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Yet the identity of 
Dark Matter is 
unknown

We only know it exists  
throughout the Universe



Dark Matter Candidates

❖ WIMP — weakly interacting massive particles, e.g., LSP in 
SUSY, LTP in little Higgs models,LKP in UED model, hidden-
sector fermions, … 

❖ Ultra-weak — axion, axino, gravitino, RH neutrinos, … 

❖ Decaying dark matter

A lot of experiments are designed to detect WIMPs, but so far … …



Strategies for hunting Dark Matter

χ

χ

f

f̄

DM annihilation

Indirect detection

Collider production

Direct
detection

❖ Direct Detection: SM + DM -> 
SM DM :: measurements of recoil 
energies of nuclei 


❖ Collider: SM+SM -> DM DM :: 
measurements of missing energies


❖ Indirect Detection: DM DM -> 
SM SM :: measurements of e+, gamma 
rays, neutrinos,… from annihilation of DM

Astrophysical Structures: DM DM -> DM DM :: 

galaxy formation, rotational velocity, CMB, … …   





Cusp-Core Problem

❖ LCDM simulations predict DM 
density cusp in center of 
galaxies, but inconsistent with 
observations. 

❖ Especially low-mass galaxies.



A Few Possible Solutions 

❖ Baryon physics: efficiency of transforming baryons into stars to be 
lower in lower-mass systems. 

❖ Some warm DM: its thermal velocity dispersion provides free streaming 
that suppresses low-mass halos or sub-halos, and also reduce the 
density cusp at the center. 

❖  DM has self-interactions, reducing the density cusp, form less sub-
halos. 

❖ Fuzzy dark matter: large de Broglie wavelength suppresses  
small-scale structures (Hu et al.).



Ultralight Axion Dark Matter

❖ Very light m ~ 10-22 eV, with de Broglie wavelength ~ h/mv  
~ O(kpc). Also called Fuzzy Dark Matter (FDM).

❖ At large scale ~ O(50 kpc) it behaves like CDM and succeeds 
in explaining the large scale structures.

❖ The difference is at relatively small scales ~ O(10 kpc). It 
“smooths” out density cusp  distributions, due to quantum 
nature of the FDM.

❖ The quantum pressure of FDM induces a solitonic core of 
size O(kpc).  It explains the “small scale crisis”. 



Light fields of spin zero
• Consider the action                                       , When the mass and self-coupling 

of a spinless field ! are precisely zero, there is an extra symmetry 

• But the candidate of FDM is very nearly massless boson, so it has an 
approximate shift symmetry, not an exact one. 

• A axion-like candidate for FDM can be described by: 

• The mass of a is              .

S = 1
2

d 4x ggµν ∂µφ ∂υ∫ φ

S = 1
2

d 4x g[1
2
F2gµν ∂µa∂υ∫ a − µ4 (1− cosa)]

m = µ2

F

φ→φ +C.

m ~10−22 −10−21eV .For FDM we want



FDM as a superfluid 
• It is useful to think the dark matter as a superfluid. 

• Define the fluid density and velocity by:

ψ = ρ
m
eiθ , !v = "

Rm
∇θ = "

2miR
1
ψ

∇ψ − 1
ψ * ∇ψ

*⎛
⎝⎜

⎞
⎠⎟
.

from arXiv:1606.05151 from Wikipedia

no self interaction no viscosity



Madelung equation
• By plugging the density and the velocity into the equation of 

motion in comoving coordinates, we could obtain the Madelung 
equation.

!ρ + 3Hρ + 1
R
∇⋅(ρ"v) = 0

!"v + H!v + 1
R
(!v ⋅∇)!v = − 1

R
∇Φ+ #2

2R3m2 ∇⋅
∇2 ρ

ρ
⎛

⎝⎜
⎞

⎠⎟

The Madelung equations are well-suited to numerical simulation!



Quantum pressure
• Second equation of Madelung equations: 

• The quantum pressure arises from a stress tensor :

!"v + H!v + 1
R
(!v ⋅∇)!v = − 1

R
∇Φ+ #2

2R3m2 ∇⋅
∇2 ρ

ρ
⎛

⎝⎜
⎞

⎠⎟

!"v + H!v + 1
R
(!v ⋅∇)!v = − 1

R
∇Φ+ 1

R
∇⋅ !σ .

!σ = "2

2R2m2

∇2 ρ
ρ

⎛

⎝⎜
⎞

⎠⎟
.

