SSB in tensor theories and matrices
 To appear, PD, A. Rosabal JHEP 1806 (2018) 140, PD
 Nucl.Phys. B932 (2018) 254-277, PD, S-J Rey JHEP 1802 (2018) 089, PD, S-J Rey

Pablo Díaz

Fields, Gravity and Strings, IBS
ICHEP2018, XXXIX International conference on HEP July 6, 2018

Table of contents

Motivation

Observables in tensor and matrix models

Spontaneous Symmetry Breaking in tensor models

Tensor and matrix models interest

Tensor and matrix models interest

Matrix models

- Wigner description of heavy nuclei frequencies.

Tensor and matrix models interest

Matrix models

- Wigner description of heavy nuclei frequencies.
- Quantum gravity in $d=2$.

Tensor and matrix models interest

Matrix models

- Wigner description of heavy nuclei frequencies.
- Quantum gravity in $d=2$.
- AdS/CFT correspondence.

Tensor and matrix models interest

Matrix models

- Wigner description of heavy nuclei frequencies.
- Quantum gravity in $d=2$.
- AdS/CFT correspondence.

Tensor models appear in the context of

- Entanglement.

Tensor and matrix models interest

Matrix models

- Wigner description of heavy nuclei frequencies.
- Quantum gravity in $d=2$.
- AdS/CFT correspondence.

Tensor models appear in the context of

- Entanglement.
- Quantum gravity description $d>2$.

Tensor and matrix models interest

Matrix models

- Wigner description of heavy nuclei frequencies.
- Quantum gravity in $d=2$.
- AdS/CFT correspondence.

Tensor models appear in the context of

- Entanglement.
- Quantum gravity description $d>2$.
- SYK and holography. Recently SYK has been linked to tensor models [Witten'16]. Holography ($d>2$?)

Definition of color TM

Definition of color TM

Tensors with no additional symmetry assumed

Definition of color TM

Tensors with no additional symmetry assumed

$$
\Phi=\Phi_{i_{1} i_{2} \ldots i_{d}} e^{i_{1}} \otimes \cdots \otimes e^{i_{d}}, \quad e^{i_{k}} \in \mathbb{C}^{N_{k}}, \quad i_{k}=1, \ldots, N_{k} .
$$

Definition of color TM

Tensors with no additional symmetry assumed

$$
\Phi=\Phi_{i_{1} i_{2} \ldots i_{d}} e^{i_{1}} \otimes \cdots \otimes e^{i_{d}}, \quad e^{i_{k}} \in \mathbb{C}^{N_{k}}, \quad i_{k}=1, \ldots, N_{k} .
$$

Under the action of $G_{d} \equiv U\left(N_{1}\right) \otimes \cdots \otimes U\left(N_{d}\right)$

$$
\begin{aligned}
\Phi_{j_{1} j_{2} \ldots j_{d}} & \left.=\sum_{i_{1}, \ldots, i_{d}}\left(g_{1}\right)_{j_{1}}^{i_{1}} \cdots\left(g_{d}\right)\right)_{j_{d}}^{i_{d}} \Phi_{i_{1} \ldots i_{d}} \\
\bar{\Phi}^{j_{1} j_{2} \ldots j_{d}} & =\sum_{i_{1}, \ldots, i_{d}}\left(\overline{g_{1}}\right)_{i_{1}}^{j_{1}} \cdots\left(\overline{g_{d}}\right)_{i_{d}}^{)_{d}} \bar{\phi}^{i_{1} \ldots i_{d}} .
\end{aligned}
$$

Definition of color TM

Tensors with no additional symmetry assumed

$$
\Phi=\Phi_{i_{1} i_{2} \ldots i_{d}} e^{i_{1}} \otimes \cdots \otimes e^{i_{d}}, \quad e^{i_{k}} \in \mathbb{C}^{N_{k}}, \quad i_{k}=1, \ldots, N_{k} .
$$

