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Quantum entanglement

» Most surprising feature of quantum mechanics,
No analog in classical mechanics

» From pure state of the full system S: p = |¢) (4|, reduced
density matrix of a subsystem A: pa = Trs_a p can become
mixed states, and has nonzero entanglement entropy

Sa=—Tralpalnpal].

This is purely a quantum property.
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entanglement entropy: S, o< (area of A)

» Gapped systems in 1D are proven to obey the area law.
[Hastings 2007]
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Area law of entanglement entropy

» Ground states of quantum many-body systems (with local
interactions) typically exhibit the area law behavior of the
entanglement entropy: S, o< (area of A)

» Gapped systems in 1D are proven to obey the area law.
[Hastings 2007]
(Area law violation) = Gapless

» For gapless case, (1 + 1)-dimensional CFT violates
logarithmically: 5S4 — £ In(volume of A).  [Calabrese, Cardy 2009]

» Recently, 1D solvable spin chain model which exhibit
extensive entanglement entropy have been discussed.

» Beyond logarithmic violation: S4 o< \/(volume of A)
[Movassagh, Shor 2014], [Salberger, Korepin 2016]
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» 1D spin chain at sites i € {1,2,--- ,2n}
» Spin-1 state at each site can be regarded as up, down and flat

steps;
|U><:>/‘, ‘d><:>\"7 |O><:>—)

» Each spin configuration < length-2n walk in (x, y) plane
Example)

y
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Motzkin spin model 2 [Bravyi et al 2012]
Hamiltonian: Hpyotzkin = Hpuik + Hpdy
2n—1
> Bulk part: Hpu = 501 My ji,

Njjr1=1D); ;1 (DI +|U); ;1 (U] + |F); ;11 (F]

(local interactions) with

|D>57(|o dy — |d. 0)),
R e

|U>z}<ro u) — |u, 0)), -

£y — 1 & —- /'\

F) = 5(10.0) ~ |u. ).

“gauge equivalence”.
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Hamiltonian: Huotzkin = Hpuik + Hbdy

» Boundary part: Hpgy, = |d);(d| + |u),, (]
4

> Hpjotzkin is the sum of projection operators.
= Positive semi-definite spectrum
» We find the unique zero-energy ground state.
» Each projector in Hpjotzkin annihilates the zero-energy state.
= Frustration free
» The ground state corresponds to randoms walks starting at
(0,0) and ending at (2n,0) restricted to the region y > 0
(Motzkin Walks (MWs)).



MOtZkin Spln mOdel 4 [Bravyi et al 2012]

Example) 2n =4 case,
MWs:

I NIRRTV NN ¥
TN TN TN NN

N

(i
Ground state:

1
Py = NG [/0000) + |ud00) + |0ud0) + |00ud)

+|u0d0) + [0u0d) + |u00d) + |udud)
+|uudd)] .



MOtZkin Spln mOdel 5 [Bravyi et al 2012]

Note
Forbidden paths for the ground state

1. Path entering y < 0 region

TN AN T

Forbidden by Hpqy,
2. Path ending at nonzero height

T

Forbidden by Hyqy,
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MOtZkin Spln mOdel 6 [Bravyi et al 2012]

Entanglement entropy of the subsystem A= {1,2,---  n}:
» Normalization factor of the ground state |Py,) is given by

the number of MWs of length 2n: My, = ZZ:O Ck <§Z>

Cx = %{1 (2:): Catalan number

» Consider to trace out the density matrix p = |Pap){Pan| w.r.t.
the subsystem B = {n+1,---,2n}.
Schmidt decomposition:

|'D2n> = Z V pr(j,,r)r

h>0

P'(10ﬁh)> ® ‘ Pr(lhﬁ0)>

) _ () 1
Paths from (0,0) to (n, h)



MOtZkin Spln mOdel s [Bravyi et al 2012]

> M,(,h) is the number of paths in P,(,O_m).
For n — oo, Gaussian distribution
h 12 2
i) 2RO 1 o/,

> Reduced density matrix

pa=Trep=> pni

Oam><Pw+m‘

h>0
» Entanglement entropy
h h
Sa = E:A)mﬁ)
h>0
+oml 4 L (v: Eul tant)
= —In— - = v: er constan
23 Ty

up to terms vanishing as n — oo.
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Notes
» The system is critical (gapless).
Sp is similar to the (1 4 1)-dimensional CFT with ¢ = 3/2.

