SSB in tensor theories and matrices

To appear, PD, A. Rosabal JHEP 1806 (2018) 140, PD Nucl.Phys. B932 (2018) 254-277, PD, S-J Rey JHEP 1802 (2018) 089, PD, S-J Rey

Pablo Díaz

Fields, Gravity and Strings, IBS

ICHEP2018, XXXIX International conference on HEP July 6, 2018

- 4 同 6 4 日 6 4 日 6

Table of contents

Motivation

Observables in tensor and matrix models

Spontaneous Symmetry Breaking in tensor models

Observables in tensor and matrix models Spontaneous Symmetry Breaking in tensor models

Tensor and matrix models interest

・ロン ・回と ・ヨン・

Tensor and matrix models interest

Matrix models

▶ Wigner description of heavy nuclei frequencies.

< **₩** ► < **⇒** ►

Tensor and matrix models interest

Matrix models

- Wigner description of heavy nuclei frequencies.
- Quantum gravity in d = 2.

(4月) イヨト イヨト

Tensor and matrix models interest

Matrix models

- Wigner description of heavy nuclei frequencies.
- Quantum gravity in d = 2.
- AdS/CFT correspondence.

Observables in tensor and matrix models Spontaneous Symmetry Breaking in tensor models

Tensor and matrix models interest

Matrix models

- Wigner description of heavy nuclei frequencies.
- Quantum gravity in d = 2.
- AdS/CFT correspondence.

Tensor models appear in the context of

Entanglement.

Observables in tensor and matrix models Spontaneous Symmetry Breaking in tensor models

Tensor and matrix models interest

Matrix models

- Wigner description of heavy nuclei frequencies.
- Quantum gravity in d = 2.
- AdS/CFT correspondence.

Tensor models appear in the context of

- Entanglement.
- Quantum gravity description d > 2.

Motivation Observables in tensor and matrix models

Spontaneous Symmetry Breaking in tensor models

Tensor and matrix models interest

Matrix models

- Wigner description of heavy nuclei frequencies.
- Quantum gravity in d = 2.
- AdS/CFT correspondence.

Tensor models appear in the context of

- Entanglement.
- Quantum gravity description d > 2.
- SYK and holography. Recently SYK has been linked to tensor models [Witten'16]. Holography (d > 2?)

- 4 同 6 4 日 6 4 日 6

Observables in tensor and matrix models Spontaneous Symmetry Breaking in tensor models

Definition of color TM

P. Diaz SSB in tensor theories and matrices

・ロン ・回 と ・ ヨ と ・ ヨ と

Observables in tensor and matrix models Spontaneous Symmetry Breaking in tensor models

Definition of color TM

Tensors with no additional symmetry assumed

・ロン ・回と ・ヨン・

Observables in tensor and matrix models Spontaneous Symmetry Breaking in tensor models

Definition of color TM

Tensors with no additional symmetry assumed

$$\Phi = \Phi_{i_1 i_2 \dots i_d} \ e^{i_1} \otimes \dots \otimes e^{i_d}, \quad e^{i_k} \in \mathbb{C}^{N_k}, \quad i_k = 1, \dots, N_k.$$

・ロン ・回と ・ヨン・

Observables in tensor and matrix models Spontaneous Symmetry Breaking in tensor models

Definition of color TM

Tensors with no additional symmetry assumed

$$\Phi = \Phi_{i_1 i_2 \dots i_d} \ e^{i_1} \otimes \dots \otimes e^{i_d}, \quad e^{i_k} \in \mathbb{C}^{N_k}, \quad i_k = 1, \dots, N_k.$$

Under the action of $G_d \equiv U(N_1) \otimes \cdots \otimes U(N_d)$

$$\Phi_{j_1j_2\dots j_d} = \sum_{i_1,\dots,i_d} (g_1)_{j_1}^{i_1} \cdots (g_d)_{j_d}^{i_d} \Phi_{i_1\dots i_d}$$

$$\overline{\Phi}^{j_1j_2\dots j_d} = \sum_{i_1,\dots,i_d} (\overline{g_1})_{i_1}^{j_1} \cdots (\overline{g_d})_{i_d}^{j_d} \overline{\Phi}^{i_1\dots i_d}.$$

・ロト ・回ト ・ヨト ・ヨト

Observables in tensor and matrix models Spontaneous Symmetry Breaking in tensor models

