SSB in tensor theories and matrices

To appear, PD, A. Rosabal
JHEP 1806 (2018) 140, PD
JHEP 1802 (2018) 089, PD, S-J Rey

Pablo Díaz
Fields, Gravity and Strings, IBS

ICHEP2018, XXXIX International conference on HEP
July 6, 2018
Table of contents

Motivation

Observables in tensor and matrix models

Spontaneous Symmetry Breaking in tensor models
Tensor and matrix models interest
Tensor and matrix models interest

Matrix models

- Wigner description of heavy nuclei frequencies.
Tensor and matrix models interest

Matrix models
- Wigner description of heavy nuclei frequencies.
- Quantum gravity in $d = 2$.
Motivation

Observables in tensor and matrix models
Spontaneous Symmetry Breaking in tensor models

Tensor and matrix models interest

Matrix models

- Wigner description of heavy nuclei frequencies.
- Quantum gravity in $d = 2$.
- AdS/CFT correspondence.
Matrix models

- Wigner description of heavy nuclei frequencies.
- Quantum gravity in $d = 2$.
- AdS/CFT correspondence.

Tensor models appear in the context of

- Entanglement.
Tensor and matrix models interest

Matrix models

- Wigner description of heavy nuclei frequencies.
- Quantum gravity in $d = 2$.
- AdS/CFT correspondence.

Tensor models appear in the context of

- Entanglement.
- Quantum gravity description $d > 2$.
Tensor and matrix models interest

Matrix models
- Wigner description of heavy nuclei frequencies.
- Quantum gravity in $d = 2$.
- AdS/CFT correspondence.

Tensor models appear in the context of
- Entanglement.
- Quantum gravity description $d > 2$.
- SYK and holography. Recently SYK has been linked to tensor models [Witten’16]. Holography ($d > 2$)
Definition of color TM
Tensors with no additional symmetry assumed
Definition of color TM

Tensors with no additional symmetry assumed

\[\Phi = \Phi_{i_1 i_2 \ldots i_d} e^{i_1} \otimes \cdots \otimes e^{i_d}, \quad e^{i_k} \in \mathbb{C}^{N_k}, \quad i_k = 1, \ldots, N_k. \]
Tensors with no additional symmetry assumed

\[\Phi = \Phi_{i_1 i_2 \ldots i_d} e^{i_1} \otimes \cdots \otimes e^{i_d}, \quad e^{i_k} \in \mathbb{C}^{N_k}, \quad i_k = 1, \ldots, N_k. \]

Under the action of \(G_d \equiv U(N_1) \otimes \cdots \otimes U(N_d) \)

\[\Phi_{j_1 j_2 \ldots j_d} = \sum_{i_1, \ldots, i_d} (g_1)_{j_1}^{i_1} \cdots (g_d)_{j_d}^{i_d} \Phi_{i_1 \ldots i_d} \]

\[\overline{\Phi}_{j_1 j_2 \ldots j_d} = \sum_{i_1, \ldots, i_d} (\overline{g}_1)_{j_1}^{i_1} \cdots (\overline{g}_d)_{j_d}^{i_d} \overline{\Phi}_{i_1 \ldots i_d}. \]
Definition of color TM

Tensors with no additional symmetry assumed

\[\Phi = \Phi_{i_1i_2...i_d} e^{i_1} \otimes ... \otimes e^{i_d}, \quad e^{i_k} \in \mathbb{C}^{N_k}, \quad i_k = 1, \ldots, N_k. \]

Under the action of \(G_d \equiv U(N_1) \otimes \cdots \otimes U(N_d) \)

\[\Phi_{j_1j_2...j_d} = \sum_{i_1,...,i_d} (g_1)_{j_1}^{i_1} \cdots (g_d)_{j_d}^{i_d} \Phi_{i_1...i_d} \]
\[\overline{\Phi}_{j_1j_2...j_d} = \sum_{i_1,...,i_d} (\overline{g_1})_{j_1}^{i_1} \cdots (\overline{g_d})_{j_d}^{i_d} \overline{\Phi}_{i_1...i_d}. \]

The action of the free theory \(S = \Phi_{i_1i_2...i_d} \overline{\Phi}^{i_1i_2...i_d}. \)
Counting tensor invariants problem
Invariants are constructed by contracting indices of Φ and Φ.