» Gap scales as O(1/n*) with z > 2.
The system cannot be described by relativistic CFT.
Lifshitz type 7 [Chen, Fradkin, Witczak-Krempa 2017]

» Excitations have not been much investigated.
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» Introducing color d.o.f. Kk =1,2,--- s to up and down spins
as

k k
’uk>@/, ’dk><:>\, 0) &
Color d.o.f. decorated to Motzkin Walks

» Hamiltonian Hepotzkin = Hpuik + Hbdy

» Bulk part consisting of local interactions:

2n—1
Hpui = Z (M1 +057)
j=1
S
Mjj1 = DDk>j,j+1<Dk| + |Uk>j,j+1<Uk| + |Fk>j,j+1<Fk|}

k=1
with



Colored Motzkin Spin model 2 [Movassagh, Shor 2014]

0) = 75 (o @) ~[a-.0)).
5 ((0.0) [k, 0)).
F*) (\0 0) — ’u Ld9)).

! ’
neess = > |uk, d)  (uk a¥].
i Jd+1

= Colors should be matched in up and down pairs.

o
ST

and

» Boundary part

oy = 3= (), (] +[4£), 7).

k=1
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Colored Motzkin Spin model 3 [Movassagh, Shor 2014]

» Still unique ground state with zero energy
» Example) 2n = 4 case,

konk koK konk
—>—>—>—>+/\—>—>+—>/\—>+—>—>/'\
LN e
SN 4
BN
_|_

S

\/ﬁ |0000> + 2 {‘ukdk00> et ‘UkOOdk>}

+ i {)ukdkuk’dk’> + ]ukuk’dk’dk>}].

k,k'=1

|Ps) =




Colored Motzkin Spin model 4 [Movassagh, Shor 2014]

Entanglement entropy

» Paths from (0,0) to (n, h), P have h unmatched up

steps.
Let FN’,(,Oﬁh)({/im}) be paths with the colors of unmatched up
steps fixed.
(unmatched up from height (m — 1) to m) — u"m
> Similarly,

(unmatched down from height m to (m — 1)) — d".

» The numbers satisfy M — sh pSh).



Colored Motzkin Spin model 5 [Movassagh, Shor 2014]

Example
2n =8 case, h=2

y A B

3
"k
2 u"'/Z d“2
k Kk
1
Ut dr
0 X



Colored Motzkin Spin model 6 [Movassagh, Shor 2014]

» Schmidt decomposition

PO ({km}) )

with

» Reduced density matrix

DD W'

h>0 k1=1 kp=1

{rmh) ) (PO ({1}




Colored Motzkin Spin model 7 [Movassagh, Shor 2014]

» For n — oo,

h V2sh ()2
pi) ~ NEOEE (h+1)2e 2 x [L+ O(1/n)]
with o = 5. Note: Effectively h < O(y/n).
» Entanglement entropy
Sa o= =Y s"piinpl)

h>0



Colored Motzkin Spin model 7 [Movassagh, Shor 2014]

» For n — oo,

—h 2

(0 V25" 2% 1t o

Pn,n ﬁ(UI7)3 2( + ) € [ + ( /n)]
with o = 5. Note: Effectively h < O(y/n).
» Entanglement entropy
Sa o= =Y s"piinpl)
h>0

2 1 1 1

= (2Ins) %n +§Inn+§|n(27m)+fy— E—Ins

up to terms vanishing as n — oc. Grows as /n.
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Comments

Matching color = s~/ factor in n

(
Pn,n
= crucial to O(y/n) behavior in Sp
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Colored Motzkin Spin model 8 [Movassagh, Shor 2014]

Comments

Matching color = s~ factor in pf,h,),

= crucial to O(y/n) behavior in Sp
» For spin 1/2 chain (only up and down), the model in which
similar behavior exhibits in colored as well as uncolored cases
has been constructed. (Fredkin model)  [Salberger, Korepin 2016]
» Deformation of models to achieve the volume law behavior
(SA X n)
Weighted Motzkin/Dyck walks [Zhang et al, Salberger et al 2016]
» Next, we consider extension of the model from a different
point of view.
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SlS Motzkin model 1 [Sugino, Padmanabhan 2017]

» Change the spin d.o.f. as |x, ) with a,b € {1,2,---  k}.
b
> a < bcase: ‘'up' & a/l

a
b

a > b case: ‘down’ & \

a= b case: ‘flat’ & a_>b



SIS Motzkin model 1 [Sugino, Padmanabhan 2017]

» Change the spin d.o.f. as |x, ) with a,b € {1,2,---  k}.
b
> a < bcase: ‘up’ & V

a
a > b case: ‘down’ & \b
a= b case: ‘flat’ & Q_,b
» We regard the configuration of adjacent sites
|(Xa,6)j) |(Xc,d)j+1) as a connected path for b = c.
c.f.) Analogous to the product rule of Symmetric Inverse
Semigroup (S§): Xab * Xc.d = Obc Xad
a, b: semigroup indices
> Inner product: (Xap|Xc,d) = 0a,c0p,d

» Let us consider the kK = 3 case.



