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Early Matter Domination (eMD) and
Low Reheating Temperature

• Inflaton oscillation

• Thermal inflation

• Curvaton domination

• Heavy axino and saxion

• Moduli

• .....

The Universe is dominated by heavy particles (early matter domination) 
and reheated (radiation domination) by the decay of them. It happens 
for:
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FIG. 1: The evolution of the energy densities of the scalar
(black), radiation (red) and DM (blue) respectively with re-
spect to the initial total energy density. Blue dashed line is the
equilibrium energy density of WIMP, and green dashed lines
denote the asymptotic behavior of radiation energy density.
DM freezes out at a/ai ' 20 and RD starts from a/ai ' 300.

While radiation is produced directly from the decay of
�, DM can be produced in several di↵erent ways [13]. For
simplicity, we assume that DM is produced only from ra-
diation by scatterings and set fm = 0. Even in this case,
a sizable amount of DM can be produced from thermal

plasma. If the interaction of DM with plasma is large
enough, they could be in thermal equilibrium. WIMP
is one such example, which is intimately coupled to the
relativistic plasma and decoupled when T/M ⇠ 1/20, de-
pending on the annihilation cross section h�avi [14]. The
freeze-out may happen during SD or RD after the scalar
decay. For the latter case, there will be no di↵erence from
the thermal WIMP in the standard scenario. Therefore,
in our study, we will focus on the case that WIMPs are
decoupled during SD.

In Figure 1, we show the evolution of the background
energy densities of �, radiation and DM by solving (2)-
(4). During SD, ⇢r scales as ⇢r / a�3/2 due to the con-
tinuous production from the scalar decay and thus the ef-
fective equation of state during SD is �1/2. DM is frozen
during SD, and its energy density decreases simply pro-
portional to a�3 after then. However the interactions by
collisions continue until RD.

Evolution of perturbations. Now we consider the evo-
lution of perturbations. For this, we use the Newtonian
gauge with the metric

ds2 = �(1 + 2�)dt2 + a2(1� 2 )�ijdx
idxj . (5)

The perturbation equations can be derived from the
Boltzmann equation for each component (↵ = �, r and
m) and they are given by
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where ✓↵ ⌘ r ·v↵ = @iv
i
↵ is the velocity divergence field,

w� = wm = 0 and wr = 1/3. At leading order of T/M ,
the energy-momentum transfer functions Q↵ and �Q↵

are given by

Q� = ���⇢� , (8)

Qr = ��⇢� +
h�avi
M

⇥
⇢2m � (⇢eqm )2

⇤
, (9)

Qm = �h�avi
M

⇥
⇢2m � (⇢eqm )2

⇤
, (10)

�Q� = ���⇢���, (11)

�Qr = ��⇢��� +
2h�avi
M


⇢2m�m � (⇢eqm )2

M

T

�r
4

�
, (12)

�Qm = �2h�avi
M


⇢2m�m � (⇢eqm )2

M

T

�r
4

�
, (13)

and @iQ
i
(↵) by

@iQ
i
(�) = ���⇢�✓� (14)

@iQ
i
(r) = ��⇢�✓� +

h�avi
M

"
⇢2m✓m � 4

3
(⇢eqm )2

M

2⇡T

1/2

✓r

#

� ce
h�evi
M

⇢m⇢r (✓r � ✓m) , (15)

@iQ
i
(m)

= �h�avi
M

"
⇢2m✓m � 4

3
(⇢eqm )2

M

2⇡T

1/2

✓r

#

+ ce
h�evi
M

⇢m⇢r (✓r � ✓m) , (16)

where we have put fm = 0. In the above equations,
we have included the elastic scattering cross section be-
tween radiation and DM �e which keeps DM and radi-
ation in kinetic equilibrium until they decouple at T

kd

set by ceh�evi⇢r/M |T=Tkd = H(T
kd

), with ce = O(1) be-



Ki-Young Choi, Sungkyunkwan University, Korea

Background Energy Density

Scalar
Radiation

1 10 100 1000 104 105
10-29

10-24

10-19

10-14

10-9

10-4

10 103 105 106 107

x =m /T

ρ/
ρ i

a/ai

< Av>=10-7

< Av>=10-8

< Av>=10-9

YB

Y

10 50 100 500 1000 5000
10-15

10-11

10-7

10-3

103 105 106

x=m /T

Y=
n/
s

a/ai

Figure 1: The evolution of the energy density of � and radiation (left panel), and Y� and YB (right panel) as a function of x = m�/T or a/ai. As inputs we have taken
m� = 5 TeV, Treh = 20 GeV (corresponding to x ' 50 or a/ai ' 104), f� = 0.01 and h�Avi = 10�7 (soild), 10�8 (dashed), 10�9 (dotted) GeV�2. In the calculation
of YB, we have used ✏ = 0.001 and h�/Bvi = 5 ⇥ 10�3h�Avi. In the right panel, the cyan dashed line corresponds to the equlibrium number density of DM.
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Since the non-thermal DMs are out of equilibrium, a baryon
asymmetry can be generated during the re-annihilation of DMs.
The CP asymmetry, ✏, generated via the B number violating
DM annihilations, can be parametrised as

✏ =
�/B(��! · · · ) � �/B(�̄�̄! · · · )
�/B(��! · · · ) + �/B(�̄�̄! · · · ) , (17)

where �/B(�� ! · · · ) and �/B(�̄�̄ ! · · · ) are the B number
violating annihilation cross sections of DM.

Then the Boltzmann equation for the baryon asymmetry nB

is given by

ṅB + 3HnB = ✏h�/Bvi(n2
� � (neq

� )2) � h�washoutvinBneq , (18)

where �/B is the total B number violating annihilation cross sec-
tion of DM,

�/B = �/B(��! · · · ) + �/B(�̄�̄! · · · ), (19)

which can be comparable to or smaller than the total annihila-
tion of DM, h�/Bvi . h�Avi. The last term in Eq. (18) is the
washout e↵ect, which is expected to be the same order as the
B number violating interaction, �washout ⇠ �/B. For successful
baryogenesis, however, the washout term must be suppressed.