Examples:

- $n = 1, d = 3$ $\rightarrow \Phi_{i_1} \Phi_{i_2} \Phi_{i_3}$
- $n = 2, d = 3$ $\rightarrow \{ \Phi_{i_1}^1 \Phi_{i_2}^1 \Phi_{i_3}^1, \Phi_{i_2}^1 \Phi_{i_3}^1 \Phi_{i_3}^2, \Phi_{i_1}^1 \Phi_{i_2}^2 \Phi_{i_3}^3, \Phi_{i_1}^2 \Phi_{i_2}^1 \Phi_{i_3}^3 \}$
- $n = 3$ $\rightarrow 11$ invariants.
- $n = 4$ $\rightarrow 43$ invariants.
Motivation

Observables in tensor and matrix models

Spontaneous Symmetry Breaking in tensor models

Counting tensor invariants problem

Invariants are constructed by contracting indices of Φ and Φ^\dagger. Examples:

$\triangleright \ n = 1, \ d = 3 \rightarrow \Phi_{i_1i_2i_3} \Phi^{i_1i_2i_3}$
Invariants are constructed by contracting indices of Φ and Φ. Examples:

- $n = 1, \ d = 3 \rightarrow \Phi_{i_1 i_2 i_3} \Phi_{i_1 i_2 i_3}^\dagger$
- $n = 2, \ d = 3$

$$\rightarrow \left\{ \Phi_{i_1 i_2 i_3}^{i_1} \Phi_{i_1 i_2 i_3}^{i_2}, \Phi_{i_1 i_2 i_3}^{i_3} \Phi_{i_1 i_2 i_3}^{i_2} \Phi_{i_1 i_2 i_3}^{i_3}, \Phi_{i_1 i_2 i_3}^{i_1} \Phi_{i_1 i_2 i_3}^{i_2} \Phi_{i_1 i_2 i_3}^{i_3} \Phi_{i_1 i_2 i_3}^{i_2} \Phi_{i_1 i_2 i_3}^{i_3}, \Phi_{i_1 i_2 i_3}^{i_1} \Phi_{i_1 i_2 i_3}^{i_2} \Phi_{i_1 i_2 i_3}^{i_3} \Phi_{i_1 i_2 i_3}^{i_2} \Phi_{i_1 i_2 i_3}^{i_3} \right\}$$
Counting tensor invariants problem

Invariants are constructed by contracting indices of Φ and Φ^\dagger.
Examples:

- $n = 1, \ d = 3 \rightarrow \Phi_{i_1 i_2 i_3} \Phi^{i_1 i_2 i_3}$
- $n = 2, \ d = 3$

$$
\rightarrow \left\{ \Phi_{i_1^1 i_2^1 i_3^1} \Phi_{i_1^2 i_2^2 i_3^2} \Phi^{i_1^1 i_2^1 i_3^1} \Phi^{i_1^2 i_2^2 i_3^2}, \Phi_{i_1^1 i_2^1 i_3^1} \Phi_{i_1^2 i_2^2 i_3^2} \Phi^{i_1^1 i_2^1 i_3^1} \Phi^{i_1^2 i_2^2 i_3^1}, \\
\Phi_{i_1^1 i_2^1 i_3^1} \Phi_{i_1^2 i_2^2 i_3^2} \Phi^{i_1^1 i_2^1 i_3^1} \Phi^{i_1^2 i_2^2 i_3^2}, \Phi_{i_1^1 i_2^1 i_3^1} \Phi_{i_1^2 i_2^2 i_3^2} \Phi^{i_1^1 i_2^2 i_3^1} \Phi^{i_1^2 i_2^1 i_3^1} \right\}
$$

- $n = 3 \rightarrow 11$ invariants.
Counting tensor invariants problem

Invariants are constructed by contracting indices of Φ and Φ. Examples:

- $n = 1, \ d = 3 \rightarrow \Phi_{i_1 i_2 i_3} \Phi^{i_1 i_2 i_3}$
- $n = 2, \ d = 3$

$$\rightarrow \left\{ \Phi_{i_1 i_2 i_3} \Phi_{i_1 i_2 i_3}^{i_1 i_2 i_3}, \Phi_{i_1 i_2 i_3} \Phi_{i_1 i_2 i_3}^{i_1 i_2 i_3}, \Phi_{i_1 i_2 i_3} \Phi_{i_1 i_2 i_3}^{i_1 i_2 i_3}, \Phi_{i_1 i_2 i_3} \Phi_{i_1 i_2 i_3}^{i_1 i_2 i_3} \right\}$$

- $n = 3 \rightarrow 11$ invariants.
- $n = 4 \rightarrow 43$ invariants.
Tensor and matrix counting of invariants

By means of representation theory (and some work):

\[\text{dim} \{ \text{O} \}_{\text{G}^{d-\text{Inv}}_n} = \sum |\mu_1|, \ldots, |\mu_d| = n \prod (\mu_k) \leq N_k \]

\(g_{\mu_1, \ldots, \mu_d} \) are the Kronecker coefficients. Branching coefficients in the restriction \(U(N_1) \times \cdots \times U(N_d) \to U(N_1) \times \cdots \times U(N_d) \).