By comparing this two equations, we could interpret 
quantum pressure as 



The acceleration due to quantum pressure, gravity between TWO particles

Attractive for r ≤ 

7

Figure 1. Left panel: the acceleration from quantum pressure (black dashed), gravity (blue solid), and

their sum (red solid) between two particles. The x-axis is the distance between two particles while the y-axis

is the acceleration. Right panel: the particle position, which is changing due to the quantum pressure, vs

time. The red-solid, black-dashed, green-solid, and blue-dash-dotted lines present the initial positions at

0.3�, �/
p
8, 0.4�, and 2�, respectively. However, the light color lines represent their partner particles located

at the opposite side �0.3�, ��/
p
8, �0.4�, and �2� initially.

some quantum pressure sources, the additional energy to the system injected from quantum pressure

term is zero. Namely, the total work, the integration of Eq. (23) from r = 0 to r = 1, vanishes.

To illustrate the e↵ect of quantum pressure, let us consider a two-particle system separated by

a distance of order O( kpc) and the acceleration caused by quantum pressure will be O(
~2

m2�3
) ⇠

O(10�10m/s2). In the left panel of Fig. 1, we demonstrate the e↵ect of quantum pressure in the

plane of (r, r̈). The acceleration from quantum pressure, gravity, and the sum are shown by black

dashed line, blue line, and red line, respectively. Clearly, the quantum pressure can be attractive force

(positive sign in our definition) if the distance between two particles is less than �/
p
2. However, it

becomes a repulsive force (negative sign in our definition) if the distance is greater than �/
p
2. To

understand this, we refer back to the quantum pressure definition in Eq. (7). The pressure term Q

is proportional to the second derivative of the mass density, namely, the curvature of the density,

which can have negative, positive, or zero values, physically corresponding to attractive, repulsive,

and zero forces.

In the right panel of Fig. 1, we show the position x(t) of one of the particles in this two-particle

system as a function of time by solving Eq. (23). Here the origin is located at the center of mass and

such that r(t) = 2x(t). The red-solid, black-dashed, green-solid, and blue-dash-dotted lines present

the cases with the initial position x(0) at 0.3�, �/
p
8, 0.4�, and 2�, respectively. Also, the position

Repulsive for r ≥

7
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N-body Simulations

❖ Modify Gadget2 to include effects of quantum pressure


❖ Set up a self-collapsing system — a cubic box of side 400 kpc, 
106 simulation particles, each has a mass of 106 solar mass. 


❖ All particles start from rest and the system collapses due to 
self-gravity to form a stable self-gravitationally-bound 
virialized halo at the center. 


❖ The final virialized halo for FDM depends sensitively on the 
initial slight “push” given to the system.


❖ We compare FDM and CDM halos.


❖ m ~ 2.45 . 10-22 eV, wavelength ~ 1.4 kpc



CDM

FDM



FDM1 halo has a higher density in inner core than CDM

 FDM2 has a lower density



FDMs develop a solitonic core. Beyond the 
core the same as Einasto.



Solitonic Core of FDM

The FDM develops a solitonic core after 10 Gyr. The core 

can be fitted by

11

Figure 4. The left (right) panel is the halo density profile after 3 (10)Gyr. The system is fully virialized

after 10Gyr. We can see that the FDM and CDM halo density profiles outside 10 kpc can both be fitted

well by the Einasto profile. However, inside 1 kpc a solitonic core slowly emerges in the FDM1 halo and its

density is higher than that of CDM since the quantum pressure inside 1 kpc is attractive. For the FDM2

halo, the density is lower than that of CDM halo after 3Gyr and finally evolves into a solitonic core inside

10 kpc.

within 3 kpc. We also plot the Einasto Profile fitting in the final virialized state in blue dashed line

for comparison. At the region around 100 kpc, some particles are still bouncing out so that the tail

is not fitted well to the Einasto profile. In the right panel, we show the density profiles at 10Gyr.

Two fitting functions of solitonic cores are shown in red-dashed line, whose formula was given in

Ref. Schive et al. (2014b),

⇢c(r) ' ⇢b⇢0[1 + 0.091(
r

rc
)2]�8, (24)

with an additional fitting parameter ⇢b, and

⇢0 ' 3.1⇥ 106(
2.5⇥ 10�22 eV

m�
)2(

kpc

rc
)4

M�

kpc3
. (25)

We set ⇢b = 150 and rc = 0.4 in our plot for the first solution, ⇢b = 60000 and rc = 8.0 for the second

solution. Beyond the solitonic core, the density profiles of FDM halos are essentially the same as

that of CDM and the Einasto profile.