The washout term can be suppressed in the case that
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This condition is satisfied when nBneq ⌧ n2
� and/or h�washoutvi ⌧

h�/Bvi. The former can be achieved when one of the final par-
ticles produced from the B number violating annihilation of
DM is non-relativistic while keeping in thermal equilibrium and
thus its number density, neq, is exponentially suppressed.

During the matter-dominated era by �, when ignored the
washout e↵ect, we can find the scaling solution for the baryon
number density as

nB = ✏h�/Bvin2
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where we have used Eq. (14) and t = 2/3H during matter-
domination.

Now let us estimate the baryon asymmetry created in our
scenario in the sudden decay approximation. After reheating,
the number density of the non-thermal DM is

n� = f�n� = f�
⇢�
m�
, (22)

with the number density of �, n� = ⇢�/m�. The DM re-annihilation
can happen when the WIMP annihilation cross section satisfies
the condition,

f�h�Avi > m�
3MPT 2
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from Eq. (7). Therefore the baryon asymmetry is estimated as
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where Y ⌘ n/s with the entropy density s = (2⇡2/45g⇤S )T 3 and
e↵ective entropy degrees of freedom g⇤S . In the second line in
Eq. (24), we have used
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Figure 1: The evolution of the energy density of � and radiation (left panel), and Y� and YB (right panel) as a function of a/ai. As inputs we have taken
Treh = 1.3 GeV (corresonding to a/ai ' 105), m� = 1 TeV, f� = 0.01 and h�Avi = 10�7 (soild), 10�8 (dashed), 10�9 (dotted) GeV�2. In the calculation of YB, we
have used ✏ = 0.001 and h�/Bvi = 5 ⇥ 10�3h�Avi. In the right panel, the cyan dashed line corresponds to the equlibrium number density of DM.

Since the non-thermal DMs are out of equilibrium, a baryon
asymmetry can be generated during the re-annihilation of DMs.
The CP asymmetry, ✏, generated via the B number violating
DM annihilations, can be parametrised as

✏ =
�/B(��! · · · ) � �/B(�̄�̄! · · · )
�/B(��! · · · ) + �/B(�̄�̄! · · · ) , (16)

where �/B(�� ! · · · ) and �/B(�̄�̄ ! · · · ) are the B number
violating annihilation cross sections of DM.

Then the Boltzmann equation for the baryon asymmetry nB

is given by

ṅB + 3HnB = ✏h�/Bvi(n2
� � (neq

� )2) � h�washoutvinBneq , (17)

where �/B is the total B number violating annihilation cross sec-
tion of DM,

�/B = �/B(��! · · · ) + �/B(�̄�̄! · · · ), (18)

which can be comparable to or smaller than the total annihila-
tion of DM, h�/Bvi . h�Avi. The last term in Eq. (17) is the
washout e↵ect, which is expected to be the same order as the
B number violating interaction, �washout ⇠ �/B. For successful
baryogenesis, however, the washout term must be suppressed.

The washout term can be suppressed in the case that
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This condition is satisfied when nBneq ⌧ n2
� and/or h�washoutvi ⌧

h�/Bvi. The former can be achieved when one of the final par-
ticles produced from the B number violating annihilation of
DM is non-relativistic while keeping in thermal equilibrium and
thus its number density, neq, is exponentially suppressed.

During the matter-dominated era by �, when ignored the
washout e↵ect, we can find the scaling solution for the baryon
number density as

nB = ✏h�/Bvin2
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where we have used Eq. (13) and t = 2/3H during matter-
domination.

Now let us estimate the baryon asymmetry created in our
scenario in the sudden decay approximation. After reheating,
the number density of the non-thermal DM is

n� = f�n� = f�
⇢�
m�
, (21)

with the number density of �, n� = ⇢�/m�. The DM re-annihilation
can happen when the WIMP annihilation cross section satisfies
the condition,

f�h�annvi > m�
3MPT 2
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from Eq. (6). Therefore the baryon asymmetry is estimated as
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where Y ⌘ n/s with the entropy density s = (2⇡2/45g⇤S )T 3 and
e↵ective entropy degrees of freedom g⇤S . In the second line in
Eq. (23), we have used

n�
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3. Numerical Results

In the left panel of Fig. 1, we show how the background
energy density of � and the radiation elove along with a/ai for
Treh = 1.3GeV and m� = 1TeV. We can see that the reheating
happens at around a/ai ' 105 and the energy density of the
radiation shows the scaling behavior decreasing proportional to
a�3/2 before reheating and to a�3 after reheating, as shown in
the Eq. (12).

3

12, 13, 14]. As will be shown later, in this scenario, Sakharov
conditions [15] are satisfied with the violations of C and CP as
well as B number during the re-annihilation of the non-thermal
WIMP DMs 1 which are out-of-equlibrium.

This letter is organized as follows. In Section 2, we show
how non-thermal WIMP can generate baryon asymmetry. Nu-
merical results are presented in Section 3. A simple model to
successfully achieve non-thermal WIMP baryogenesis is pro-
vided in Section 4. We discuss how washout can be suppressed
before the baryon asymmetry is generated. Conclusions are
given in Section 5.

2. Non-thermal WIMPy Baryogenesis

We begin by considering a long-lived heavy particle, �, so
that the corresponding reheating temperature is relatively low.
Using a sudden-decay approximation, the relation between the
reheating temperature and the lifetime, ⌧�, is roughly given by
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where we used the decay width �� = ⌧�1
� . For a heavy scalar

particle whose interactions to SM particles are suppressed by
a certain high scale ⇤, its decay rate and lifetime are roughly
given by
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respectively. Therefore in the following we will focus on the
case of m� = 1 TeV with ⇤ = 1012 GeV, which gives a reheat-
ing temperature lower than the WIMP freeze-out temperature.