Definition of color TM

Tensors with no additional symmetry assumed

$$\Phi = \Phi_{i_1 i_2 \dots i_d} \ e^{i_1} \otimes \dots \otimes e^{i_d}, \quad e^{i_k} \in \mathbb{C}^{N_k}, \quad i_k = 1, \dots, N_k.$$

Under the action of $G_d \equiv U(N_1) \otimes \cdots \otimes U(N_d)$

$$\Phi_{j_1j_2\dots j_d} = \sum_{i_1,\dots,i_d} (g_1)_{j_1}^{i_1} \cdots (g_d)_{j_d}^{i_d} \Phi_{i_1\dots i_d}$$

$$\overline{\Phi}^{j_1j_2\dots j_d} = \sum_{i_1,\dots,i_d} (\overline{g_1})_{i_1}^{j_1} \cdots (\overline{g_d})_{i_d}^{j_d} \overline{\Phi}^{i_1\dots i_d}.$$

The action of the free theory $S = \Phi_{i_1 i_2 \dots i_d} \overline{\Phi}^{i_1 i_2 \dots i_d}$

・ロン ・回と ・ヨン ・ヨン

Counting tensor invariants problem

P. Diaz SSB in tensor theories and matrices

イロン イヨン イヨン イヨン

Counting tensor invariants problem

Invariants are constructed by contracting indices of Φ and $\overline{\Phi}$.

< **₩** ► < **⇒** ►

- ∢ ≣ >

Counting tensor invariants problem

Invariants are constructed by contracting indices of Φ and $\overline{\Phi}$. Examples:

$$\bullet \ n=1, \ d=3 \longrightarrow \Phi_{i_1i_2i_3}\overline{\Phi}^{i_1i_2i_3}$$

Counting tensor invariants problem

Invariants are constructed by contracting indices of Φ and $\overline{\Phi}$. Examples:

$$\blacktriangleright \ n=1, \ d=3 \longrightarrow \Phi_{i_1i_2i_3}\overline{\Phi}^{i_1i_2i_3}$$