Under the action of $G_{d} \equiv U\left(N_{1}\right) \otimes \cdots \otimes U\left(N_{d}\right)$

$$
\begin{aligned}
\Phi_{j_{1} j_{2} \ldots j_{d}} & =\sum_{i_{1}, \ldots, i_{d}}\left(g_{1}\right)_{j_{1}}^{i_{1}} \cdots\left(g_{d}\right)_{j_{d}}^{i_{d}} \Phi_{i_{1} \ldots i_{d}} \\
\bar{\Phi}^{j_{1} j_{2} \ldots j_{d}} & =\sum_{i_{1}, \ldots, i_{d}}\left(\overline{g_{1}}\right)_{i_{1}}^{j_{1}} \cdots\left(\overline{g_{d}}\right)_{i_{d}}^{j_{d}} \Phi^{i_{1} \ldots i_{d}} .
\end{aligned}
$$

The action of the free theory $\quad S=\Phi_{i_{1} i_{2} \ldots i_{d}} \Phi^{i_{1} i_{2} \ldots i_{d}}$.

Counting tensor invariants problem

Counting tensor invariants problem

Invariants are constructed by contracting indices of Φ and $\bar{\Phi}$.

Counting tensor invariants problem

Invariants are constructed by contracting indices of Φ and $\bar{\Phi}$.

Examples:

- $n=1, d=3 \longrightarrow \Phi_{i_{1} i_{2} i_{3}} \Phi^{i_{1} i_{2} i_{3}}$

Counting tensor invariants problem

Invariants are constructed by contracting indices of Φ and $\bar{\Phi}$.
Examples:
$-n=1, d=3 \longrightarrow \Phi_{i_{1} i_{2} i_{3}} \bar{\Phi}^{i_{1} i_{2} i_{3}}$

- $n=2, d=3$

$$
\begin{aligned}
& \longrightarrow\left\{\Phi_{i_{1}^{1} i_{2}^{1} i_{3}^{1}} \Phi_{i_{1}^{2} i_{2}^{2} i_{3}^{2}} \Phi^{i_{1}^{i} i_{2}^{1} i_{3}^{1}} \Phi^{i_{1}^{2} i_{2}^{2} i_{3}^{2}}, \Phi_{i_{1}^{1} i_{2}^{1} i_{3} i_{1}} \Phi_{i_{1}^{2} i_{2}^{2} i_{3}^{2}} \Phi^{i_{1}^{1} i_{2}^{1} i_{3}^{2}} \Phi^{i_{1}^{2} i_{2}^{2} i_{3}^{1}},\right. \\
& \left.\Phi_{i_{1}^{1} i_{2}^{1} i_{3}^{1}} \Phi_{i_{1}^{2} i_{2}^{2} i_{3}^{2}} \bar{\Phi}^{i_{1}^{1} i_{2}^{2} i_{3}^{1}} \bar{\Phi}^{i_{1}^{2} i_{2}^{1} i_{3}^{2}}, \Phi_{i_{1}^{1} i_{2}^{1} i_{3}^{2}} \Phi_{i_{1}^{2} i_{2}^{2} i_{3}^{2}} \bar{\Phi}^{i_{1}^{2} i_{2}^{1} i_{3}^{1}} \bar{\Phi}^{i_{1}^{1} i_{2}^{2} i_{3}^{2}}\right\}
\end{aligned}
$$

Counting tensor invariants problem

Invariants are constructed by contracting indices of Φ and $\bar{\Phi}$.
Examples:
$-n=1, d=3 \longrightarrow \Phi_{i_{1} i_{2} i_{3}} \Phi^{i_{1} i_{2} i_{3}}$