The decay of � is continuous and even before reaching the
lifetime, i.e. when t ⌧ ⌧�, the relativistic particles and DMs
are produced continuously. Right after the production, they
are non-thermal with the energy of E ⇠ m�/2. The SM parti-
cles which have gauge interactions and large Yukawa couplings
scatter e�ciently and quickly settle down to the thermal equi-
librium with corresponding temperature T , defined by

⇢r =
⇡2

30
g⇤T 4, (5)

where ⇢r is the energy density of the relativistic particles in the
thermal equilibrium with the e↵ective degrees of freedom g⇤.
However for DMs which have weak interactions, their scatter-
ings are relatively slow and do not lead to the thermal equilib-
rium quickly. Instead they stay in the out-of-equilibrium un-
til the re-annihilation happens e�ciently. There is a thermal
component of DM which is produced from the thermal plasma,

1A leptogenesis at the reheating era was considered [16, 17]. Here they
consider the SM particles from the inflaton decay are out-of equilibrium until
the thermalization. During the scattering process, the asymmetry is generated
in the SM sector.

and its number density follows equilibrium and then becomes
frozen at around Tfr ' m�/20. However, the component are
soon dominated by the non-thermal DM.

Even though Tfr is low enough and thermal particles are
already frozen, the non-thermal DMs can re-annihilate again
into light particles, when their number density is large enough
to satisfy

n�h�Avi > H, (6)

where h�Avi is the thermal averaged total annihilation cross
section of DM. The Hubble parameter H is given by the total
sum of the energy density in the Universe as

H2 =
1

3M2
P

(⇢� + ⇢r + ⇢�), (7)

where ⇢� is the energy density of DM.
The Boltzmann equations which govern the evolution are

written as
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�̄ ) , (11)

where f� is the branching ratio of � decay to DM, e.g. � !
� + �̄. Here, h�Avi is the baryon-number conserving thermal
averaged annihilation cross section of DM.

When the decay is the dominant source, the approximate
scaling solutions for � and the radiation are given by
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✓ai

a

◆3
e���t,

⇢r ' 2
5

(1 � f�)��
H

⇢� / a�3/2.

(12)

For DMs, they follow the thermal equilibrium initially and soon
freeze out settling into the quasi-stable state where the produc-
tion from decay and the annihilation equals to each other. At
this epoch, the scaling solutions are given by
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After reheating, when there is no more production of non-thermal
DM, the DM annihilation is e�cient and the final abundance is
rearranged as [11]
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12, 13, 14]. As will be shown later, in this scenario, Sakharov
conditions [15] are satisfied with the violations of C and CP as
well as B number during the re-annihilation of the non-thermal
WIMP DMs 1 which are out-of-equlibrium.

This letter is organized as follows. In Section 2, we show
how non-thermal WIMP can generate baryon asymmetry. Nu-
merical results are presented in Section 3. A simple model to
successfully achieve non-thermal WIMP baryogenesis is pro-
vided in Section 4. We discuss how washout can be suppressed
before the baryon asymmetry is generated. Conclusions are
given in Section 5.

2. Non-thermal WIMPy Baryogenesis

We begin by considering a long-lived heavy particle, �, so
that the corresponding reheating temperature is relatively low.
Using a sudden-decay approximation, the relation between the
reheating temperature and the lifetime, ⌧�, is roughly given by
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given by
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respectively. Therefore in the following we will focus on the
case of m� = 1 TeV with ⇤ = 1012 GeV, which gives a reheat-
ing temperature lower than the WIMP freeze-out temperature.

The decay of � is continuous and even before reaching the
lifetime, i.e. when t ⌧ ⌧�, the relativistic particles and DMs
are produced continuously. Right after the production, they
are non-thermal with the energy of E ⇠ m�/2. The SM parti-
cles which have gauge interactions and large Yukawa couplings
scatter e�ciently and quickly settle down to the thermal equi-
librium with corresponding temperature T , defined by

⇢r =
⇡2

30
g⇤T 4, (5)

where ⇢r is the energy density of the relativistic particles in the
thermal equilibrium with the e↵ective degrees of freedom g⇤.
However for DMs which have weak interactions, their scatter-
ings are relatively slow and do not lead to the thermal equilib-
rium quickly. Instead they stay in the out-of-equilibrium un-
til the re-annihilation happens e�ciently. There is a thermal
component of DM which is produced from the thermal plasma,

1A leptogenesis at the reheating era was considered [16, 17]. Here they
consider the SM particles from the inflaton decay are out-of equilibrium until
the thermalization. During the scattering process, the asymmetry is generated
in the SM sector.

and its number density follows equilibrium and then becomes
frozen at around Tfr ' m�/20. However, the component are
soon dominated by the non-thermal DM.

Even though Tfr is low enough and thermal particles are
already frozen, the non-thermal DMs can re-annihilate again
into light particles, when their number density is large enough
to satisfy

n�h�Avi > H, (6)

where h�Avi is the thermal averaged total annihilation cross
section of DM. The Hubble parameter H is given by the total
sum of the energy density in the Universe as

H2 =
1

3M2
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(⇢� + ⇢r + ⇢�), (7)

where ⇢� is the energy density of DM.
The Boltzmann equations which govern the evolution are
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Kinetic decoupling scale
of WIMP

 the smallest scale of 
the structure formation? =

?
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whereΔk and ϕk are k-dependent constants while AkðtÞ and
BkðtÞ vary in time. Their time dependence is determined by
the elastic scattering term as
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The values of Δk, ϕk, AkðtrehÞ, and BkðtrehÞ are given at the
onset of RD, and for adiabatic modes they are

Δk ¼ −10Φi; ϕk ¼ 0; AkðtrehÞ ¼ −10Φi;
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k ðtrehÞ ¼ −10Φi

"
γE −
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$
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where γE ≈ 0.577 is the Euler-Mascheroni constant. Then
on superhorizon scales k ≪ aH we can recover −5Φi=3
during RD. For the modes which enters during RD
(k−1reh < k−1), the solution is [16]
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for hσevi ∝ T2þn, which clearly shows the damping for
k−1 ≪ k−1kd due to the collision with radiation.
Here it is important to note that in Eq. (22) only _Bk

appears. The additional constant term to the adiabatic one is
not damped away even in the kinetic equilibrium and
decoupling periods. As a result, for k−1 ≪ k−1kd , δm is
dominated by the isocurvature perturbation: Bk ¼ Biso

k þ
Bad
k ≃ Biso

k .
Generation of isocurvature perturbation.—For the

modes that enter the horizon during SD after chemical
decoupling of DM, δϕ grows linearly,
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and then logarithmically during RD. Meanwhile, δr grows
during SD, since radiation is continuously produced from
the decay of ϕ. However, after the transition from SD to
RD, this enhancement is lost and δr oscillates with heavily
suppressed amplitude [1].