We confirm the existence of two possible solitonic cores, slowly emerging from the FDM simula-

tion, but the density of FDM1 is higher than that of the CDM halo inside 1 kpc due to the attractive

quantum pressure, that of FDM2 is lower than that of the CDM halo due to the repulsive quantum

pressure outside 1 kpc. In a previous study Veltmaat & Niemeyer (2016), a boost power in small

scale was also reported for their small-box comoving coordinate simulation. Comparing to the CDM
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FDM: 

FDM: solitonic core within 3 kpc with lower density than CDM 

due to repulsive quantum pressure

10

Figure 5. Left(right) panel: the velocity dispersion profiles at 3(10)Gyr. The two solutions of FDM without the correction
factor Bj (pink thin solid lines) are shown for reference. The green shaded region represents the radius of halo smaller than the
softening length 0.89 kpc. Before final virialization, one cannot find significant di↵erence between the FDM and CDM halos.
The slight di↵erences among the CDM and FDM halos around 10 kpc are still clear.

We set ⇢b = 5000 and rc = 3kpc in our plot. Beyond the solitonic core, the density profiles of FDM halos are essentially

the same as that of CDM and the Einasto profile.

We confirm the existence of a solitonic core, slowly emerging from the FDM simulation, with a size of 3 kpc.

Inside the solitonic core, our result agrees with the previous result obtained in Ref. (Schive et al. 2014b), which

was based on a grid-based numerical solution of the Schrödinger-Poisson equations. Outside the solitonic core, our

result agrees very well with the Einasto profile, which is also a well-known property of the FDM halo. In a previous

study (Veltmaat & Niemeyer 2016), a boosted power in small scales was also reported for their small-box comoving

coordinate simulation. Comparing to the CDM simulation, Ref. (Veltmaat & Niemeyer 2016) found at most 10% more

power in the FDM simulation. We can now easily understand such a result by considering the quantum pressure in

small scales.

We also compare the velocity dispersion profiles of the FDM (red lines) and CDM (blue line) halos after 3 Gyr

(left panel) and after 10 Gyr (right panel) of evolution in Fig. 5. At 3 Gyr (left panel), we do not see significant

di↵erences between the FDM and CDM halos, except in the small central region less than the softening length.

However, the FDM velocity dispersion is smaller than that of CDM halo between 3 kpc and 20 kpc, both at 3Gyr and

at 10Gyr, which can be understood as due to the lower mass enclosed within 3 kpc in FDM halos, as discussed in

Fig. 3.

4. SUMMARY AND OUTLOOK

In summary, we have proposed to use a Gaussian kernel function to discretize the quantum pressure term to

simulate FDM in the PP method for N -body simulations. We note that the quantum pressure does not provide

additional energy to the system, but it will certainly change the halo inner structure. In order to understand the

quantum pressure e↵ect, we study a two-body system and find that the force between the two particles is always

attractive if the distance between them is less than �/
p
2, but it will turn repulsive if the distance between them is

larger than �/
p
2. In small scales, the quantum pressure contribution can be even larger than gravity. We have also

shown that the BEC properties can be quantitatively understood by using our discretized quantum pressure equation.



Velocity Dispersion Profile

The FDM has less mass within 3 kpc, so have smaller velocity 

dispersion than CDM.



CDM FDM

No difference on large scale! (Expected!)



CDM FDM
Much less small scale structure for FDM!



Cosmological Simulations

❖ Run large scale cosmological simulations of size  
(50 h-1 Mpc)3 , number of simulations particles 5123.


❖ Start at z=99 with a linear FDM power spectrum to 
the current z=0.


❖ Project the 3D power spectrum on 1D flux spectrum, 
and compare with the Lyman-Alpha Forest data.



Measurements
Idea







Comparision: Matter Power Spectrum 

Small scale structure  

The lower mass the larger discrepancy between  
Lambda CDM and FDM. 



FDM fits Lyman-alpha forest?

# The 1e-23 eV FDM is strongly disfavored. 
# The 1e-22 eV FDM is hard to say being excluded  

    at this level (no hydro-simulation).



FDM fits Lyman-alpha forest?

Hydro simulation uncertainty is huge and the 
effects from QP can be hidden. 



Conclusions
❖ FDM can solve the cusp-core problem with solitonic core.