For multimatrix models we have

\[\text{dim} \{ \text{O} \}_{\text{U}(N) - \text{Inv}_n} = \sum \mu \vdash n \nu_1 \vdash n_i (c_{\mu \nu_1}, \ldots, \nu_d) \]

\(n = n_1 + \cdots + n_d \)

\(c_{\mu \nu_1}, \ldots, \nu_d \) are LR numbers. Branching coefficients in the restriction \(S_n \to S_{n_1} \times \cdots \times S_{n_d} \).
Tensor and matrix counting of invariants

By means of representation theory (and some work):

\[\dim \{ \mathcal{O}_{n}^{G_d - \text{Inv}} \} = \sum_{|\mu_1|, \ldots, |\mu_d| = n, l(\mu_k) \leq N_k} g_{\mu_1, \ldots, \mu_d}^2. \]
Tensor and matrix counting of invariants

By means of representation theory (and some work):

\[\dim \{ \mathcal{O}^{G_d-\text{Inv}}_n \} = \sum_{|\mu_1|, \ldots, |\mu_d|=n, l(\mu_k) \leq N_k} g^2_{\mu_1, \ldots, \mu_d}. \]

\(g_{\mu_1, \ldots, \mu_d} \) are the **Kronecker coefficients**. Branching coefficients in the restriction \(U(N_1 \cdots N_d) \to U(N_1) \times \cdots \times U(N_d) \).
Tensor and matrix counting of invariants

By means of representation theory (and some work):

\[\dim \{ \mathcal{O}_{n}^{G_{d}^{-\text{Inv}}} \} = \sum_{\mu_1, \ldots, \mu_d} g_{\mu_1, \ldots, \mu_d}^2, \]

where \(g_{\mu_1, \ldots, \mu_d} \) are the Kronecker coefficients. Branching coefficients in the restriction \(U(N_1 \cdots N_d) \to U(N_1) \times \cdots \times U(N_d) \).

For multimatrix models we have

\[\dim \{ \mathcal{O}_{n}^{U(N)^{-\text{Inv}}} \} = \sum_{\mu_1^n, \ldots, \nu_d^n} (c_{\nu_1, \ldots, \nu_d}^{\mu})^2, \quad n = n_1 + \cdots + n_d \]
Motivation
Observables in tensor and matrix models
Spontaneous Symmetry Breaking in tensor models

Tensor and matrix counting of invariants

By means of representation theory (and some work):

$$\dim\{\mathcal{O}^{G_d-\text{Inv}}_n\} = \sum_{|\mu_1|,\ldots,|\mu_d|=n} g_{\mu_1,\ldots,\mu_d}^2 \cdot$$

$$\prod_{k=1}^d \mu_k \leq N_k$$

\(g_{\mu_1,\ldots,\mu_d}\) are the **Kronecker coefficients**. Branching coefficients in the restriction \(U(N_1 \cdots N_d) \to U(N_1) \times \cdots \times U(N_d)\).

For multimatrix models we have

$$\dim\{\mathcal{O}^{U(N)-\text{Inv}}_n\} = \sum_{\mu \vdash n, \nu_1 \vdash n_1, \ldots, \nu_d \vdash n_d} (c^\mu_{\nu_1,\ldots,\nu_d})^2, \quad n = n_1 + \cdots + n_d$$