During kinetic equilibrium, DM is tightly coupled to
radiation, so that θm ≈ θr. Ignoring the effect of DM
annihilation, the relevant equations for δm and δr are, from
Eq. (6),

_δm ≈ −
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where we have neglected Oð1Þ contribution. From SD to
the transition period, both δr and Φ are subdominant
compared to δϕ, and ρr ≈ 2Γϕρϕ=5H. Then the isocurva-
ture perturbation is
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As can be read fromEq. (26), unlike δm, δr is sourced by both
θr and δϕ because there is steady production of radiation
from ϕ. The corresponding isocurvature part becomes Biso

k .
While the isocurvature perturbation can avoid the damp-

ing due to the collision, the diffusion by the free streaming
still exists. Considering the damping effect due to free
streaming, as discussed before we may add a Gaussian
suppression factor to δm as

δm ≈ exp
"
−

k2

2k2fr

$
5

4
Φi

"
k
kreh

$
2

; ð29Þ

where the free streaming scale k−1fr is estimated as (19).
Based on these results, it is straightforward to calculate the

FIG. 3 (color online). Density contrast of DM with
M ¼ 5 TeV, Treh ¼ 0.1 GeV, and Tkd ¼ 0.01 GeV.
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whereΔk and ϕk are k-dependent constants while AkðtÞ and
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where γE ≈ 0.577 is the Euler-Mascheroni constant. Then
on superhorizon scales k ≪ aH we can recover −5Φi=3
during RD. For the modes which enters during RD
(k−1reh < k−1), the solution is [16]
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for hσevi ∝ T2þn, which clearly shows the damping for
k−1 ≪ k−1kd due to the collision with radiation.
Here it is important to note that in Eq. (22) only _Bk

appears. The additional constant term to the adiabatic one is
not damped away even in the kinetic equilibrium and
decoupling periods. As a result, for k−1 ≪ k−1kd , δm is
dominated by the isocurvature perturbation: Bk ¼ Biso
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Generation of isocurvature perturbation.—For the
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and then logarithmically during RD. Meanwhile, δr grows
during SD, since radiation is continuously produced from
the decay of ϕ. However, after the transition from SD to
RD, this enhancement is lost and δr oscillates with heavily
suppressed amplitude [1].

During kinetic equilibrium, DM is tightly coupled to
radiation, so that θm ≈ θr. Ignoring the effect of DM
annihilation, the relevant equations for δm and δr are, from
Eq. (6),

_δm ≈ −
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where we have neglected Oð1Þ contribution. From SD to
the transition period, both δr and Φ are subdominant
compared to δϕ, and ρr ≈ 2Γϕρϕ=5H. Then the isocurva-
ture perturbation is
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As can be read fromEq. (26), unlike δm, δr is sourced by both
θr and δϕ because there is steady production of radiation
from ϕ. The corresponding isocurvature part becomes Biso

k .
While the isocurvature perturbation can avoid the damp-

ing due to the collision, the diffusion by the free streaming
still exists. Considering the damping effect due to free
streaming, as discussed before we may add a Gaussian
suppression factor to δm as
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where the free streaming scale k−1fr is estimated as (19).
Based on these results, it is straightforward to calculate the
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M ¼ 5 TeV, Treh ¼ 0.1 GeV, and Tkd ¼ 0.01 GeV.
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Radiation is still produced from decay of the dominating scalar,
however dark matter is not produced any more.

The difference in the number density creates the isocurvature 
perturbation between dark matter and radiation.
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whereΔk and ϕk are k-dependent constants while AkðtÞ and
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where γE ≈ 0.577 is the Euler-Mascheroni constant. Then
on superhorizon scales k ≪ aH we can recover −5Φi=3
during RD. For the modes which enters during RD
(k−1reh < k−1), the solution is [16]
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for hσevi ∝ T2þn, which clearly shows the damping for
k−1 ≪ k−1kd due to the collision with radiation.
Here it is important to note that in Eq. (22) only _Bk

appears. The additional constant term to the adiabatic one is
not damped away even in the kinetic equilibrium and
decoupling periods. As a result, for k−1 ≪ k−1kd , δm is
dominated by the isocurvature perturbation: Bk ¼ Biso
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Generation of isocurvature perturbation.—For the
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decoupling of DM, δϕ grows linearly,

δϕðaÞ ¼ −2Φi −
2

3
Φi

!
k

aiHðaiÞ

%
2 a
ai
; ð25Þ

and then logarithmically during RD. Meanwhile, δr grows
during SD, since radiation is continuously produced from
the decay of ϕ. However, after the transition from SD to
RD, this enhancement is lost and δr oscillates with heavily
suppressed amplitude [1].

During kinetic equilibrium, DM is tightly coupled to
radiation, so that θm ≈ θr. Ignoring the effect of DM
annihilation, the relevant equations for δm and δr are, from
Eq. (6),
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As can be read fromEq. (26), unlike δm, δr is sourced by both
θr and δϕ because there is steady production of radiation
from ϕ. The corresponding isocurvature part becomes Biso

k .
While the isocurvature perturbation can avoid the damp-

ing due to the collision, the diffusion by the free streaming
still exists. Considering the damping effect due to free
streaming, as discussed before we may add a Gaussian
suppression factor to δm as
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where the free streaming scale k−1fr is estimated as (19).
Based on these results, it is straightforward to calculate the

FIG. 3 (color online). Density contrast of DM with
M ¼ 5 TeV, Treh ¼ 0.1 GeV, and Tkd ¼ 0.01 GeV.
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Creation of Isocurvature Perturbation
After chemical decoupling and before reheating during scalar-
domination:

[KYChoi, Gong, Shin 2015]
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The 00 component of the perturbed Einstein equation
governs the evolution of the metric perturbations,

Δ
a2

Ψ − 3Hð _ΨþHΦÞ ¼ 1

2m2
Pl
ðρϕδϕ þ ρrδr þ ρmδmÞ:

