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Introduction

Phase structure of QFT is discussed recently.

A new tool: ’t Hooft anomaly of generalized global symmetries.

[Gaiotto et al. 15]

An application:

For bosonic SU(N) Yang-Mills theory, [Gaiotto et al. 17]

•CP at θ = π is spontaneously broken,

• shown by mixed anomaly of CP and center symmetry.

We give an alternative argument for SSB of CP based on finite

size corrections.
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Large N gauge theory [Witten 80]

The spontaneous CP violation occurs in large N Yang-Mills.

The ground state energy behaves as

E(θ)

θ

Each parabola corresponds a state.

At a cups, two state degenerate (interchanged by CP).

⇒ Spontaneous breaking of CP symmetry.

Also for finite N?
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Finite volume corrections

It seems difficult to show ∃ a cusp directly.

Instead, we look for a large finite volume corrections to ∂θF .

∂θF

θ

Physical quantities are analytic for a finite volume.

⇒ Finite V correction becomes large near transition points.
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cf. In ordinary cases, [Lüscher 86]

∂θF (θ, V )− ∂θF (θ,∞) ∼ e−∆V 1/4
,

in the presence of a mass gap ∆.

Let g(θ, V ) := F (θ, V )− F (θ,∞). If no phase transition,

g(2π, V )− g(0, V ) ∼ e−∆V 1/4
.

If g(θ, V ) varies more than exponential, then

1. ∃ a phase transition ⇒ CP violation, or

2. ∆ = 0 somewhere in [0, 2π].

In either case, it is surprising!
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SU(N)/ZN theory on T 4

To study SU(N) theory, we consider SU(N)/ZN theory instead.

Why? What is the difference between these theories?

⇒ Twisted boundary conditions are allowed in SU(N)/ZN theory,

but not in SU(N) theory, when defined on T 4.

(ZN-valued electric/magnetic fluxes exists.)

Boundary condition becomes irrelevant in V → ∞.

⇒ Reduces to SU(N) theory in the limit.

Share the same features of the free energy density.

We estimate g(2π, V )− g(0, V ) for SU(N)/ZN theory.
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Let F (e,m, θ, V ) be the free energy in the presence of e electric

fluxes and m magnetic fluxes. [’t Hooft 79]

The partition function is

Z(θ, V ) = N 3
∑
m

e−V ·F (0,m,θ,V ).

Due to Witten effect, [Witten 79]

Z(θ + 2π, V ) = N 3
∑
m

e−V ·F (m,m,θ,V ).

Note: SU(N)/ZN Yang-Mills theory has 2Nπ periodicity.

What we want to estimate is

g(2π, V )− g(0, V ) = − 1

V
logZ(2π, V ) +

1

V
logZ(0, V ).

6



Let F (e,m, θ, V ) be the free energy in the presence of e electric

fluxes and m magnetic fluxes. [’t Hooft 79]

The partition function is

Z(θ, V ) = N 3
∑
m

e−V ·F (0,m,θ,V ).

Due to Witten effect, [Witten 79]

Z(θ + 2π, V ) = N 3
∑
m

e−V ·F (m,m,θ,V ).

Note: SU(N)/ZN Yang-Mills theory has 2Nπ periodicity.

What we want to estimate is

g(2π, V )− g(0, V ) = − 1

V
logZ(2π, V ) +

1

V
logZ(0, V ).

6



Let F (e,m, θ, V ) be the free energy in the presence of e electric

fluxes and m magnetic fluxes. [’t Hooft 79]

The partition function is

Z(θ, V ) = N 3
∑
m

e−V ·F (0,m,θ,V ).

Due to Witten effect, [Witten 79]

Z(θ + 2π, V ) = N 3
∑
m

e−V ·F (m,m,θ,V ).

Note: SU(N)/ZN Yang-Mills theory has 2Nπ periodicity.

What we want to estimate is

g(2π, V )− g(0, V ) = − 1

V
logZ(2π, V ) +

1

V
logZ(0, V ).

6



Assume the confinement at θ = 0. This implies [’t Hooft 79]

F (0,m, 0, V ) → 0, F (m,m, 0, V ) → ∞. (V → ∞)

I.e. electric fluxes are heavy, while magnetic fluxes are screened.

Then, in the limit V → ∞,

Z(0, V ) ∼ N 6, Z(2π, V ) ∼ N 3,

This implies

g(2π, V )− g(0, V ) ∼ 1

V
logN 3.

⇒ Spontaneous CP violation!

(Or ∆ = 0.)
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Assume further that there is only one transition in [0, 2π] in both

SU(N) theory and SU(N)/ZN theory.

SU(N) theory has 2π periodicity, and is CP invariant at θ = 0.

F (θ + 2π, V ) = F (θ, V ), F (−θ, V ) = F (θ, V ).

⇒ Allowed transition point is θ = π.

Equally exciting if there are multiple transitions in [0, 2π].
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Summary

•CP at θ = π is spontaneously broken in bosonic YM.

• It is related to a 1st order phase transition.

• Finite size correction implies spontaneous CP violation or

vanishing mass gap.

Open issues

•Numerical simulation of SU(N)/ZN theory.

•Detailed investigation of CPN model.

•Adding matter, phase diagram.

• etc.
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