❖ Missing satellite problem may be alleviated because low-
mass sub halos are much smaller in FDM than CDM. FDM 
sub halos are always disrupted by tidal field. The power 
spectrum of FDM density perturbation is suppressed at 
small mass scale.


❖ We need cosmological simulations to show that FDM can 
solve the missing satellite and too-big-to-fail problems.


❖ The lower mass bound on FDM is about a few times 10-22 
eV, due to an observation on the reionization history of 
Universe.



Backup Slides



Why gravity do not 

go to inifinity?
Why gravity softened?

SOFTening length: a numerical paramter for CDM, a physical paramter for FDM!



Plug it in Gadget2!



Schrodinger-Possion Equations

3

Moreover, if the halo small scale structure can be measured more accurately in the future, the order

of FDM particle mass can be constrained.

In this work, we propose a new scheme – e↵ective Particle-Particle (PP) interaction – for

simulating the FDM model, by which one can compute the quantum e↵ect of the FDM in the N -

body simulation with high resolution. In a self-gravitationally-bound virialized halo, we find two

stable solutions, both with a constant density core – solitonic core – of size of around 1 kpc or 5 kpc,

but with a higher or lower density than the conventional CDM model respectively. The result shows

the non-trivial quantum pressure e↵ect on the structure formation. We present the e↵ects of the

linear and non-linear power spectrum growth, especially for the non-linear e↵ect in high density

regions. For small scale structures, particularly for scales less than one de Broglie wavelength, we

find an attractive total potential at high over-density regions. However, in early age, low over-density

regions, the linear e↵ect is mainly from the repulsive quantum pressure which suppresses the matter

power spectrum at scales smaller than the Jeans scale.

We have made an independent and totally di↵erent simulation scheme compared to a few

previous studies, which were based on direct cosmological simulations with the Schrödinger-Poisson

equations (Schive et al. 2014a) and Particle-Mesh (PM) scheme simulation technique Veltmaat &

Niemeyer (2016). We cross-check our results with previous simulations and find them consistent with

each other. Nevertheless, our implementation of the quantum e↵ect with a simple PP method helps

us to explain some of the previously unclear behavior and understand self-consistently how quantum

pressure a↵ects the structure formation.

The following sections are arranged as follows. In Sec. 2, we introduce the theoretical approach

of the e↵ective Particle-Particle interaction. In Sec. 3, we describe the the simulation setup and

discuss the results. Finally, we summarize our outcomes in Sec. 4.

2. METHODOLOGY

2.1. Schrödinger-Poisson equations

The nature of FDM can be well described by the Schrödinger-Poisson equations,

i~d 
dt

= � ~2
2m�

r2 +m�V , (1)

and

r2V = 4⇡Gm�| |2. (2)

Here ~, m� and V are the Planck constant, particle mass and the gravitational potential acting on

a particle, respectively. The wave function  can be written as

 =
r

⇢

m�
exp(

iS

~ ) (3)
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in terms of the number density
⇢

m�
, while we can define the gradient of S to be DM momentum,

rS = m�v. (4)

After solving the Schrödinger-Poisson equations, from the real and imaginary parts of the solution,

one can obtain the continuity equation,

d⇢

dt
+r · (⇢v) = 0, (5)

and the momentum-conservation equation,

dv

dt
+ (v ·r)v = �r(Q+ V ), (6)

where we have defined the quantum pressure as

Q = � ~2
2m2

�

r2p⇢p
⇢

. (7)

One can see that such a pressure is only related to the mass density ⇢ and can be treated as a new

force on the particles additional to gravity. Later, we shall focus on this pressure term and discuss

how to obtain the acceleration information by using the Hamiltonian field theory.

To discuss the e↵ect of the quantum pressure, we can start with the Hamiltonian without the

gravity term,

H =

Z ~2

2m�
|r |2d3x =

Z
⇢

2
|v|2d3x+

Z ~2
2m2

�

(rp
⇢)2d3x. (8)

We can write the kinetic energy term in discretized form with object index j

T =

Z
⇢

2
|v|2d3x =

X

j

1

2
mj(

dqj
dt

)2, (9)

where qj is the coordinate of the jth particle, and the e↵ective potential energy is from the quantum

pressure

K⇢ =

Z ~2
2m2

�

(rp
⇢)2d3x. (10)

Note that we did not discretize K⇢ here but delay it to the next subsection because it will require

some e↵orts to do so. Based on T and K⇢ the Lagrangian of the system without gravity is

L = T �K⇢ =
X

j

1

2
mj(

dqj
dt

)2 �
Z ~2

2m2
�

(rp
⇢)2d3x, (11)

and the Euler-Lagrangian equation becomes

d

dt

@L

@q̇j
� @L

@qj
= 0 =) mj q̈j = �@K⇢

@qj
. (12)

One can see that the ⇢ in K⇢ is a continuous function, which cannot be used in the PP method.

