ saturates the WT identity is equivalent to the existence of dilaton EFT for 0⁺⁺.
- The casimir scaling observed numerically suggest that 0⁺⁺ is indeed dilaton and the excited glueball states have little overlap with operator θ^μ_μ.

QCD sum rules

• In lattice the glueball mass is extracted from the correlators of $\mathcal{O}_{S}(x) = \alpha_{s} F^{a}_{\mu\nu} F^{a \mu\nu}$:

$$\Pi_{\mathcal{S}}(x) = \langle 0 | \operatorname{T} \mathcal{O}_{\mathcal{S}}(x) \mathcal{O}_{\mathcal{S}}(0) | 0 \rangle = \sum_{n} c_{n} e^{-m_{n}|x|},$$

QCD sum rule for the zero moment (Novikov1980) becomes

$$\int \mathrm{d}^4 x \,\Pi_S(x) = \frac{32\pi^2}{b} \left\langle 0 \right| \frac{\alpha_s}{\pi} F^a_{\mu\nu} F^{a\,\mu\nu} \left| 0 \right\rangle$$

<ロト < 目 ト < 目 ト < 目 ト 目 の Q (C) 28/31

QCD sum rules

• In lattice the glueball mass is extracted from the correlators of $\mathcal{O}_{S}(x) = \alpha_{s} F_{\mu\nu}^{a} F^{a\mu\nu}$:

$$\Pi_{\mathcal{S}}(x) = \langle 0 | \operatorname{T} \mathcal{O}_{\mathcal{S}}(x) \mathcal{O}_{\mathcal{S}}(0) | 0 \rangle = \sum_{n} c_{n} e^{-m_{n}|x|},$$

QCD sum rule for the zero moment (Novikov1980) becomes

$$\int \mathrm{d}^4 x \,\Pi_{\mathcal{S}}(x) = \frac{32\pi^2}{b} \left\langle 0 \right| \frac{\alpha_s}{\pi} F^a_{\mu\nu} F^{a\,\mu\nu} \left| 0 \right\rangle \,,$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

28/31

QCD sum rules

 By inserting a complete set between the interpolating operators we get

$$\sum_{n} f_{n}^{2} m_{n}^{2} = \frac{32\pi^{2}}{b} \langle 0 | \frac{\alpha_{s}}{\pi} F_{\mu\nu}^{a} F^{a\mu\nu} | 0 \rangle ,$$

where f_n is defined to have a proper normalization by

$$f_n m_n^2 \equiv \langle 0 | \mathcal{O}_S(p) | n \rangle_{p^2=0}$$
.

If the ground state glueball saturates, we find again

$$m_{0^{++}}^2 \sim C_2(A)\kappa^2$$
.

QCD sum rules

 By inserting a complete set between the interpolating operators we get

$$\sum_{n} f_{n}^{2} m_{n}^{2} = \frac{32\pi^{2}}{b} \langle 0 | \frac{\alpha_{s}}{\pi} F_{\mu\nu}^{a} F^{a\mu\nu} | 0 \rangle ,$$

where f_n is defined to have a proper normalization by

$$f_n m_n^2 \equiv \langle 0 | \mathcal{O}_S(p) | n \rangle_{p^2=0}$$
.

If the ground state glueball saturates, we find again

$$m_{0^{++}}^2 \sim C_2(A)\kappa^2$$
.

Conclusion and Outlook

- We have argued that both the glueball mass squared and the string tension should follow the Casimir scaling.
- ▶ We conjecture a universal ratio in pure YM theories:

$$\eta(0^{++}) = \frac{m_{0^{++}}^2}{\sigma} \cdot \frac{C_2(F)}{C_2(A)},$$

since the monopole condensate should be responsible for all dimensional quantities in confining phase.

(日)

30/31

Conclusion and Outlook

- We have argued that both the glueball mass squared and the string tension should follow the Casimir scaling.
- ▶ We conjecture a universal ratio in pure YM theories:

$$\eta(0^{++}) = \frac{m_{0^{++}}^2}{\sigma} \cdot \frac{C_2(F)}{C_2(A)},$$

since the monopole condensate should be responsible for all dimensional quantities in confining phase.

Conclusion and Outlook

The conjecture should hold for any gauge theories, exhibiting an area law for the color confinement.

There are strong numerical evidences:

$$\eta(0^{++}) pprox egin{cases} 5.41(12)\,, & ext{for} \ d=3+1\,, \ 8.444(15)(90) & ext{for} \ d=2+1\,. \end{cases}$$

- There are supports from arguments based on BS analysis, scale anomaly and QCD sum rules.
- If our conjecture is established, it will provide a pivotal step to understand confinement in YM theories.

Conclusion and Outlook

- The conjecture should hold for any gauge theories, exhibiting an area law for the color confinement.
- There are strong numerical evidences:

$$\eta(0^{++}) pprox egin{cases} 5.41(12)\,, & {
m for} \ d=3+1\,, \ 8.444(15)(90) \ {
m for} \ d=2+1\,. \end{cases}$$

- There are supports from arguments based on BS analysis, scale anomaly and QCD sum rules.
- If our conjecture is established, it will provide a pivotal step to understand confinement in YM theories.

Conclusion and Outlook

- The conjecture should hold for any gauge theories, exhibiting an area law for the color confinement.
- There are strong numerical evidences:

$$\eta(0^{++}) pprox egin{cases} 5.41(12)\,, & ext{for} \ d=3+1\,, \ 8.444(15)(90) \ ext{for} \ d=2+1\,. \end{cases}$$

- There are supports from arguments based on BS analysis, scale anomaly and QCD sum rules.
- If our conjecture is established, it will provide a pivotal step to understand confinement in YM theories.

Conclusion and Outlook

- The conjecture should hold for any gauge theories, exhibiting an area law for the color confinement.
- There are strong numerical evidences:

$$\eta(0^{++}) pprox egin{cases} 5.41(12)\,, & ext{for} \ d=3+1\,, \ 8.444(15)(90) \ ext{for} \ d=2+1\,. \end{cases}$$

- There are supports from arguments based on BS analysis, scale anomaly and QCD sum rules.
- If our conjecture is established, it will provide a pivotal step to understand confinement in YM theories.