ð17Þ

In the absence of the anisotropic tensor, we can set Φ ¼ Ψ,
which then closes the above set of equations. This is
possible since ϕ and radiation, which dominate the energy
density, are isotropic in our setup. Note that the effects of
the anisotropic shear and nonvanishing sound speed of
DM, cs ∼

ffiffiffiffiffiffiffiffiffiffi
T=M

p
, can be important after kinetic decou-

pling for scales smaller than the free streaming length k−1fr .
In Ref. [16], it is shown that when the free streaming length
is much shorter than the scale k−1kd that enters the horizon at
the moment of kinetic decoupling, we can take an approxi-
mation that solving the Boltzmann equations first in the
perfect fluid limit while maintaining the elastic scattering,
and then multiplying the solution by the Gaussian sup-
pression term. Actually, this limit is also physically
interesting, because two different damping scales can be
more clearly distinguished.
In this Letter, we consider the hierarchies among scales

as k−1fr < k−1reh < k−1kd , where k
−1
reh is the scale that enters the

horizon at T ¼ Treh. This means that the free streaming
scale enters the horizon during SD and that kinetic
decoupling occurs during RD. The large hierarchy between
k−1fr and k−1kd can be obtained when M is big enough while
the elastic scattering is mediated by a field much lighter
than DM. In this case, the freeze-out abundance also could
be large, but the subsequent dilution by entropy injection
from the scalar decay can provide the correct amount of the
present DM density [17,18]. For WIMP, we find [19]

k−1kd ¼ 0.86
10 MeV
Tkd

"
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#
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"
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#
1=2

pc; ð18Þ

k−1reh ¼ k−1kd
Tkd

Treh
; ð19Þ

k−1fr ¼
Z

t0

tkd

dt
a
cs ≈ k−1kd

ffiffiffiffiffiffiffi
Tkd

M

r
log

"
Tkd

Teq

#
; ð20Þ

where g%s is the effective number of light species for
entropy and Teq ¼ OðeVÞ is the temperature at matter-
radiation equality.
In Fig. 2, we show the evolution of perturbations on three

different scales. During SD, the perturbations are adiabatic
on super-horizon scales since both radiation and DM are
produced from a single source ϕ, which set the initial
values of perturbations as δϕðaiÞ ¼ 2δrðaiÞ ¼ −2Φi and
δmðaiÞ ≈MδrðaiÞ=ð4TiÞ, with Ti being determined from
ρrðaiÞ. During the transition from SD to RD, Φ rescales
from Φi to 10Φi=9 on superhorizon scales and accordingly
δr changes from −Φi to −2ð10=9ÞΦi. Meanwhile, at early
times when DM is in thermal (chemical) equilibrium, δm ∝
a3=8 and is reduced to−5Φi=3 during RDwhich follows the
adiabatic condition δm ¼ 3δr=4.
While for modes which enter the horizon after kinetic

decoupling (k−1kd < k−1), δr oscillates and δm grows loga-
rithmically as shown in the left panel of Fig. 2, for themodes
which enter before kinetic decoupling (k−1reh < k−1 < k−1kd ) δm
oscillates together with δr and is damped, which is known as
collisional damping. The nonvanishing subhorizon entropy
perturbation appears due to the damping of δm as shown in
the middle panel of Fig. 2.
An interesting feature happens for the modes that enter

the horizon during SD but after the free streaming scale
enters (k−1fr < k−1 < k−1reh) as in the right panel of Fig. 2.
During the transition from SD to RD, δm does not follow δr,
and the isocurvature perturbation is generated. In this
period, DM is no longer produced after chemical freeze-
out and the number density is frozen while radiation is still
being produced from ϕ. The continuous entropy injection
becomes the source of the isocurvature perturbation
between DM and radiation. This perturbation still persists
even after kinetic decoupling. Before calculating its ana-
lytic expression we explicitly show why it is not damped
from the solution for δm during RD [16],

FIG. 2 (color online). The evolution of the density contrast of the radiation (red), DM (blue), and the isocurvature perturbation (brown)
with respect to the initial gravitational potential for k−1kd < k−1 (k ¼ 0.1kkd, left), k−1reh < k−1 < k−1kd (k ¼ 5kkd ¼ 0.5kreh, middle), and
k−1fr < k−1 < k−1reh (k ¼ 50kkd ¼ 5kreh ¼ 0.8kfr, right). We have set M ¼ 5 TeV, Treh ¼ 0.1 GeV, and Tkd ¼ 0.01 GeV.

PRL 115, 211302 (2015) P HY S I CA L R EV I EW LE T T ER S
week ending

20 NOVEMBER 2015
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Horizon entry after reheating Horizon entry during early MD
before reheating

reheating

reheating

kinetic 
decoupling

Damping erases the perturbations. Enhancement and No damping.

[KYChoi, Gong, Shin 2015]
 Creation of Isocurvature Perturbation

kinetic 
decoupling
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super
horizon

reheating

kinetic 
decoupling

damping enhancement 
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whereΔk and ϕk are k-dependent constants while AkðtÞ and
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where γE ≈ 0.577 is the Euler-Mascheroni constant. Then
on superhorizon scales k ≪ aH we can recover −5Φi=3
during RD. For the modes which enters during RD
(k−1reh < k−1), the solution is [16]
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for hσevi ∝ T2þn, which clearly shows the damping for
k−1 ≪ k−1kd due to the collision with radiation.
Here it is important to note that in Eq. (22) only _Bk

appears. The additional constant term to the adiabatic one is
not damped away even in the kinetic equilibrium and
decoupling periods. As a result, for k−1 ≪ k−1kd , δm is
dominated by the isocurvature perturbation: Bk ¼ Biso

k þ
Bad
k ≃ Biso

k .
Generation of isocurvature perturbation.—For the

modes that enter the horizon during SD after chemical
decoupling of DM, δϕ grows linearly,

δϕðaÞ ¼ −2Φi −
2

3
Φi

!
k

aiHðaiÞ

%
2 a
ai
; ð25Þ

and then logarithmically during RD. Meanwhile, δr grows
during SD, since radiation is continuously produced from
the decay of ϕ. However, after the transition from SD to
RD, this enhancement is lost and δr oscillates with heavily
suppressed amplitude [1].