Therefore, the major task is to further discretize the continuous function @K⇢/@qj, which we shall

describe in more details in the next subsection.



Particle-particle Implementation of Quantum Pressure
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2.2. Particle-particle implementation of quantum pressure

For a particle-particle interaction system, the number density for each individual particle is a

delta function. Intuitively, the mass density ⇢ can be discretized as

⇢(r) =
X

i

mi�(r � ri), (13)

where the summation over the index i means to add up all the particles. Numerically, treatment of a

delta function may cause a di�cult computational problem because of the sampling coverage issue.

However, conventionally one can approximate a delta function as a narrow Gaussian/kernel function,

as long as the width is small enough. The reasons and advantages to use the Gaussian smoothing

kernel are listed as follows. (i) It naturally keeps the kernel smooth, di↵erentiable, and spherically

symmetric. (ii) In quantum physics the Gaussian kernel is the eigenstate of the wavefunction inside

a parabolic potential well. (iii) Finally, if we were to use the spline kernel instead, there would be a

singularity at the particle position. Because of the finite grid size, such a singularity can numerically

make the results unphysical. Specifically, we write down the form of the delta function as

�(r � ri) =
1

2
p
2�3⇡3/2

exp(�2|r � ri|2
�2

), (14)

with a narrow width �. Note that the value of � is not an arbitrary and should be the same as the

de Broglie wavelength because one FDM particle has to be found with a high probability within a

Gaussian wave packet. In our work, the probability of finding a FDM in one wavelength is set at

95%.

Taking the FDM mass around O(10�31)GeV as an example, its wavelength � is order of kpc.

Inserting Eq. (14) back to the (rp
⇢)2 term in Eq. (10), the expression can be expanded by using

the kernel function,

h
r
p
⇢(r)

i2
=

1

4⇢(r)

"
X

i

mir�(r � ri)

#2

,

=
1

4⇢(r)

"
X

i

mi�(r � ri)(� 4

�2
)(r � ri)

#2

, (15)

=
4

�4⇢(r)

"
X

i

mi�(r � ri)(r � ri)

#2

.

In the simulation, those FDM particles such as axions will be grouped into a big mass clump in

space which can be treated as an imaginary particle point (neglecting the size of the clump in the

cosmological scale), and the mass density, Eq. (13), becomes
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2.2. Particle-particle implementation of quantum pressure

For a particle-particle interaction system, the number density for each individual particle is a

delta function. Intuitively, the mass density ⇢ can be discretized as
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where the summation over the index i means to add up all the particles. Numerically, treatment of a

delta function may cause a di�cult computational problem because of the sampling coverage issue.

However, conventionally one can approximate a delta function as a narrow Gaussian/kernel function,
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in terms of the number density
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, while we can define the gradient of S to be DM momentum,

rS = m�v. (4)

After solving the Schrödinger-Poisson equations, from the real and imaginary parts of the solution,

one can obtain the continuity equation,

d⇢

dt
+r · (⇢v) = 0, (5)

and the momentum-conservation equation,

dv

dt
+ (v ·r)v = �r(Q+ V ), (6)

where we have defined the quantum pressure as

Q = � ~2
2m2
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r2p⇢p
⇢

. (7)

One can see that such a pressure is only related to the mass density ⇢ and can be treated as a new

force on the particles additional to gravity. Later, we shall focus on this pressure term and discuss

how to obtain the acceleration information by using the Hamiltonian field theory.

To discuss the e↵ect of the quantum pressure, we can start with the Hamiltonian without the

gravity term,

H =
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We can write the kinetic energy term in discretized form with object index j
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2
mj(

dqj
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)2, (9)

where qj is the coordinate of the jth particle, and the e↵ective potential energy is from the quantum

pressure

K⇢ =

Z ~2
2m2

�

(rp
⇢)2d3x. (10)

Note that we did not discretize K⇢ here but delay it to the next subsection because it will require

some e↵orts to do so. Based on T and K⇢ the Lagrangian of the system without gravity is

L = T �K⇢ =
X
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1

2
mj(

dqj
dt

)2 �
Z ~2

2m2
�

(rp
⇢)2d3x, (11)

and the Euler-Lagrangian equation becomes

d

dt

@L

@q̇j
� @L

@qj
= 0 =) mj q̈j = �@K⇢

@qj
. (12)

One can see that the ⇢ in K⇢ is a continuous function, which cannot be used in the PP method.