- $n=2, d=3$

$$
\begin{aligned}
& \longrightarrow\left\{\Phi_{i_{1}^{1} i_{2}^{1} i_{3}^{1}} \Phi_{i_{1}^{2} i_{2}^{2} i_{3}} \bar{\Phi}^{i_{1}^{i} i_{2}^{i} i_{3}^{1}} \bar{\Phi}^{i_{1}^{2} i_{2}^{2} i_{3}^{2}}, \Phi_{i_{1}^{1} i_{2}^{1} i_{3}^{1}} \Phi_{i_{1}^{2} i_{2}^{2} i_{3}^{2}} \bar{\Phi}^{i_{1}^{1} i_{2}^{i} i_{3}^{2}} \Phi^{i_{1}^{2} i_{2}^{2} i_{3}^{1}},\right. \\
& \left.\Phi_{i_{1}^{1} i_{2}^{1} i_{3}^{1}} \Phi_{i_{1}^{2} i_{2}^{2} i_{3}^{2}} \bar{\phi}^{i_{1}^{1} i_{2}^{2} i_{3}^{1}} \Phi^{i_{1}^{2} i_{2}^{1} i_{3}^{2}}, \Phi_{i_{1}^{1} i_{2}^{1} i_{3}^{2}} \Phi_{i_{1}^{2} i_{2}^{2} i_{3}^{2}} \Phi^{i_{1}^{2} i_{2}^{1} i_{3}^{1}} \bar{\phi}^{i_{1}^{1} i_{2}^{2} i_{3}^{2}}\right\}
\end{aligned}
$$

- $n=3 \longrightarrow 11$ invariants.

Counting tensor invariants problem

Invariants are constructed by contracting indices of Φ and $\bar{\Phi}$.
Examples:

- $n=1, d=3 \longrightarrow \Phi_{i_{1} i_{2} i_{3}} \Phi^{i_{1} i_{2} i_{3}}$
- $n=2, d=3$

$$
\begin{aligned}
& \longrightarrow\left\{\Phi_{i_{1}^{1} i_{2}^{1} i_{3}^{1}} \Phi_{i_{1}^{2} i_{2}^{2} i_{3}} \bar{\Phi}^{i_{1}^{i} i_{2}^{i} i_{3}^{1}} \bar{\Phi}^{i_{1}^{2} i_{2}^{2} i_{3}^{2}}, \Phi_{i_{1}^{1} i_{2}^{1} i_{3}} \Phi_{i_{1}^{2} i_{2}^{2} i_{3}^{2}} \bar{\Phi}^{i_{1}^{1} i_{2}^{i} i_{3}^{2}} \Phi^{i_{1}^{2} i_{2}^{2} i_{3}^{1}},\right. \\
& \left.\Phi_{i_{1}^{1} i_{2}^{1} i_{3}^{1}} \Phi_{i_{1}^{2} i_{2}^{2} i_{3}^{2}} \bar{\phi}^{i_{1}^{1} i_{2}^{2} i_{3}^{1}} \Phi^{i_{1}^{2} i_{2}^{1} i_{3}^{2}}, \Phi_{i_{1}^{1} i_{2}^{1} i_{3}^{2}} \Phi_{i_{1}^{2} i_{2}^{2} i_{3}^{2}} \Phi^{i_{1}^{2} i_{2}^{1} i_{3}^{1}} \bar{\phi}^{i_{1}^{1} i_{2}^{2} i_{3}^{2}}\right\}
\end{aligned}
$$

- $n=3 \longrightarrow 11$ invariants.
- $n=4 \longrightarrow 43$ invariants.

Tensor and matrix counting of invariants

Tensor and matrix counting of invariants

By means of representation theory (and some work):

$$
\operatorname{dim}\left\{\mathcal{O}_{n}^{G_{d}-\operatorname{Inv}}\right\}=\sum_{\substack{\left|\mu_{1}\right|, \ldots,\left|\mu_{d}\right|=n \\ l\left(\mu_{k}\right) \leq N_{k}}} g_{\mu_{1}, \ldots, \mu_{d}}^{2}
$$

Tensor and matrix counting of invariants

By means of representation theory (and some work):

$$
\operatorname{dim}\left\{\mathcal{O}_{n}^{G_{d}-\operatorname{Inv}}\right\}=\sum_{\substack{\left|\mu_{1}\right|, \ldots,\left|\mu_{d}\right|=n \\ l\left(\mu_{k}\right) \leq N_{k}}} g_{\mu_{1}, \ldots, \mu_{d}}^{2}
$$

$g_{\mu_{1}, \ldots, \mu_{d}}$ are the Kronecker coefficients. Branching coefficients in the restriction $U\left(N_{1} \cdots N_{d}\right) \rightarrow U\left(N_{1}\right) \times \cdots \times U\left(N_{d}\right)$.

