# Two-Particle Correlation in e<sup>+</sup>e<sup>-</sup> Collisions at 91.2 GeV with ALEPH Archived Data

Anthony Badea, Austin Baty, Gian Michele Innocenti, Yen-Jie Lee, Christopher McGinn, Michael Peters, Jesse Thaler Massachusetts Institute of Technology



Paoti Chang, Tzu-An Sheng National Taiwan University



Marcello Maggi Universita degli Studi di Bari ICHEP 2018, Seoul, South Korea 04-11 July, 2018







# Motivation



Charged Hadron dN/dŋ



Anthony Badea (MIT)

- Ridge observed in small systems, possible explanations:
  - Initial state effect (CGC)
  - Final state effect due to mini-QGP
- Similarity between e<sup>+</sup>e<sup>-</sup>, pp and AA
  - Event multiplicity per participant
  - dN/dη(y)
- Study of high multiplicity event with well-defined initial condition:
  - No complication from hadron structure
  - No multi-parton interaction



2



# The ALEPH Detector



3

#### Event Shape: Thrust



Two-Particle Correlation in e+e- with ALEPH archived data



# **Unfolded Thrust Distribution**



#### High Multiplicity Event in e<sup>+</sup>e<sup>-</sup> Collisions (1)





#### High Multiplicity Event in e<sup>+</sup>e<sup>-</sup> Collisions (2)





Identical measurement as performed in pp, pA and AA collisions in various experiments







Pseudorapidity ( $\eta$ ) and azimuthal angle ( $\Phi$ ) are calculated with respect to the **beam pipe** 









- Search for ridge signal with beam axis: enhance number of charged particle pairs with large  $\Delta \eta$  gap and similar  $\Phi$  (small  $\Delta \Phi = \Phi_1 \Phi_2$ )
- Ex: Sensitive to "pressure driven expansion" of the medium in the direction perpendicular to the beam axis













No ridge structure observed at small  $\Delta \Phi$  and large  $\Delta \eta$ 











# <u>ΔΦ Projection vs. Event Multiplicity</u>



- PYTHIA6 (curve) vs. Data (dot) [Beam axis analysis]
- Good agreement between PYTHIA6 and ALEPH Data for N<30
  - No near-side peak (ridge) is found at small  $\Delta \Phi$  in long range correlation
- Some difference observed at high multiplicity N  $\geq$  35

Δη<1.6





No ridge signal is found in beam axis analysis, which is sensitive to perturbative physics (+ parton shower)







Thrust axis analysis to follow the "direction of color string"







Pseudorapidity ( $\eta$ ) and azimuthal angle ( $\Phi$ ) are calculated with respect to the Thrust Axis







Pseudorapidity ( $\eta$ ) and azimuthal angle ( $\Phi$ ) are calculated with respect to the Thrust Axis





# **Correlation Function with Thrust Axis**



Correlation function with Thrust Axis as reference is much more similar to the beam axis result in pp collisions (with many caveats / differences)

Two-Particle Correlation in e+e- with ALEPH archived data



# **Correlation Function with Thrust Axis**





#### LEP1 Data vs PYTHIA6 N≥30



- Hint of near-side peak in data
  - Consistent with PYTHIA6 without final state effects
  - Contribution from multi-jet correlation
- PYTHIA6 reference limited by archive MC statistics



#### LEP1 Data vs PYTHIA6 N≥35



- Hint of near-side peak in data
  - Consistent with PYTHIA6 without final state effects
  - Contribution from multi-jet correlation
- PYTHIA6 reference limited by archive MC statistics





- "Perturbative QCD physics" still comes in the Thrust axis analysis (Jets)
- One possibility to suppress jet component is to apply a  $|\eta|$  selection





#### Thrust Axis Analysis with Jet Veto



- "Perturbative QCD physics" still comes in the Thrust axis analysis (Jets)
- One possibility to suppress jet component is to apply a  $|\eta|$  selection



#### LEP1 Data vs LEP1 MC N≥35



- Hint of near-side peak in data
  - Consistent with PYTHIA6 w/o final state effects
  - Contribution from multi-jet correlation
- PYTHIA6 reference limited by archive MC statistics

Thrust Axis  $\, \widehat{n} \,$ 

e



#### LEP1 Data vs LEP1 MC N≥35



- Hint of near-side peak in data
  - Consistent with PYTHIA6 w/o final state effects
  - Contribution from multi-jet correlation
- PYTHIA6 reference limited by archive MC statistics



soft radiation

# Summary



Anthony Badea (MIT)

- The first two-particle correlation analysis in e<sup>+</sup>e<sup>-</sup> performed in bins of event multiplicity up to N = 35 - 55
  No significant ridge signal is observed in beam axis analysis
- Thrust axis and jet region veto are employed to enhance the signal from soft radiations
  - No significant difference between ALEPH LEP1 data and PYTHIA6 observed
- No evidence of the final state effect in the probed event multiplicity ranges:
  - An important reference of the ridge signal observed in pp, pA, dA and AA collisions

LEP2 Data analysis (up to  $\sqrt{s}$ ~208 GeV) ongoing... stay tuned!



# Acknowledgement

We would like to thank **Roberto Tenchini** and **Guenther Dissertori** from the ALEPH collaboration for the useful comments and suggestions on the use of ALEPH archived data.

We would like to thank **Wei Li**, **Maxime Guilbaud**, **Wit Busza** and **Yang-Ting Chen** for the useful discussions on the analysis.

The MIT group's work was supported by US DOE-NP





#### Particle Production





# **Event Selection**

- Track Selection:
  - Particle Flow Candidate 0, 1, 2
  - Number of TPC hits for a charged tracks >= 4
  - |d0| < 2 cm
  - |z0|< 10 cm
  - |cosθ|<0.94</li>
  - $p_T > 0.2 \text{ GeV}$  (transverse momentum with respect to beam axis)
  - N<sub>TPC</sub> >=4
  - $x^2/ndf < 1000$ .
- Neutral Hadron Selection:
  - Particle Flow Candidate 4, 5 (ECAL / HCAL object)
  - E> 0.4 GeV
  - |cosθ|<0.98</li>
- Event Selection:
  - Number of good charged particles >= 5 (including charged hadrons and leptons)
  - Number of good ch+neu. Particles >= 13
  - E<sub>charged</sub> > 15 GeV
  - $|\cos(\theta_{\text{sphericity}})| < 0.82$





#### **Uncorrected Thrust Distributions**



Two-Particle Correlation in e+e- with ALEPH archived data



#### Uncorrected Thrust distributions in different N intervals





## **Charged Particle Multiplicity**





# Jet multiplicity