During kinetic equilibrium, DM is tightly coupled to
radiation, so that θm ≈ θr. Ignoring the effect of DM
annihilation, the relevant equations for δm and δr are, from
Eq. (6),

_δm ≈ −
θr
a
; ð26Þ

_δr ≈ −
4

3

θr
a
þ
Γϕρϕ
ρr

ðδϕ − δrÞ; ð27Þ

where we have neglected Oð1Þ contribution. From SD to
the transition period, both δr and Φ are subdominant
compared to δϕ, and ρr ≈ 2Γϕρϕ=5H. Then the isocurva-
ture perturbation is

SðtrehÞ ≈ −
3

4

Z
treh

ti
dt

Γϕρϕδϕ
ρr

≈
5

4
Φi

"
k
kreh

$
2

: ð28Þ

As can be read fromEq. (26), unlike δm, δr is sourced by both
θr and δϕ because there is steady production of radiation
from ϕ. The corresponding isocurvature part becomes Biso

k .
While the isocurvature perturbation can avoid the damp-

ing due to the collision, the diffusion by the free streaming
still exists. Considering the damping effect due to free
streaming, as discussed before we may add a Gaussian
suppression factor to δm as

δm ≈ exp
"
−

k2

2k2fr

$
5

4
Φi

"
k
kreh

$
2

; ð29Þ

where the free streaming scale k−1fr is estimated as (19).
Based on these results, it is straightforward to calculate the

FIG. 3 (color online). Density contrast of DM with
M ¼ 5 TeV, Treh ¼ 0.1 GeV, and Tkd ¼ 0.01 GeV.
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The scale which enters during eMD, is not suppressed during
the kinetic decoupling, and thus there exists smaller scale 

objects than the scale of kinetic decoupling.
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2. Low-bound on reheating temperature with dark matter
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Cosmology is the scientific study of the large scale properties of the Universe

as a whole, to understand the origin, evolution and ultimate fate of the entire
Universe.

First I will give you brief history with answering questions on the Universe
and then talk about the recent surprising developments. That includes structure
formation, inflation, dark matter and the determination of the cosmological
parameters.

This table shows the development of modern cosmology. From the ancient
times, people had various models for the universe, however the scientific cosmol-
ogy has begun with the construction of General Relativity by Albert Einstein
and application it to the Universe. That leads to the Big Bang model. This big
bang model has well passed the the tests: the expansion of the Universe, the
abundances of the light elements, and the observation of CMB.
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< 0 ⇧ ä > 0 (2)
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BBN and CMB 
for baryon density

Non-thermal WIMP baryogenesis
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Abstract

We propose a WIMP baryogensis achieved by the annihilation of non-thermally produced WIMPs from decay of heavy particles,
which can result in low reheating temerature. Dark matter (DM) can be produced non-thermally during a reheating period created
by the decay of long-lived heavy particle, and subsequently re-annihilate to lighter particles even after the thermal freeze-out. The
re-annihilation of DM provides the observed baryon asymmetry as well as the correct relic density of DM. We investigate how
wahout e↵ects can a↵ect the generation of the baryon asymmetry and study a model suppressing them. In this scenario, we find
that DM can be heavy enough and its annihilation cross section can also be larger than that adopted in the usual thermal WIMP
baryogenesis.

Keywords: Baryogenesis, dark matter, early Universe

1. Introduction

The baryon density at present inferred from Cosmic Mi-
crowave Background (CMB) anisotropy and Big Bang Nucle-
osynthesis (BBN) is [1]

⌦Bh2 = 0.0223 ± 0.0002, (1)

which corresponds to the baryon asymmetry

YB ⌘ nB

s
' 0.86 ⇥ 10�10, (2)

YB ⌘ nB

n�
s ' 7.04n� (3)

where nB and s is the baryon number density and entropy den-
sity respectively. There are many suggested models for baryo-
genesis. One of them is the thermal weakly interacting mas-
sive particle (WIMP) baryogenesis [2, 3, 4, 5], which has been
paid much attention for past few years thanks to the intrigu-
ing coincidence of the observed baryon and dark matter (DM)
abundances, ⌦B ' 5⌦DM . WIMP miraculously accounts for
⌦DM , and may play a role in generation of baryon asymmetry.
The WIMP baryogenesis mechanism [4] uses the WIMP dark
matter annihilation during thermal freeze-out. Baryogenesis is
successfully achieved because the WIMP annihilations violate
baryon number, C and CP, and the out-of-equilibrium is attained
when the DM number density is deviated from the thermal equi-
librium. For this scenario to be e↵ective, the temperature of the

⇤Corresponding author
Email addresses: kiyoungchoi@skku.edu (Ki-Young Choi),

skkang@snut.ac.kr (Sin Kyu Kang), jongkukkim@skku.edu (Jongkuk
Kim)

Universe must be larger than the freeze-out temperature of DM
which is Tfr ' m�/20. Therefore there is a limitation for low-
reheating temperature.

In new physics beyond the standard model (SM), there are
many long-lived massive particles (we call it � afterwards) that
can dominate the energy density of the Universe, and decay,
such as inflaton, moduli, gravitino, axino, curvaton, and etc [6].
These particles interact very weakly with visible sector and thus
decay very late in the Universe. The lifetime can be longer than
10�7 sec which corresponds to the cosmic temperature around
1 GeV, which is far after the electroweak phase transition and
freeze-out of WIMP DM with mass m� ⇠ O( TeV), whose
freeze-out temperature is around m�/20. Then, in the models
with such a long-lived particle, the reheating temperature can
be low enough. However, with such a low-reheating tempera-
ture, the relic abundance of DM can not be explained in simple
models for thermal WIMP freeze-out. In addition, it is ques-
tionable whether baryon asymmetry can be successfully gener-
ated in models with low-reheating temperature.

Since the primodial asymmetry generated is diluted during
the late time reheating, new generation of asymmetry is re-
quired. At the low temperature below the electorweak scale,
leptogenesis does not work since the conversion of lepton asym-
metry to baryon asymmetry via Shpaleron processes is e↵ective
at temperatures above the electorweak scale. Thus, alternative
to leptogenesis is demaned to generate baryon asymmetry in
models with low-reheating temperature. A direct generation
of baryon asymmetry [7] may be possible without the help of
Sphaleron processes.