Therefore, the major task is to further discretize the continuous function @K⇢/@qj, which we shall

describe in more details in the next subsection.
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Additional acceleration due to quantum pressure:

6

with the index j for each imaginary particle clump. Mathematically, one can think that the mass

density is expanded around rj to include all the FDM particles, r ! r�rj and ri ! ri�rj . Given

such a consideration, the summation of individual FDM particles is e↵ectively the same as summing

over all the imaginary particle points, and Eq. (15) can be further polished to be
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It is worth mentioning that the form in Eq. (17) is identical to Eq. (15) but their meanings should not

be confused. Hence, we leave the di↵erent indices here. At this stage, we have successfully converted

the Gaussian wave packet into an imaginary particle-smoothing kernel.

To completely discretize @K⇢/@qj, we still need to integrate Eq. (17) over all space. Due to the

nature of the delta function, we just need to focus on the volume surrounding the imaginary particle

points. Therefore, the integration together with kernel approach gives
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where �Vj is an e↵ective volume of the simulation particle j. Numerically, the factor �Vj

�3⇡3/2 is of order

one since the parameter �Vj cannot be much di↵erent from �3. Therefore, this gives us a constrain

on the simulation setting. We shall set up the simulation so that every simulation particle occupies

a volume close to �3 in physical coordinates.

Finally, Eq. 10 can be simply rearranged as
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and the equation of motion, Eq. (12), becomes
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Substituting q with r, the additional acceleration from quantum pressure used in the simulation can

be written as
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Here M is the mass of the simulation particle and M0 is a normalization factor accounting for the

size of �Vj, which we choose to be 106M�. Interestingly, if we put any “one” test particle around
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K.E. P.E. term from quantum pressure



But it was only in the dilute limit. We need a correction factor.
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with the index j for each imaginary particle clump. Mathematically, one can think that the mass density is expanded

around rj to include all the FDM particles, r ! r� rj and ri ! ri � rj . Given such a consideration, the summation

of individual FDM particles is e↵ectively the same as summing over all the imaginary particle points, and Eq. (15)

can be further polished to be
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It is worth mentioning that the form in Eq. (17) is identical to Eq. (15) but their meanings should not be confused.

Hence, we leave the di↵erent indices here. At this stage, we have successfully converted the Gaussian wave packet into

an imaginary particle-smoothing kernel.

To completely discretize @K⇢/@qj , we still need to integrate Eq. (17) over all space. Due to the nature of

the delta function, we just need to focus on the volume surrounding the imaginary particle points. Therefore, the

integration together with kernel approach gives
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where the parameters �Vj and Bj are the e↵ective volume and correction factor of the jth simulation particle which

will be described in more detail below.

We propose a correction factor Bj for the jth simulation particle in order to numerically take care of the di↵erent

integration results between the delta function and Gaussian kernel. In other words, when we treat a delta function as

one Gaussian kernel with width equal to one matter wavelength, it does not behave like a delta function in the region

where the distance between two kernel centers is less than one wavelength. In such a short range, the overlap between

two Gaussian tails can also contribute significantly, especially when performing integration with high particle density.

For more detailed explanations and the fitting formula for Bj Eq. (A5), see Appendix A.

Theoretically, the e↵ective volume �Vj for each simulation particle j is of the order of �3⇡3/2 resulting from a

Gaussian kernel integral. However, the exact value of �Vj can di↵er from system to system because of the complexity

of the inner kernel region. Hence, we treat it as a phenomenological free parameter (a constant for simplicity), but we

adjust its value to match the result inside the soliton core obtained by other approaches which have better resolution

in the region less than one wavelength, such as Ref. Schive et al. (2014a).

Finally, Eq. 10 can be simply rearranged as
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and the equation of motion, Eq. (12), becomes
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Substituting q with r, the additional acceleration from quantum pressure used in the simulation can be written as
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Here M is the mass of the simulation particle and M0 is a normalization factor accounting for the size of �Vj , which

we choose to be 106M�. Interestingly, if we put any “one” test particle around some quantum pressure sources, the
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