\(c^\mu_{\nu_1,\ldots,\nu_d}\) are **LR numbers**. Branching coefficients in the restriction \(S_n \to S_{n_1} \times \cdots \times S_{n_d}\)
Matrix and tensor models in the hook sector
Kronecker coefficients do not have yet a general combinatorial
formula,
Kronecker coefficients do not have yet a general combinatorial formula, but using [Liu’17] and [PD’18] we have

\[g_{\mu(r)\nu\lambda} = \sum_{\gamma |-r} c^\nu_{\rho\gamma} c^\lambda_{\rho\gamma'}, \quad \mu(r) = \begin{array}{c} \text{table} \\ \text{of} \\ \text{size} \\ r+1 \end{array}, \]
Kronecker coefficients do not have yet a general combinatorial formula, but using [Liu’17] and [PD’18] we have

\[g_{\mu(r)\nu\lambda} = \sum_{\gamma \vdash r} c^\nu_{\rho\gamma} c^\lambda_{\rho\gamma'}, \quad \mu(r) = \underbrace{\gamma|_{n-r}}_{r+1}, \]

At least in the hook sector and for \(d = 3 \) tensor models there is a non-trivial relation between the spectra of matrix and tensor models.
Effective (multi-)matrix theories from tensor theories
Effective (multi-)matrix theories from tensor theories

- Promote the model to QFT: $\Phi_{i_1,\ldots,i_d} \rightarrow \Phi_{i_1,\ldots,i_d}(x)$.

- Take the same rank for the groups $U(N_1) \times \cdots \times U(N_d) \rightarrow U(N) \times d$.

- The original theory $L(\Phi)$ is invariant under $U(N) \times d$ but we will break the symmetry to $\text{Diag}[U(N)]$.

\[
\int d\Phi d\Phi \exp(i\int d^4x \{L(\Phi(x))\}) \rightarrow \int d\Phi d\Phi \exp(i\int d^4x \{L(\Phi(x)) + i\epsilon \Phi_s(x) \Phi_s(x)\})
\]

\[
\Phi_s(x) \Phi_s(x) = \frac{1}{d!} \sum_{\sigma \in S_d} \Phi_{i_{\sigma}(1)},\ldots,\Phi_{i_{\sigma}(d)}(x) \Phi_{i_1,\ldots,i_d}(x)
\]
Effective (multi-)matrix theories from tensor theories

- Promote the model to QFT: \(\Phi_{i_1, \ldots, i_d} \rightarrow \Phi_{i_1, \ldots, i_d}(x) \).
- Take the same rank for the groups
 \(\mathbb{U}(N_1) \times \cdots \times \mathbb{U}(N_d) \rightarrow \mathbb{U}(N)^\times^d \).
Effective (multi-)matrix theories from tensor theories

- Promote the model to QFT: $\Phi_{i_1,\ldots,i_d} \rightarrow \Phi_{i_1,\ldots,i_d}(x)$.
- Take the same rank for the groups $U(N_1) \times \cdots \times U(N_d) \rightarrow U(N)^\times d$.
- The original theory $\mathcal{L}(\Phi)$ is invariant under $U(N)^\times d$ but we will break the symmetry to $\text{Diag}[U(N)]$.

$\int d\Phi d\Phi \exp(i \int d^4x \{ \mathcal{L}(\Phi(x)) + i \epsilon \Phi_s(x) \Phi_s(x) \})$
Effective (multi-)matrix theories from tensor theories

- Promote the model to QFT: $\Phi_{i_1,\ldots,i_d} \rightarrow \Phi_{i_1,\ldots,i_d}(x)$.
- Take the same rank for the groups $U(N_1) \times \cdots \times U(N_d) \rightarrow U(N)^\times^d$.
- The original theory $\mathcal{L}(\Phi)$ is invariant under $U(N)^\times^d$ but we will break the symmetry to $\text{Diag}[U(N)]$.

$$
\int d\Phi d\overline{\Phi} \exp \left(i \int d^4x \{ \mathcal{L}(\Phi(x)) \} \right)
$$

$$
\rightarrow \int d\Phi d\overline{\Phi} \exp \left(i \int d^4x \{ \mathcal{L}(\Phi(x)) + i\epsilon \Phi^s(x)\overline{\Phi}^s(x) \} \right)
$$
Effective (multi-)matrix theories from tensor theories

- Promote the model to QFT: $\Phi_{i_1,\ldots,i_d} \rightarrow \Phi_{i_1,\ldots,i_d}(x)$.
- Take the same rank for the groups $U(N_1) \times \cdots \times U(N_d) \rightarrow U(N)^\times d$.
- The original theory $\mathcal{L}(\Phi)$ is invariant under $U(N)^\times d$ but we will break the symmetry to $\text{Diag}[U(N)]$.

