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Tensor and matrix models interest

Matrix models

I Wigner description of heavy nuclei frequencies.

I Quantum gravity in d = 2.

I AdS/CFT correspondence.

Tensor models appear in the context of

I Entanglement.

I Quantum gravity description d > 2.

I SYK and holography. Recently SYK has been linked to tensor
models [Witten’16]. Holography (d > 2?)

P. Diaz SSB in tensor theories and matrices



Motivation
Observables in tensor and matrix models

Spontaneous Symmetry Breaking in tensor models

Tensor and matrix models interest

Matrix models

I Wigner description of heavy nuclei frequencies.

I Quantum gravity in d = 2.

I AdS/CFT correspondence.

Tensor models appear in the context of

I Entanglement.

I Quantum gravity description d > 2.

I SYK and holography. Recently SYK has been linked to tensor
models [Witten’16]. Holography (d > 2?)

P. Diaz SSB in tensor theories and matrices



Motivation
Observables in tensor and matrix models

Spontaneous Symmetry Breaking in tensor models

Tensor and matrix models interest

Matrix models

I Wigner description of heavy nuclei frequencies.

I Quantum gravity in d = 2.

I AdS/CFT correspondence.

Tensor models appear in the context of

I Entanglement.

I Quantum gravity description d > 2.

I SYK and holography. Recently SYK has been linked to tensor
models [Witten’16]. Holography (d > 2?)

P. Diaz SSB in tensor theories and matrices



Motivation
Observables in tensor and matrix models

Spontaneous Symmetry Breaking in tensor models

Tensor and matrix models interest

Matrix models

I Wigner description of heavy nuclei frequencies.

I Quantum gravity in d = 2.

I AdS/CFT correspondence.

Tensor models appear in the context of

I Entanglement.

I Quantum gravity description d > 2.

I SYK and holography. Recently SYK has been linked to tensor
models [Witten’16]. Holography (d > 2?)

P. Diaz SSB in tensor theories and matrices



Motivation
Observables in tensor and matrix models

Spontaneous Symmetry Breaking in tensor models

Tensor and matrix models interest

Matrix models

I Wigner description of heavy nuclei frequencies.

I Quantum gravity in d = 2.

I AdS/CFT correspondence.

Tensor models appear in the context of

I Entanglement.

I Quantum gravity description d > 2.

I SYK and holography. Recently SYK has been linked to tensor
models [Witten’16]. Holography (d > 2?)

P. Diaz SSB in tensor theories and matrices



Motivation
Observables in tensor and matrix models

Spontaneous Symmetry Breaking in tensor models

Tensor and matrix models interest

Matrix models

I Wigner description of heavy nuclei frequencies.

I Quantum gravity in d = 2.

I AdS/CFT correspondence.

Tensor models appear in the context of

I Entanglement.

I Quantum gravity description d > 2.

I SYK and holography. Recently SYK has been linked to tensor
models [Witten’16]. Holography (d > 2?)

P. Diaz SSB in tensor theories and matrices



Motivation
Observables in tensor and matrix models

Spontaneous Symmetry Breaking in tensor models

Tensor and matrix models interest

Matrix models

I Wigner description of heavy nuclei frequencies.

I Quantum gravity in d = 2.

I AdS/CFT correspondence.

Tensor models appear in the context of

I Entanglement.

I Quantum gravity description d > 2.

I SYK and holography. Recently SYK has been linked to tensor
models [Witten’16]. Holography (d > 2?)

P. Diaz SSB in tensor theories and matrices



Motivation
Observables in tensor and matrix models

Spontaneous Symmetry Breaking in tensor models

Definition of color TM

Tensors with no additional symmetry assumed

Φ = Φi1i2...id e i1 ⊗ · · · ⊗ e id , e ik ∈ CNk , ik = 1, . . . ,Nk .

Under the action of Gd ≡ U(N1)⊗ · · · ⊗ U(Nd)

Φj1j2...jd =
∑

i1,...,id

(g1)i1j1 · · · (gd)idjd Φi1...id

Φ
j1j2...jd =

∑
i1,...,id

(g1)j1i1 · · · (gd)jdid Φ
i1...id .