The aim of this letter is to propose a possible way to gen-
erate baryon asymmetry applicable to models with low reheat-
ing temperature. We will show that DM can be produced from
heavy long-lived unstable particles and then both baryon and
DM abundances can be achieved by the re-annihilation of DM.
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Low bound on Reheating Temperature

1. Big Bang Nucleosynthesis
: at low-reheating temperature, neutrinos are not fully thermalised
and the light element abundances are changed,

Bounds on low-reheating temperature from small-scale dark matter perturbations

(tentative)
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We investigate new bounds on the low-reheating temperature in a scenario where the Universe
experiences early matter-domination before reheating which begins the standard big bang cosmol-
ogy. In many models of dark matter, the small scale fluctuations of them grow during the early
matter-domination era and seed the formation of the ultracompact minihalos (UCMHs). Using the
constraints on the number of UCMHs given by astrophysical observations such as gamma-ray and
pulsar timing, we can find new bound on the low reheating temperature with around 100MeV in
the early Universe .

PACS numbers: 95.35.+d, 14.80.Ly, 98.80.Cq

Introduction.— The early Universe is very well
known to the temperature below around 1MeV. In other
words, the temperature of the Universe must be higher
than this to be consistent with the current observations
such as big bang nucleosynthesis, cosmic microwave back-
ground and large scale structure formation.

When the reheating temperature is low, the neutrinos
are not thermalized fully and do not have the Fermi-
Dirac distribution. This changes the proton-neutron ra-
tio and also the abundance of 4He, which sets the limit
on the reheating temperature as T

reh

& 0.5 � 0.7MeV
(or T

reh

& 2.5MeV � 4MeV in the case of hadronic de-
cays) [1, 2]. In this low-reheating temperature the oscil-
lation of neutrinos can a↵ect the thermalization too [3].

By combining with cosmic microwave background and
large scale structure data, the bound on the reheating
temperature can be increased [4–6]. From the recent
Planck data, the lower bound was obtained as T

reh

&
4.7MeV when the neutrino masses are allowed to vary [7].

Before reheating, the Universe is conventionally as-
sumed to be dominated by non-relativistic heavy parti-
cles during those times the Universe undergoes a matter-
like phase. The decay of them produces light thermalised
particles and the standard hot Universe begins. The spe-
cific examples of the early matter-domination before re-
heating are the inflaton oscillation phase after inflation
or the late-time domination of heavy long-lived particles
such as curvaton, moduli or gravitino/axino [8].

When the reheating temperature is low, it is often
that the dark matters are already non-relativistic and
decoupled from the relativistic thermal plasma. Their
density perturbations linearly grow during early matter-
domination and has more possibility to seed the dark
matter substructures such as ultracompact minihalos
(UCMHs), which are expected to survive to the present
time [9, 10]. The precise determination of the present

⇤Electronic address: kiyoungchoi@jnu.ac.kr
†Electronic address: tomot@cc.saga-u.ac.jp

number of UCMHs can provide clues to the early time of
the Universe.
Up to now there is no convincing observation of small

clumps of dark matter and this restricts the number
of UCMHs in the Universe. The bound was used to
put constraints on the primordial power spectrum. The
strongest one comes form the gamma-ray searches by the
Fermi Large Area Telescope, through the annihilation of
dark matters [11, 12]. There are also constraints from
pure gravitational observations using possible small dis-
tortions in the images of macrolensed quasar jets [13],
astrometric microlensing [14] or pulsar timing [15, 16].
In this Letter, we use the limit on the UCMHs abun-

dance to obtain new bound on the low-reheating tem-
perature. Especially using the pulsar timing constraint,
we find the lowest reheating temperature as T

reh

&
30 � 100MeV in relatively broad models of dark mat-
ter independent on their microscopic properties.

Density perturbation during early matter-
domination.— During the early matter-domination,
the density perturbation of dominating heavy particle,
�, grow linearly as

�� = �2�
0

� 2

3
�

0

✓
k

aiH(ai)

◆
2

a

ai
, (1)

where �� ⌘ �⇢�/⇢�, �0

is the primordial gravitational
potential, H is Hubble parameter, and a is scale factor
with i representing the initial time. Here the comoving
scale k which enters the horizon at the scale factor a
during early mater-domination has a relation with the
reheating scale k

reh

as

k = k
reh

✓
a

a
reh

◆�1/2

, (2)

where a
reh

(a < a
reh

) is the scale factor at the time of
reheating from the decay of �. The scale of reheating k

reh

can be calculated from the standard big bang cosmology
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known to the temperature below around 1MeV. In other
words, the temperature of the Universe must be higher
than this to be consistent with the current observations
such as big bang nucleosynthesis, cosmic microwave back-
ground and large scale structure formation.

When the reheating temperature is low, the neutrinos
are not thermalized fully and do not have the Fermi-
Dirac distribution. This changes the proton-neutron ra-
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cays) [1, 2]. In this low-reheating temperature the oscil-
lation of neutrinos can a↵ect the thermalization too [3].

By combining with cosmic microwave background and
large scale structure data, the bound on the reheating
temperature can be increased [4–6]. From the recent
Planck data, the lower bound was obtained as T
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4.7MeV when the neutrino masses are allowed to vary [7].

Before reheating, the Universe is conventionally as-
sumed to be dominated by non-relativistic heavy parti-
cles during those times the Universe undergoes a matter-
like phase. The decay of them produces light thermalised
particles and the standard hot Universe begins. The spe-
cific examples of the early matter-domination before re-
heating are the inflaton oscillation phase after inflation
or the late-time domination of heavy long-lived particles
such as curvaton, moduli or gravitino/axino [8].