SlS Motzkin model 2 [Sugino, Padmanabhan 2017]

» Maximum height is lower than the original Motzkin case.
d 3
3




SlS Motzkin model 3 [Sugino, Padmanabhan 2017]

Hamiltonian Hs31notzkin = Hbuik + Hpuik,disc + Hbdy
» Hpuik: local interactions corresponding to the following moves:

a

a a
(Down) N \b_>b (a>b)

b b
(Up) 227 ~ 7 (a < b)

b
(Flat) 2.2 2 ~ 37°\¢  (a<b)

3 3 3 3
(Wedge) N4 NS



SlS Motzkin model 4 [Sugino, Padmanabhan 2017]

> Hpuik,disc lifts disconnected paths to excited states.
Ni¥): projector to |1)

2n—1

Hbu/k disc — Z Z ﬂ’(xa,b)jv(xc,d)j+1>

j=1 a,b,c,d=1;b#c



SlS Motzkin model 4 [Sugino, Padmanabhan 2017]

> Hpuik,disc lifts disconnected paths to excited states.
NI¥): projector to [¢)

2n—1

Hbulk disc — Z Z ﬂ’(xa,b)jv(xc,d)j+1>

j=1 a,b,c,d=1;b#c

Hogy = MlGasr) 4 3 M/Ca,6)20)

a>b a<b
+1 [(x1,3)1,(x3,2)2,(x2,1)3) +n [(x1,2)2n—2,(%2,3)2n—1,(X3,1)2n)

The last 2 terms have no analog to the original Motzkin
model.
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» Ground states correspond to connected paths starting at
(0,0), ending at (2n,0) and not entering y < 0. S Mws
» The ground states have 5 fold degeneracy according to the
initial and finial semigroup indices:
(1,1), (1,2), (2,1), (2,2) and (3, 3) sectors
The (3, 3) sector is trivial, consisting of only one path:
X3,3X33 " X3 3.



SIS Motzkin model 5 [Sugino, Padmanabhan 2017]

» Ground states correspond to connected paths starting at
(0,0), ending at (2n,0) and not entering y < 0. S Mws
» The ground states have 5 fold degeneracy according to the
initial and finial semigroup indices:
(1,1), (1,2), (2,1), (2,2) and (3, 3) sectors
The (3, 3) sector is trivial, consisting of only one path:
X3,3X33 " X3 3.
» The number of paths can be obtained by recursion relations.
For length-n paths from the semigroup index a to b (P, . .5),
n—2
Prisi = x11Pa-1151+x12 Z Piosox21Pp2_i151
- i=1
+x1.3 Z Pizs3x31Pn2-i151
i=1
n—2
+x13 Z Pi3—3x32Pn_2_j251, etc.
i=1



SlS Motzkin model 6 [Sugino, Padmanabhan 2017]

Result

» The entanglement entropies Sa 11, SA 12, Sa2-1 and
S22 take the same form as in the case of the Motzkin
model.

Logarithmic violation of the area law

| 4
> Sp3-3=0.

» Colored version can also be constructed (S5 ~ (S53)?):

20n 1
Saasb = (2In2)y/ 20 4 2

1 1
| bl _ =
—+5 nn+2|n(27m)+fy +1

2 %13

with o = \9%1 for (a, b) = (1,1),(1,2),(2,1),(2,2).
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» There are excited states corresponding to disconnected paths.
Example) One such path in 2n = 6 case,
Y 3
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3
o
3

DY




SIS Motzkin model 7

Localizaion [Padmanabhan, F.S., Korepin 2018]

» There are excited states corresponding to disconnected paths.
Example) One such path in 2n = 6 case,
Y 3

3
o
3
o
3

DY

X
Corresponding excited state: ]P3,1_>1>®’P§712_:?%>

Each connected component has no entanglement with other
components.



SIS Motzkin model 7

Localizaion [Padmanabhan, F.S., Korepin 2018]

» There are excited states corresponding to disconnected paths.
Example) One such path in 2n = 6 case,
Y 3

1S4

o
3
DY

X
Corresponding excited state: ]P371_>1>®’P§712_i)%>
Each connected component has no entanglement with other
components.
= 2pt connected correlation functions of local operators
belonging to separate connected components vanish.

= Localization!
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Summary and discussion 1

» We have reviewed the (colored) Motzkin spin models which
yield large entanglement entropy proportional to the square
root of the volume.

» We have extend the models by introducing additional d.o.f.
based on Symmetric Inverse Semigroup.

» Extension of the Fredkin (spin 1/2) model

[Padmanabhan, F.S., Korepin 2018]

» As a feature of the extended models,

Anderson-like localization occurs in excited states
corresponding to disconnected paths.

| 4
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[Chen, Fradkin, Witczak-Krempa 2017]
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» Continuum limit? (In particular, for colored case)
[Chen, Fradkin, Witczak-Krempa 2017]

» Holography? Application to quantum gravity or black holes?
[Alexander, Klich 2018]

» Higher-dimensional models (d = 2,3, ...)?

Thank you very much for your attention!
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