$$\longrightarrow \{ \Phi_{i_{1}^{1}i_{2}^{1}i_{3}^{1}} \Phi_{i_{1}^{2}i_{2}^{2}i_{3}^{2}} \overline{\Phi}^{i_{1}^{1}i_{2}^{1}i_{3}^{1}} \overline{\Phi}^{i_{1}^{2}i_{2}^{2}i_{3}^{2}}, \Phi_{i_{1}^{1}i_{2}^{1}i_{3}^{1}} \Phi_{i_{1}^{2}i_{2}^{2}i_{3}^{2}} \overline{\Phi}^{i_{1}^{1}i_{2}^{1}i_{3}^{2}} \overline{\Phi}^{i_{1}^{2}i_{2}^{2}i_{3}^{2}}, \\ \Phi_{i_{1}^{1}i_{2}^{1}i_{3}^{1}} \Phi_{i_{1}^{2}i_{2}^{2}i_{3}^{2}} \overline{\Phi}^{i_{1}^{1}i_{2}^{2}i_{3}^{1}} \overline{\Phi}^{i_{1}^{2}i_{2}^{1}i_{3}^{2}}, \Phi_{i_{1}^{1}i_{2}^{1}i_{3}^{1}} \Phi_{i_{1}^{2}i_{2}^{2}i_{3}^{2}} \overline{\Phi}^{i_{1}^{2}i_{2}^{1}i_{3}^{2}}, \\ p_{i_{1}^{1}i_{2}^{1}i_{3}^{1}} \Phi_{i_{1}^{2}i_{2}^{2}i_{3}^{2}} \overline{\Phi}^{i_{1}^{1}i_{2}^{2}i_{3}^{2}} \overline{\Phi}^{i_{1}^{1}i_{2}^{2}i_{3}^{2}}, p_{i_{1}^{1}i_{2}^{1}i_{3}^{1}} \Phi_{i_{1}^{2}i_{2}^{2}i_{3}^{2}} \overline{\Phi}^{i_{1}^{1}i_{2}^{2}i_{3}^{2}}, p_{i_{1}^{1}i_{2}^{1}i_{3}^{1}} \Phi_{i_{1}^{2}i_{2}^{2}i_{3}^{2}} \overline{\Phi}^{i_{1}^{1}i_{2}^{2}i_{3}^{2}}, p_{i_{1}^{1}i_{2}^{1}i_{3}^{1}} \Phi_{i_{1}^{2}i_{2}^{2}i_{3}^{2}} \overline{\Phi}^{i_{1}^{1}i_{2}^{2}i_{3}^{2}}, p_{i_{1}^{1}i_{2}^{2}i_{3}^{2}} \overline{\Phi}^{i_{1}^{1}i_{2}^{2}i_{3}^{2}}, p_{i_{1}^{1}i_{2}^{2}i_{3}^{2}} \overline{\Phi}^{i_{1}^{1}i_{2}^{2}i_{3}^{2}}, p_{i_{1}^{1}i_{2}^{2}i_{3}^{2}} \overline{\Phi}^{i_{1}^{1}i_{2}^{2}i_{3}^{2}} \overline{\Phi}^{i_{1}^{1}i_{2}^{2}i_{3}^{2}}, p_{i_{1}^{1}i_{2}^{2}i_{3}^{2}} \overline{\Phi}^{i_{1}^{1}i_{2}^{2}i_{3}^{2}} \overline{\Phi}^{i_{1}^{1}i_{2}^{2}i_{3}^{2}}, p_{i_{1}^{1}i_{2}^{2}i_{3}^{2}} \overline{\Phi}^{i_{1}^{1}i_{2}^{2}i_{3}^{2}} \overline{\Phi}^{i_{1}^{1}i_{2}^{2}i_{3}^{2}}, p_{i_{1}^{1}i_{2}^{2}i_{3}^{2}} \overline{\Phi}^{i_{1}i_{2}^{2}i_{3}^{2}} \overline{\Phi}^{i_{1}i_{2}^{2}i_{3}^{2}}, p_{i_{1}^{1}i_{2}^{2}i_{3}^{2}} \overline{\Phi}^{i_{1}i_{2}^{2}i_{3}^{2}} \overline{\Phi}^{i_{1}i_{2}^{2}i_{3}^{2}}, p_{i_{1}^{1}i_{2}^{2}i_{3}^{2}} \overline{\Phi}^{i_{1}i_{2}^{2}i_{3}^{2}} \overline{\Phi}^{i_{1}i_{2}^{2}i_{3}^{2}}, p_{i_{1}^{1}i_{2}^{2}i_{3}^{2}} \overline{\Phi}^{i_{1}i_{2}^{2}i_{3}^{2}} \overline{\Phi}^{i_{1}i_{2}^{2}i_{3}^{2}}} \overline{\Phi}^{i_{1}i_{2}^{2}i_{3}^{2}} \overline{\Phi}^{i_{1}i_{2}^{2}i_{3}^{2}}, p_{i_{1}^{1}i_{2}^{2}i_{3}^{2}} \overline{\Phi}^{i_{1}i_{2}^{2}i_{3}^{2}} \overline{\Phi}^{i_{1}i_{2}^{2}i_{3}^{2}}}, p_{i_{1}^{1}i_{2}^{2}i_{3}^{2}} \overline{\Phi}^{i_{1}i_{2}^{2}i_{3}^{2}}} \overline{\Phi}^{i_{1}i_{2}^{2}i_{3}^{2}}} \overline{\Phi}^{i_{1}i_{2$$

★週 ▶ ★ 臣 ▶ ★ 臣 ▶

Counting tensor invariants problem

Invariants are constructed by contracting indices of Φ and $\overline{\Phi}$. Examples:

$$\blacktriangleright \ n=1, \ d=3 \longrightarrow \Phi_{i_1i_2i_3}\overline{\Phi}^{i_1i_2i_3}$$

$$\longrightarrow \{ \Phi_{i_{1}^{1}i_{2}^{1}i_{3}^{1}} \Phi_{i_{1}^{2}i_{2}^{2}i_{3}^{2}} \overline{\Phi}^{i_{1}^{1}i_{2}^{1}i_{3}^{1}} \overline{\Phi}^{i_{1}^{2}i_{2}^{2}i_{3}^{2}}, \Phi_{i_{1}^{1}i_{2}^{1}i_{3}^{1}} \Phi_{i_{1}^{2}i_{2}^{2}i_{3}^{2}} \overline{\Phi}^{i_{1}^{1}i_{2}^{1}i_{2}^{2}i_{3}^{1}}, \\ \Phi_{i_{1}^{1}i_{2}^{1}i_{3}^{1}} \Phi_{i_{1}^{2}i_{2}^{2}i_{3}^{2}} \overline{\Phi}^{i_{1}^{1}i_{2}^{2}i_{3}^{1}} \overline{\Phi}^{i_{1}^{2}i_{2}^{1}i_{2}^{2}i_{3}^{2}}, \Phi_{i_{1}^{1}i_{2}^{1}i_{3}^{1}} \Phi_{i_{1}^{2}i_{2}^{2}i_{3}^{2}} \overline{\Phi}^{i_{1}^{2}i_{2}^{2}i_{3}^{2}}, \\ \end{bmatrix}$$

• $n = 3 \longrightarrow 11$ invariants.