\[
\int d\Phi d\Phi \exp \left(i \int d^4x \{ \mathcal{L}(\Phi(x)) \} \right) \\
\rightarrow \int d\Phi d\Phi \exp \left(i \int d^4x \{ \mathcal{L}(\Phi(x)) + i\epsilon \Phi^s(x)\Phi^s(x) \} \right)
\]

- $\Phi^s(x)\Phi^s(x) = \frac{1}{d!} \sum_{\sigma \in S_d} \Phi_{i_{\sigma(1)},\ldots,i_{\sigma(d)}}(x)\Phi^{i_1,\ldots,i_d}(x)$
How the symmetric term transform
How the symmetric term transform

\[
\Phi_{j_1j_2...j_d} = \sum_{i_1,...,i_d} (g_1)_{j_1}^{i_1} \cdot (g_d)_{j_d}^{i_d} \Phi_{i_1...i_d}, \quad g_k \in U(N)
\]

\[
\Phi^s_{j_1j_2...j_d} = \frac{1}{d!} \sum_{i_1,...,i_d} g_{j_1}^{i_1} \cdots g_{j_d}^{i_d} \Phi_{i_{\sigma(1)}...i_{\sigma(d)}}, \quad g \in U(N)
\]
SSB and degrees of freedom

▶ \[G = U(N^2) \times d \rightarrow H = \text{Diag}[U(N^2)]. \]

▶ # of Goldstone bosons
\[N_{GB} = (d^2 - 1)N^2. \]

▶ Each collection of \(N^2 \) GB is seen to transform in an irrep of \(\text{Diag}[U(N^2)] \).

\[B_a(x) = i(\Phi^s(x)^T a \Phi^s(x) - \Phi^s(x)^T k a \Phi^s(x)), \quad a = 1, \ldots, N^2. \]

▶ So they group into \(d - 1 \) multiplets of \(N^2 \) elements each.

▶ The multiplets organize into matrices transforming in the adjoint:
\[Z_{ij}(x) = \sum_a B_a(x)(T_a)_{ij}. \]
SSB and degrees of freedom

➤ SSB: \(G = U(N)^{\times d} \rightarrow H = \text{Diag}[U(N)]. \)
SSB and degrees of freedom

- SSB: \(G = U(N)^{\times d} \rightarrow H = \text{Diag}[U(N)]. \)
- # of Goldstone bosons

\[
N_G - N_H = (d - 1)N^2
\]
SSB and degrees of freedom

- SSB: $G = U(N)^{\times d} \rightarrow H = \text{Diag}[U(N)]$.
- # of Goldstone bosons

$$N_G - N_H = (d - 1)N^2$$

- Each collection of N^2 GB is seen to transform in an irrep of $\text{Diag}[U(N)]$.

$$B_a(x) = i \left(\Phi^s(x) T_a \Phi^s(x) - \Phi^s(x) T_a^k \Phi^s(x) \right), \quad a = 1, \ldots, N^2.$$
So they group into $d - 1$ multiplets of N^2 elements each.
SSB and degrees of freedom

- **SSB:** \(G = U(N)^{\times d} \to H = \text{Diag}[U(N)]. \)
- # of Goldstone bosons

\[N_G - N_H = (d - 1)N^2 \]

- Each collection of \(N^2 \) GB is seen to transform in an irrep of \(\text{Diag}[U(N)]. \)

\[B_a(x) = i\left(\Phi_s^s(x) T_a \Phi^s(x) - \Phi^s(x) T^k_a \Phi^s(x) \right), \quad a = 1, \ldots, N^2. \]

So they group into \(d - 1 \) multiplets of \(N^2 \) elements each.

- The multiplets organize into matrices transforming in the adjoint:

\[Z^i_j(x) = \sum_a B_a(x)(T_a)^i_j. \]
Summary of SSB and applications
Summary of SSB and applications

\[U(N)^\times d \rightarrow \Phi_{i_1,...,i_d} \] (melonic diagrams, solvable, but unclear physics)
Summary of SSB and applications

\[U(N)^\times d \quad \rightarrow \quad \Phi_{i_1,\ldots,i_d} \quad \text{(melonic diagrams, solvable, but unclear physics)} \]

\[\text{Diag}[U(N)] \quad \rightarrow \quad \Phi_{i_1,\ldots,i_d}^s(x) + \{(Z_1)^i_j(x), \ldots, (Z_{d-1})^i_j(x)\} \]

+ Diag\[U(N)] – singlets

(non-solvable, holographic interpretation)
Thanks!