IceCube's astrophysical neutrino spectrum from CPT violation

Danny Marfatia

with Jiajun Liao (1711.09266)

Cosmic neutrinos at IceCube

60 events with dep. energy > 60 TeV

3 cascade events between 1-2 PeV

Galactic or extragalactic?

Zero galactic flux allowed at < 1 sigma</p>

Same source for UHECR and cosmic neutrinos?

Consistent with the Waxman-Bahcall flux

Upgoing muon neutrino spectrum (E > 120 TeV) harder than HESE spectrum

Multicomponent flux?

One Glashow resonance event observed

$\overline{ u}_e$ is unique because of resonant scattering at

$$E_{\nu} = \frac{M_W^2}{2m_e} = 6.3 \text{ PeV}$$

 $\bar{\nu}_e e^- \to W^- \to \text{anything}$

Connection with gamma rays

Neutrino spectra softer than shown are inconsistent with Fermi data

Solution of $p\gamma$ sources weaker because target photons prevent gamma rays from leaving source

Lorentz and CPT violation?

Suppose LIV and CPTV only occur in neutrino sector

Only consider effects that change the kinematics of particle interactions

Postulate that CPTV arises from Planck-suppressed terms in the Lagrangian

Modified dispersion relation

$$E^{2} - p^{2} = m^{2} + 2\delta E^{2}$$
$$\delta = \kappa \frac{E}{M_{Pl}}$$

Assume all neutrino flavors have same LIV parameter to be consistent with neutrino oscillation data

To Dispersion relation for antineutrinos: $\delta \rightarrow -\delta$

• Our choice $\delta > 0 \implies$ neutrinos are superluminal and antineutrinos are subluminal

Dominant energy loss processes for superluminal neutrinos are vacuum pair emission (VPE) and neutrino splitting

Event pile-up caused by neutrino splitting is larger than for VPE because splitting produces 2 additional lower energy neutrinos

$$\Gamma \propto \kappa^3 \frac{G_F^2 E^8}{M_{Pl}^3}$$

Effect on neutrino sources?

 $\pi^+ \rightarrow \mu^+ \nu_{\mu}$ imposes an upper bound on the energy of superluminal neutrinos:

$$E^3 \le \frac{(m_\pi - m_\mu)^2 M_{Pl}}{2\kappa}$$

VPE occurs above an energy threshold given by

$$E_{th}^3 = \frac{2m_e^2 M_{Pl}}{\kappa}$$

Threshold energy for neutrino splitting is tiny compared to that for VPE

For a given VPE threshold energy, the upper bound on the superluminal neutrino energy is

 $E < 10.3 E_{th}$

If the highest energy track event observed by IceCube (with median estimated energy of 8.7 PeV) was initiated by a superluminal neutrino, then

 $E_{th}^{min} = 0.85 \text{ PeV}$

Need extragalactic sources of superluminal neutrinos

CR Reservoirs:

Starburst galaxies and Galaxy clusters

 $pp \to \pi^{\pm} \text{ pairs} \to \nu_{e} + \bar{\nu}_{e} + 2\nu_{\mu} + 2\bar{\nu}_{\mu}$

a naturally produces spectral break

same number of neutrinos and antineutrinos

CR Accelerators:

Gamma-ray bursts and Active Galactic Nuclei

 $p\gamma \to \pi^+ \to \nu_e + \nu_\mu + \bar{\nu}_\mu$

In a naturally produces hard neutrino spectrum

Twice as many neutrinos and antineutrinos

 $p\gamma \to \pi^+ \to \nu_\mu$ only

Only superluminal neutrinos at source!

BUT, intrinsic contamination from π^- is expected to reduce the superluminal fraction by 20%–33%

e.g. $p\gamma \rightarrow n\pi^+$ $n\gamma \rightarrow p\pi^-$

Flavor ratio at Earth

	Source flavor ratio		Earthly flavor ratio		$\bar{\nu}_e$ fraction in flux (\mathcal{R})
$pp \to \pi^{\pm}$ pairs	(1:2:0)		(1:1:1)		18/108 = 0.17
w/ damped μ^{\pm}	(0:1:0)		(4:7:7)		12/108 = 0.11
$p\gamma \to \pi^+ \text{ only}$	(1:1:0)	(0:1:0)	(14:11:11)	(4:7:7)	8/108 = 0.074
w/ damped μ^+	(0:1:0)	(0:0:0)	(4:7:7)	(0:0:0)	0
charm decay	(1:1:0)		(14:11:11)		21/108 = 0.19
neutron decay	(0:0:0)	(1:0:0)	(0:0:0)	(5:2:2)	60/108 = 0.56

Superluminal fraction compatible with π^- contamination

Summary

- Multicomponent neutrino flux not required if neutrino interactions violate CPT
- Single E^{-2} spectrum from muon-damped $p\gamma$ source works
- Superluminal fraction compatible with π^- contamination
- Excess below 200 TeV explained by event pile-up from superluminal neutrino decay
- Subluminal antineutrinos contribute at high energies so no cutoff; expected Glashow event may have been seen
- \circ π^+ is predicted to be a cosmic ray primary