Counting tensor invariants problem

Invariants are constructed by contracting indices of Φ and $\overline{\Phi}$. Examples:

$$\blacktriangleright \ n=1, \ d=3 \longrightarrow \Phi_{i_1i_2i_3}\overline{\Phi}^{i_1i_2i_3}$$

$$\longrightarrow \{ \Phi_{i_{1}^{1}i_{2}^{1}i_{3}^{1}} \Phi_{i_{1}^{2}i_{2}^{2}i_{3}^{2}} \overline{\Phi}^{i_{1}^{1}i_{2}^{1}i_{3}^{1}} \overline{\Phi}^{i_{1}^{2}i_{2}^{2}i_{3}^{2}}, \Phi_{i_{1}^{1}i_{2}^{1}i_{3}^{1}} \Phi_{i_{1}^{2}i_{2}^{2}i_{3}^{2}} \overline{\Phi}^{i_{1}^{1}i_{2}^{1}i_{2}^{2}i_{3}^{1}}, \\ \Phi_{i_{1}^{1}i_{2}^{1}i_{3}^{1}} \Phi_{i_{1}^{2}i_{2}^{2}i_{3}^{2}} \overline{\Phi}^{i_{1}^{1}i_{2}^{2}i_{3}^{1}} \overline{\Phi}^{i_{1}^{1}i_{2}^{2}i_{3}^{2}}, \Phi_{i_{1}^{1}i_{2}^{1}i_{3}^{1}} \Phi_{i_{1}^{2}i_{2}^{2}i_{3}^{2}} \overline{\Phi}^{i_{1}^{2}i_{2}^{2}i_{3}^{2}}, \\ \}$$

- $n = 3 \longrightarrow 11$ invariants.
- $n = 4 \longrightarrow 43$ invariants.

(4回) (4回) (4回)

Tensor and matrix counting of invariants

P. Diaz SSB in tensor theories and matrices

・ロン ・回と ・ヨン・

Tensor and matrix counting of invariants

By means of representation theory (and some work):

$$\dim\{\mathcal{O}_n^{G_d-\operatorname{Inv}}\} = \sum_{\substack{|\mu_1|,\ldots,|\mu_d|=n\\l(\mu_k) \le N_k}} g_{\mu_1,\ldots,\mu_d}^2.$$

・ 同 ・ ・ ヨ ・ ・ ヨ ・

Tensor and matrix counting of invariants

By means of representation theory (and some work):

$$\dim\{\mathcal{O}_n^{\mathcal{G}_d-\mathsf{Inv}}\} = \sum_{\substack{|\mu_1|,\ldots,|\mu_d|=n\\l(\mu_k) \le N_k}} g_{\mu_1,\ldots,\mu_d}^2.$$

 g_{μ_1,\ldots,μ_d} are the **Kronecker coefficients**. Branching coefficients in the restriction $U(N_1 \cdots N_d) \rightarrow U(N_1) \times \cdots \times U(N_d)$.

Tensor and matrix counting of invariants

By means of representation theory (and some work):

$$\dim\{\mathcal{O}_n^{\mathcal{G}_d-\mathsf{Inv}}\} = \sum_{\substack{|\mu_1|,\ldots,|\mu_d|=n\\l(\mu_k) \le N_k}} g_{\mu_1,\ldots,\mu_d}^2.$$

 g_{μ_1,\dots,μ_d} are the **Kronecker coefficients**. Branching coefficients in the restriction $U(N_1 \cdots N_d) \rightarrow U(N_1) \times \cdots \times U(N_d)$. For multimatrix models we have

$$\dim\{\mathcal{O}_n^{U(N)-\operatorname{Inv}}\} = \sum_{\substack{\mu \vdash n \\ \nu_1 \vdash n_i}} (c_{\nu_1,\dots,\nu_d}^{\mu})^2, \quad n = n_1 + \dots + n_d$$