Tensor and matrix counting of invariants

By means of representation theory (and some work):

$$
\operatorname{dim}\left\{\mathcal{O}_{n}^{G_{d}-\operatorname{lnv}}\right\}=\sum_{\substack{\left|\mu_{1}\right|, \ldots,\left|\mu_{d}\right|=n \\ l\left(\mu_{k}\right) \leq N_{k}}} g_{\mu_{1}, \ldots, \mu_{d}}^{2}
$$

$g_{\mu_{1}, \ldots, \mu_{d}}$ are the Kronecker coefficients. Branching coefficients in the restriction $U\left(N_{1} \cdots \cdots N_{d}\right) \rightarrow U\left(N_{1}\right) \times \cdots \times U\left(N_{d}\right)$.
For multimatrix models we have

$$
\operatorname{dim}\left\{\mathcal{O}_{n}^{U(N)-\operatorname{Inv}}\right\}=\sum_{\substack{\mu \vdash n \\ \nu_{1} \vdash n_{i}}}\left(c_{\nu_{1}, \ldots, \nu_{d}}^{\mu}\right)^{2}, \quad n=n_{1}+\cdots+n_{d}
$$

Tensor and matrix counting of invariants

By means of representation theory (and some work):

$$
\operatorname{dim}\left\{\mathcal{O}_{n}^{G_{d}-\operatorname{lnv}}\right\}=\sum_{\substack{\left|\mu_{1}\right|, \ldots,\left|\mu_{d}\right|=n \\ \mid\left(\mu_{k}\right) \leq N_{k}}} g_{\mu_{1}, \ldots, \mu_{d}}^{2} .
$$

$g_{\mu_{1}, \ldots, \mu_{d}}$ are the Kronecker coefficients. Branching coefficients in the restriction $U\left(N_{1} \cdots \cdots N_{d}\right) \rightarrow U\left(N_{1}\right) \times \cdots \times U\left(N_{d}\right)$.
For multimatrix models we have

$$
\operatorname{dim}\left\{\mathcal{O}_{n}^{U(N)-\operatorname{Inv}}\right\}=\sum_{\substack{\mu \vdash n \\ \nu_{1} \vdash n_{i}}}\left(c_{\nu_{1}, \ldots, \nu_{d}}^{\mu}\right)^{2}, \quad n=n_{1}+\cdots+n_{d}
$$

$c_{\nu_{1}, \ldots, \nu_{d}}^{\mu}$ are LR numbers. Branching coefficients in the restriction

$$
S_{n} \rightarrow S_{n_{1}} \times \cdots \times S_{n_{d}}
$$

Matrix and tensor models in the hook sector

Matrix and tensor models in the hook sector

Kronecker coefficients do not have yet a general combinatorial formula,

Matrix and tensor models in the hook sector

Kronecker coefficients do not have yet a general combinatorial formula, but using [Liu'17] and [PD'18] we have

$$
g_{\mu(r) \nu \lambda}=\sum_{\substack{\gamma \vdash r \\
\rho \vdash n-r}} c_{\rho \gamma}^{\nu} c_{\rho \gamma^{\prime}}^{\lambda}, \quad \mu(r)=\underbrace{\begin{array}{|l|l|}
\square & \\
\hline
\end{array},}_{r+1}
$$

Matrix and tensor models in the hook sector

Kronecker coefficients do not have yet a general combinatorial formula, but using [Liu'17] and [PD'18] we have

$$
g_{\mu(r) \nu \lambda}=\sum_{\substack{\gamma \vdash r \\
\rho \vdash-n-r}} c_{\rho \gamma}^{\nu} c_{\rho \gamma^{\prime}}^{\lambda}, \quad \mu(r)=\underbrace{\begin{array}{|l|l|l|}
\square & & \\
\hline
\end{array},}_{r+1}
$$

At least in the hook sector and for $d=3$ tensor models there is a non-trivial relation between the spectra of matrix and tensor models.

