Constraining new physics with high-multiplicity: UHECR as a probe of new physics

Seong Chan Park (Yonsei University)
July 5th, 2018 @ COEX, Seoul
36th ICHEP2018

• No New physics has been found at the LHC

\[\Lambda_{NP} \geq \text{TeV} \]

• We can go beyond the collider energy using UHECR

\[E_{\text{CR}} > 10^8 \text{GeV} \Rightarrow E_{CM} = \sqrt{2E_{CR}M} > 10 \text{ TeV} \]

• So, we may probe new physics appearing at high scale by CR!

\[E_{CM} > \Lambda_{NP} \]
Seen in atmosphere!

- CR $> 10^8$ GeV fiercely bombing the Earth
- They interact with nucleons in atmosphere
- Producing multiple ‘high-multiplicity events’
- That may be seen at the ‘detectors’ … TA, Pierre Auger are our main target in this study. (IceCube will come as a sequel soon)
What new physics?

\[\Lambda_{NP} \sim 10 \text{ TeV} \]

- We don’t know actually where NP would show up but…

 - ‘Electroweak sphaleron’ scale \(~10 \text{ TeV}\) (a classical field configuration of SU(2) symmetry linking different vacuum states within the SM)

 - Microscopic blackhole is a robust prediction of low-scale gravity scenarios with warped or large extra dimensions, \(~10 \text{ TeV}\)
Sphaleron process

\[\Delta L = -3, \Delta B = -3 \]

\[N(u) + \nu_e \rightarrow L + Q \quad (+\text{EW bosons}) \]

UHECR Neutrino

\[E_{\text{sph}} \approx 10\text{TeV} \]

dictated by symmetry

\[\mu^+ + \bar{\nu}_\tau \]

How often does this happen?

\[\hat{\sigma}_{ij\rightarrow\text{EWSph}}(E_{\text{CM}}) \approx \frac{p}{m_W^2} \theta(E_{\text{CM}}/E_{\text{sph}}) \]

@ parton level

J. Ellis & Sakurai, JHEP(2016)
How often does this happen?

\[
\hat{\delta}_{ij \rightarrow \text{BH}}(E_{\text{CM}}) \approx \pi \left(G_D E_{\text{CM}} \right)^{\frac{2}{D-3}}
\]

@ parton level

\[
G_D = \frac{1}{M_D^{D-2}} \sim \frac{1}{\text{TeV}^{D-2}}
\]

"TeV scale of gravity" in ADD or RS models

SCP, Prog.Part.Nucl.Phys. 67 (2012) 617-650
Common feature: sizable cross section $>\mathcal{O}(10)$ TeV

- Cross section becomes large at around $E_{cm} \sim 10$ TeV

$$\sigma(E_\nu) = \sum_i \int dx f_{i/N}(x, q^2) \hat{\sigma}(\hat{s} = 2mE_\nu x) \sim 1/\text{TeV}^2$$

$E_\nu \sim \mathcal{O}(10^{17} - 10^{21})$ eV

Target nucleon

quark q with parton fraction x

PDF

Nucleon’s mass

CR-energy $E_{CM} > 10$ TeV

parton level x-section (NP)

fraction of energy of parton(i) in Nucleon
N-nu cross sections

Yongsoo Jho, Seong Chan Park, 1806.03063
UHECR Neutrino flux

From direct observation of UHE neutrinos

Expected neutrino-flux from diffuse gamma-rays

Yongsoo Jho, Seong Chan Park, 1806.03063
Event rate spectrum

Yongsoo Jho, Seong Chan Park, 1806.03063

Auger 9yrs
Auger 10yrs
IceCube 6yrs

Auger 9yrs (2004–2013)
Auger 10yrs (10yrs, expected)
IceCube 6yrs (2008–2014)

Microscopic BH
$M_B = 1 \text{ TeV}$,
$n = 2–6$

EW Sphaleron,
$E_{\text{Sph}} = 9 \text{ TeV}$,
$p = 0.3$

Auger North

Microscopic BH
$M_B = 2 \text{ TeV}$,
$n = 2–6$

2 TeV gravity

Sphaleron, $p = 0.3$
Features of NP events (i):

Larger charged particle multiplicity

Yongsoo Jho, Seong Chan Park, 1806.03063
Longitudinal development of air-shower can be observed by the fluorescence light detector (FD) (in the range of 300-430 nm)

Yongsoo Jho, Seong Chan Park, 1806.03063
Features of NP events (iii): broader distribution of the ‘X_0’

Probability distribution of the primary interaction point:

$$P(X_0) \propto \exp \left(-\sigma_{\text{int}} N_A A_{\text{atm}}^{-1} X_0 \right)$$

Average atomic mass of atm ~ 14

CR-N cross section primary interaction point

$\sigma_{QCD} > \sigma_{NP} \Rightarrow$ NP distribution is broader
Yongsoo Jho, Seong Chan Park, 1806.03063
Summary

• UHECRs provide ‘very interesting’ chances of probing NP beyond 10 TeV

• We showed that ‘EW sphaleron’ and ‘Microscopic Blackholes’ are within the reach of future coming observation at Pierre Auger / TA (and IceCube too! stay tuned)

• NP features can be tested by extensive air shower with high multiplicity, more inclined (or deeper), rapidly developing, having broader X_0 distribution of interaction points.
(bonus) muon excess

- Auger 9-yrs data suggests that there are ‘muon excess events’ having a larger number of muons compared to the expected.

\[
\langle R_\mu \rangle = \int_0^{X_{\text{max}}} P(X, \sigma_{\text{int}}) R_\mu(X) dX
\]

\[
R_\mu = \frac{N_\mu}{N_{\text{exp}}}
\]

[Pierre Auger collaboration, PRD91(2015) no.3, 032003]
Highly deep air-showers may contribute to the muon excess. (not very plausible)