Tensor and matrix counting of invariants

By means of representation theory (and some work):

$$\dim\{\mathcal{O}_n^{G_d-\operatorname{Inv}}\} = \sum_{\substack{|\mu_1|,\ldots,|\mu_d|=n\\l(\mu_k) \le N_k}} g_{\mu_1,\ldots,\mu_d}^2.$$

 g_{μ_1,\dots,μ_d} are the **Kronecker coefficients**. Branching coefficients in the restriction $U(N_1 \cdots N_d) \rightarrow U(N_1) \times \cdots \times U(N_d)$. For multimatrix models we have

$$\dim\{\mathcal{O}_n^{U(N)-\operatorname{Inv}}\} = \sum_{\substack{\mu \vdash n \\ \nu_1 \vdash n_i}} (c_{\nu_1,\dots,\nu_d}^{\mu})^2, \quad n = n_1 + \dots + n_d$$

 $c^{\mu}_{\nu_{1},...,\nu_{d}}$ are LR numbers. Branching coefficients in the restriction

$$S_n \to S_{n_1} \times \cdots \times S_{n_d}$$

・ロト ・回ト ・ヨト ・ヨト

Matrix and tensor models in the hook sector

・ 御 と ・ 臣 と ・ を 臣 と

Matrix and tensor models in the hook sector

Kronecker coefficients do not have yet a general combinatorial formula,

Matrix and tensor models in the hook sector

Kronecker coefficients do not have yet a general combinatorial formula, but using [Liu'17] and [PD'18] we have

< 🗇 > < 🖃 >

Matrix and tensor models in the hook sector

Kronecker coefficients do not have yet a general combinatorial formula, but using [Liu'17] and [PD'18] we have

$$g_{\mu(r)
u\lambda} = \sum_{\substack{\gamma \vdash r \\ \rho \vdash n-r}} c^{
u}_{
ho\gamma} c^{\lambda}_{
ho\gamma'}, \quad \mu(r) = \underbrace{\qquad}_{r+1},$$

At least in the hook sector and for d = 3 tensor models there is a non-trivial relation between the spectra of matrix and tensor models.

Effective (multi-)matrix theories from tensor theories

▲冊▶ ▲屋▶ ▲屋≯

Effective (multi-)matrix theories from tensor theories

• Promote the model to QFT: $\Phi_{i_1,...,i_d} \rightarrow \Phi_{i_1,...,i_d}(x)$.

Effective (multi-)matrix theories from tensor theories

- Promote the model to QFT: $\Phi_{i_1,...,i_d} \rightarrow \Phi_{i_1,...,i_d}(x)$.
- ► Take the same rank for the groups $U(N_1) \times \cdots \times U(N_d) \rightarrow U(N)^{\times d}$.

Effective (multi-)matrix theories from tensor theories

- Promote the model to QFT: $\Phi_{i_1,...,i_d} \rightarrow \Phi_{i_1,...,i_d}(x)$.
- ► Take the same rank for the groups $U(N_1) \times \cdots \times U(N_d) \rightarrow U(N)^{\times d}$.
- ► The original theory L(Φ) is invariant under U(N)^{×d} but we will break the symmetry to Diag[U(N)].

Effective (multi-)matrix theories from tensor theories

- Promote the model to QFT: $\Phi_{i_1,...,i_d} \rightarrow \Phi_{i_1,...,i_d}(x)$.
- ► Take the same rank for the groups $U(N_1) \times \cdots \times U(N_d) \rightarrow U(N)^{\times d}$.
- ► The original theory L(Φ) is invariant under U(N)^{×d} but we will break the symmetry to Diag[U(N)].

$$\int d\Phi d\overline{\Phi} \exp\left(i \int d^4 x \{\mathcal{L}(\Phi(x))\}\right)$$

$$\rightarrow \int d\Phi d\overline{\Phi} \exp\left(i \int d^4 x \{\mathcal{L}(\Phi(x)) + i\epsilon \Phi^s(x)\overline{\Phi^s}(x)\}\right)$$

Effective (multi-)matrix theories from tensor theories

- Promote the model to QFT: $\Phi_{i_1,...,i_d} \rightarrow \Phi_{i_1,...,i_d}(x)$.
- ► Take the same rank for the groups $U(N_1) \times \cdots \times U(N_d) \rightarrow U(N)^{\times d}$.
- ► The original theory L(Φ) is invariant under U(N)^{×d} but we will break the symmetry to Diag[U(N)].