Effective (multi-)matrix theories from tensor theories

Effective (multi-)matrix theories from tensor theories

- Promote the model to QFT: $\Phi_{i_{1}, \ldots, i_{d}} \rightarrow \Phi_{i_{1}, \ldots, i_{d}}(x)$.

Effective (multi-)matrix theories from tensor theories

- Promote the model to QFT: $\Phi_{i_{1}, \ldots, i_{d}} \rightarrow \Phi_{i_{1}, \ldots, i_{d}}(x)$.
- Take the same rank for the groups

$$
U\left(N_{1}\right) \times \cdots \times U\left(N_{d}\right) \rightarrow U(N)^{\times d} .
$$

Effective (multi-)matrix theories from tensor theories

- Promote the model to QFT: $\Phi_{i_{1}, \ldots, i_{d}} \rightarrow \Phi_{i_{1}, \ldots, i_{d}}(x)$.
- Take the same rank for the groups $U\left(N_{1}\right) \times \cdots \times U\left(N_{d}\right) \rightarrow U(N)^{\times d}$.
- The original theory $\mathcal{L}(\Phi)$ is invariant under $U(N)^{\times d}$ but we will break the symmetry to $\operatorname{Diag}[U(N)]$.

Effective (multi-)matrix theories from tensor theories

- Promote the model to QFT: $\Phi_{i_{1}, \ldots, i_{d}} \rightarrow \Phi_{i_{1}, \ldots, i_{d}}(x)$.
- Take the same rank for the groups $U\left(N_{1}\right) \times \cdots \times U\left(N_{d}\right) \rightarrow U(N)^{\times d}$.
- The original theory $\mathcal{L}(\Phi)$ is invariant under $U(N)^{\times d}$ but we will break the symmetry to $\operatorname{Diag}[U(N)]$.

$$
\begin{aligned}
& \int d \Phi d \bar{\Phi} \exp \left(i \int d^{4} x\{\mathcal{L}(\Phi(x))\}\right) \\
& \rightarrow \int d \Phi d \bar{\Phi} \exp \left(i \int d^{4} x\left\{\mathcal{L}(\Phi(x))+i \epsilon \Phi^{s}(x) \overline{\Phi^{s}}(x)\right\}\right)
\end{aligned}
$$

Effective (multi-)matrix theories from tensor theories

- Promote the model to QFT: $\Phi_{i_{1}, \ldots, i_{d}} \rightarrow \Phi_{i_{1}, \ldots, i_{d}}(x)$.
- Take the same rank for the groups $U\left(N_{1}\right) \times \cdots \times U\left(N_{d}\right) \rightarrow U(N)^{\times d}$.
- The original theory $\mathcal{L}(\Phi)$ is invariant under $U(N)^{\times d}$ but we will break the symmetry to $\operatorname{Diag}[U(N)]$.

$$
\begin{aligned}
& \int d \Phi d \bar{\Phi} \exp \left(i \int d^{4} x\{\mathcal{L}(\Phi(x))\}\right) \\
& \rightarrow \int d \Phi d \bar{\Phi} \exp \left(i \int d^{4} x\left\{\mathcal{L}(\Phi(x))+i \epsilon \Phi^{s}(x) \overline{\Phi^{s}}(x)\right\}\right)
\end{aligned}
$$

- $\Phi^{s}(x) \overline{\Phi^{s}}(x)=\frac{1}{d!} \sum_{\sigma \in S_{d}} \Phi_{i_{\sigma(1)}, \ldots, i_{\sigma(d)}}(x) \bar{\Phi}^{i_{1}, \ldots, i_{d}}(x)$