The action of the free theory S = Φi1i2...id Φ
i1i2...id .
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Spontaneous Symmetry Breaking in tensor models

Counting tensor invariants problem

Invariants are constructed by contracting indices of Φ and Φ.
Examples:

I n = 1, d = 3 −→ Φi1i2i3Φ
i1i2i3
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I n = 3 −→ 11 invariants.

I n = 4 −→ 43 invariants.
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Spontaneous Symmetry Breaking in tensor models

Tensor and matrix counting of invariants

By means of representation theory (and some work):

dim{OGd−Inv
n } =

∑
|µ1|,...,|µd |=n
l(µk )≤Nk

g2
µ1,...,µd

.

gµ1,...,µd are the Kronecker coefficients. Branching coefficients in
the restriction U(N1 · · · · · Nd)→ U(N1)× · · · × U(Nd).
For multimatrix models we have

dim{OU(N)−Inv
n } =

∑
µ`n
ν1`ni

(cµν1,...,νd )2, n = n1 + · · ·+ nd

cµν1,...,νd are LR numbers. Branching coefficients in the restriction

Sn → Sn1 × · · · × Snd
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Spontaneous Symmetry Breaking in tensor models

Matrix and tensor models in the hook sector

Kronecker coefficients do not have yet a general combinatorial
formula, but using [Liu’17] and [PD’18] we have

gµ(r)νλ =
∑
γ`r
ρ`n−r

cνργc
λ
ργ′ , µ(r) = ︸ ︷︷ ︸

r+1

,

At least in the hook sector and for d = 3 tensor models there
is a non-trivial relation between the spectra of matrix and
tensor models.
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Spontaneous Symmetry Breaking in tensor models

Effective (multi-)matrix theories from tensor theories

I Promote the model to QFT: Φi1,...,id → Φi1,...,id (x).

I Take the same rank for the groups
U(N1)× · · · × U(Nd)→ U(N)×d .

I The original theory L(Φ) is invariant under U(N)×d but we
will break the symmetry to Diag[U(N)].∫

dΦdΦ exp

(
i

∫
d4x{L

(
Φ(x)

)
}
)

→
∫

dΦdΦ exp

(
i

∫
d4x{L

(
Φ(x)

)
+ iεΦs(x)Φs(x)}

)

I Φs(x)Φs(x) = 1
d!

∑
σ∈Sd Φiσ(1),...,iσ(d)

(x)Φ
i1,...,id (x)
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will break the symmetry to Diag[U(N)].∫

dΦdΦ exp

(
i

∫
d4x{L

(
Φ(x)

)
}
)

→
∫

dΦdΦ exp

(
i

∫
d4x{L

(
Φ(x)

)
+ iεΦs(x)Φs(x)}

)

I Φs(x)Φs(x) = 1
d!

∑
σ∈Sd Φiσ(1),...,iσ(d)

(x)Φ
i1,...,id (x)
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How the symmetric term transform

Φj1j2...jd =
∑

i1,...,id

(g1)i1j1 · · · (gd)idjd Φi1...id , gk ∈ U(N)

Φs
j1j2...jd

=
1

d!

∑
i1,...,id
σ∈Sn

g i1
j1
· · · g id

jd
Φiσ(1)...iσ(d)

, g ∈ U(N)
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SSB and degrees of freedom

I SSB: G = U(N)×d → H = Diag[U(N)].
I # of Goldstone bosons

NG − NH = (d − 1)N2

I Each collection of N2 GB is seen to transform in an irrep of
Diag[U(N)].

Ba(x) = i
(
Φs(x)TaΦs(x)− Φs(x)T k

a Φs(x)
)
, a = 1, . . . ,N2.

So they group into d − 1 multiplets of N2 elements each.
I The multiplets organize into matrices transfroming in the

adjoint:

Z i
j (x) =

∑
a

Ba(x)(Ta)ij .
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Summary of SSB and applications

U(N)×d −→ Φi1,...,id (melonic diagrams, solvable,ww� but unclear physics)

Diag[U(N)] −→ Φs
i1,...,id

(x) + {(Z1)ij(x), . . . , (Zd−1)ij(x)}
+Diag[U(N)]− singlets

(non-solvable, holographic interpretation)
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Thanks!
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