$$\int d\Phi d\overline{\Phi} \exp\left(i \int d^4 x \{\mathcal{L}(\Phi(x))\}\right)$$

$$\rightarrow \int d\Phi d\overline{\Phi} \exp\left(i \int d^4 x \{\mathcal{L}(\Phi(x)) + i\epsilon \Phi^s(x)\overline{\Phi^s}(x)\}\right)$$

•
$$\Phi^{s}(x)\overline{\Phi^{s}}(x) = \frac{1}{d!}\sum_{\sigma\in\mathcal{S}_{d}}\Phi_{i_{\sigma(1)},\dots,i_{\sigma(d)}}(x)\overline{\Phi}^{i_{1},\dots,i_{d}}(x)$$

How the symmetric term transform

P. Diaz SSB in tensor theories and matrices

・ロン ・回と ・ヨン ・ヨン

How the symmetric term transform

$$\begin{split} \Phi_{j_{1}j_{2}...j_{d}} &= \sum_{i_{1},...,i_{d}} (g_{1})_{j_{1}}^{i_{1}}\cdots(g_{d})_{j_{d}}^{i_{d}}\Phi_{i_{1}...i_{d}}, \quad g_{k} \in U(N) \\ \Phi_{j_{1}j_{2}...j_{d}}^{s} &= \frac{1}{d!}\sum_{\substack{i_{1},...,i_{d} \\ \sigma \in S_{n}}} g_{j_{1}}^{i_{1}}\cdots g_{j_{d}}^{i_{d}}\Phi_{i_{\sigma(1)}...i_{\sigma(d)}}, \quad g \in U(N) \end{split}$$

・ロン ・回と ・ヨン ・ヨン

SSB and degrees of freedom

P. Diaz SSB in tensor theories and matrices

・ロン ・回と ・ヨン・

SSB and degrees of freedom

► SSB:
$$G = U(N)^{\times d} \rightarrow H = \text{Diag}[U(N)].$$

・ロン ・回と ・ヨン・

SSB and degrees of freedom

► SSB:
$$G = U(N)^{\times d} \rightarrow H = \text{Diag}[U(N)].$$

of Goldstone bosons

$$N_G - N_H = (d-1)N^2$$

イロン 不同と 不同と 不同と

SSB and degrees of freedom

- ► SSB: $G = U(N)^{\times d} \rightarrow H = \text{Diag}[U(N)].$
- # of Goldstone bosons

$$N_G - N_H = (d-1)N^2$$

► Each collection of N² GB is seen to transform in an irrep of Diag[U(N)].

$$B_a(x) = i \big(\overline{\Phi^s}(x) T_a \Phi^s(x) - \Phi^s(x) T_a^k \overline{\Phi^s}(x) \big), \quad a = 1, \dots, N^2.$$

So they group into d - 1 multiplets of N^2 elements each.

SSB and degrees of freedom

- ► SSB: $G = U(N)^{\times d} \rightarrow H = \text{Diag}[U(N)].$
- # of Goldstone bosons

$$N_G - N_H = (d-1)N^2$$

► Each collection of N² GB is seen to transform in an irrep of Diag[U(N)].

$$B_a(x) = i \big(\overline{\Phi^s}(x) T_a \Phi^s(x) - \Phi^s(x) T_a^k \overline{\Phi^s}(x) \big), \quad a = 1, \dots, N^2.$$

So they group into d-1 multiplets of N^2 elements each.

The multiplets organize into matrices transfroming in the adjoint:

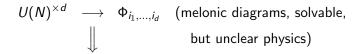
$$Z_j^i(x) = \sum_a B_a(x)(T_a)_j^i.$$

소리가 소문가 소문가 소문가

Summary of SSB and applications

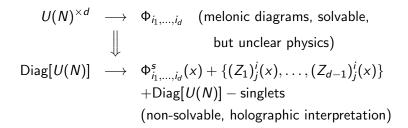
・ロン ・回と ・ヨン・

Summary of SSB and applications



(ロ) (同) (E) (E) (E)

Summary of SSB and applications



(ロ) (同) (E) (E) (E)

Thanks!

▲□→ ▲圖→ ▲厘→ ▲厘→