How the symmetric term transform

How the symmetric term transform

$$
\begin{aligned}
& \Phi_{j_{1} j_{2} \ldots j_{d}}=\sum_{i_{1}, \ldots, i_{d}}\left(g_{1}\right)_{j_{1}}^{i_{1}} \cdots\left(g_{d}\right)_{j_{d}}^{i_{d}} \Phi_{i_{1} \ldots i_{d}}, \quad g_{k} \in U(N) \\
& \Phi_{j_{1} j_{2} \ldots j_{d}}^{s}=\frac{1}{d!} \sum_{\substack{i_{1}, \ldots, i_{d} \\
\sigma \in S_{n}}} g_{j_{1}}^{i_{1}} \cdots g_{j_{d}}^{i_{d}} \Phi_{i_{\sigma(1)} \ldots i_{\sigma(d)}}, \quad g \in U(N)
\end{aligned}
$$

SSB and degrees of freedom

SSB and degrees of freedom

- SSB: $G=U(N)^{\times d} \rightarrow H=\operatorname{Diag}[U(N)]$.

SSB and degrees of freedom

- SSB: $G=U(N)^{\times d} \rightarrow H=\operatorname{Diag}[U(N)]$.
- \# of Goldstone bosons

$$
N_{G}-N_{H}=(d-1) N^{2}
$$

SSB and degrees of freedom

- SSB: $G=U(N)^{\times d} \rightarrow H=\operatorname{Diag}[U(N)]$.
- \# of Goldstone bosons

$$
N_{G}-N_{H}=(d-1) N^{2}
$$

- Each collection of $N^{2} \mathrm{~GB}$ is seen to transform in an irrep of $\operatorname{Diag}[U(N)]$.

$$
B_{a}(x)=i\left(\overline{\Phi^{s}}(x) T_{a} \Phi^{s}(x)-\Phi^{s}(x) T_{a}^{k} \overline{\Phi^{s}}(x)\right), \quad a=1, \ldots, N^{2} .
$$

So they group into $d-1$ multiplets of N^{2} elements each.

SSB and degrees of freedom

- SSB: $G=U(N)^{\times d} \rightarrow H=\operatorname{Diag}[U(N)]$.
- \# of Goldstone bosons

$$
N_{G}-N_{H}=(d-1) N^{2}
$$

- Each collection of $N^{2} \mathrm{~GB}$ is seen to transform in an irrep of $\operatorname{Diag}[U(N)]$.

$$
B_{a}(x)=i\left(\overline{\Phi^{s}}(x) T_{a} \Phi^{s}(x)-\Phi^{s}(x) T_{a}^{k} \overline{\Phi^{s}}(x)\right), \quad a=1, \ldots, N^{2} .
$$

So they group into $d-1$ multiplets of N^{2} elements each.

- The multiplets organize into matrices transfroming in the adjoint:

$$
Z_{j}^{i}(x)=\sum_{a} B_{a}(x)\left(T_{a}\right)_{j}^{i}
$$

Summary of SSB and applications

Summary of SSB and applications

Summary of SSB and applications

$$
\begin{array}{r}
U(N)^{\times d} \underset{\downarrow}{\longrightarrow} \Phi_{i_{1}, \ldots, i_{d}} \quad \begin{array}{c}
\text { (melonic diagrams, solvable, } \\
\text { but unclear physics) }
\end{array}, ~
\end{array}
$$

$\operatorname{Diag}[U(N)] \longrightarrow \Phi_{i_{1}, \ldots, i_{d}}^{s}(x)+\left\{\left(Z_{1}\right)_{j}^{i}(x), \ldots,\left(Z_{d-1}\right)_{j}^{i}(x)\right\}$
$+\operatorname{Diag}[U(N)]-$ singlets
(non-solvable, holographic interpretation)

Thanks!