When the reheating temperature is low, it is often
that the dark matters are already non-relativistic and
decoupled from the relativistic thermal plasma. Their
density perturbations linearly grow during early matter-
domination and has more possibility to seed the dark
matter substructures such as ultracompact minihalos
(UCMHs), which are expected to survive to the present
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number of UCMHs can provide clues to the early time of
the Universe.
Up to now there is no convincing observation of small

clumps of dark matter and this restricts the number
of UCMHs in the Universe. The bound was used to
put constraints on the primordial power spectrum. The
strongest one comes form the gamma-ray searches by the
Fermi Large Area Telescope, through the annihilation of
dark matters [11, 12]. There are also constraints from
pure gravitational observations using possible small dis-
tortions in the images of macrolensed quasar jets [13],
astrometric microlensing [14] or pulsar timing [15, 16].
In this Letter, we use the limit on the UCMHs abun-

dance to obtain new bound on the low-reheating tem-
perature. Especially using the pulsar timing constraint,
we find the lowest reheating temperature as T

reh

&
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for hadronic decays

[Kwasaki, Kohri, Sugiyama, 1999, 2000]
2. BBN+CMB 
 : precise calculation of the cosmic neutrino background and CMB 
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New bound on low-reheating temperature

3. Dark matter halos
: density perturbation during early matter-domination and no 
observation of small scale DM halos.

[KYChoi, Tomo Takahashi, PRD 2017]
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 Low bound on Treh with WIMP DM of UCMHs

zc=1000

2

where Φ0 is the primordial gravitational potential and
kreh is that for the mode which enters the horizon at the
time of reheating. The wavenumber k for a mode which
enters the horizon during the eMD is related to the scale
factor a and the Hubble parameter H as

k = kreh

(

a

areh

)−1/2

= kreh

(

H

Hreh

)1/3

, (2)

where areh (a < areh) and Hreh are respectively the scale
factor and the Hubble parameter at the time of reheating
due to the decay of non-relativistic heavy particle. The
scale of reheating kreh has a relation to the reheating
temperature as

kreh = 0.012 pc−1

(

Treh

MeV

)(

10.75

g∗s

)1/3
( g∗
10.75

)1/2
, (3)

where g∗ and g∗s are effective degrees of freedom of rel-
ativistic species and entropy, respectively.
When the scale enters before the beginning of the eMD,

then the linear growth is limited to the epoch of eMD as

δχ ≃ −
2

3
Φ0

(

kdom
kreh

)2

for k > kdom, (4)

where kdom denotes the scale which enters the horizon at
the beginning of the eMD.
For WIMPs, they could be still in kinetic equilib-

rium with relativistic plasma for temperature around be-
tween MeV and GeV and the growth might be prevented
even during early matter domination. However recent
study [19] shows that even in kinetic equilibrium, the
subhorizon isocurvature perturbation can be generated
during the eMD as [19]

δχ ≃
5

4
Φ0

(

k

kreh

)2

, (5)

for the scales which enter the horizon during the eMD.
However the density perturbations at small scales are

suppressed due to the free streaming of dark matter. For
super-WIMP case where DM interacts superweakly such
that they are already kinematically decoupled, the free-
streaming scale can be calculated as [8]

k−1
fs =

1

2π

∫ teq

ti

v

a
dt ≃

1

2πHNRaNR

[

1 + log

(

adom
aNR

)

+2

(

1−
√

adom
areh

)

+

√

adom
areh

log

(

aeq
areh

)]

∼ 10−10

(

100GeV

mχ

)(

kdom
kreh

)1/2

Mpc,

(6)

where teq is the time at the radiation-matter equality
and ti is some initial time much before eMD. The scale
factor a with subscript NR, dom, reh, and eq represent

kdom/kreh
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FIG. 1: Constraints on Treh and kdom/kreh for WIMP DM
case. The yellow region is disfavored from Fermi-LAT ob-
servation for the case with kfs > 5 × 107 Mpc−1 where the
free-streaming effect is negligible on the scale probed by the
observations. Cases with kfs = 106 and 107 Mpc−1 are also
shown with purple and blue lines, respectively. The orange
regions is disfavoured by BBN and CMB observations.

the time when DM becomes non-relativistic, the begin-
ning of eMD, the reheating epoch and the time of the
radiation-matter equality, respectively. Here we assume
that super-WIMP becomes non-relativistic before eMD
begins2. For WIMP, one can write it as [18]

k−1
fs =

1

2π

∫ teq

tkd

v

a
dt ≃

1

2π

√

Tkd

mχ
a(Tkd)

∫ aeq

a(Tkd)

da

a3H(a)

≃ 7.7× 10−8

(

100GeV

mχ

)1/2( MeV

Tkd

)1/2

Mpc,

(7)

where tkd is the time of the kinetic decoupling of WIMP
dark matter with mass mχ, which is assumed to occur
after reheating. Here Tkd is the temperature at tkd and
we put the scale factor at present as unity a0 = 1. DM
fluctuations below this scale (i.e., k > kfs) are suppressed
due to this free-streaming effect, which can be taken into
account by multiplying a factor exp

(

−k2/2k2fs
)

to the
transfer function of δχ.

Bound on the reheating temperature from UCMH.—
The growth of dark matter density fluctuations during
the early matter-domination enhances the formation of
UCMHs after the radiation-matter equality. A large
number of UCMHs can produce various signatures that

2 When the super-WIMP becomes non-relativistic during the
eMD, the mass dependance changes.
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= �gŷ (17)

1

[Smoot’s talk]

After the discovery Higgs boson, the explanation of the 125 GeV Mass implies mul-TeV
spectrum for the susy particles, which is very consistent with the collider constraints.In this
respect, the natural candidate for DM is TeV Higgsino, which is exciting since the direct
detection exp with 1-tonne can probe them. This Higgsino is the robust solution also present
in a broad class of unified SUSY models. TeV Higgsino also can be probed by the indirect
detection which will be discussed by Viel after my talk.

Not only for WIMP, but the freeze-out of strongly interacting massive particle, SIMP, can
give correct abundance if 3 to 2 scattering is important in the early Unvierse. SIMP can help
to solve the small scale problem of CDM and recently the simple realization was introduced
with WZW term.

How about extremely weakly interaction particles? Maybe they cannot be in thermal equi-
librium in the early Universe, though some small amount can be produced. We can understand
the abundance with this figure for a GeV mass with change the cross section. For WIMP, Y is
suppressed. For weaker interaction, the abundance is increasing but still freeze-out with over-
abundance. But for exteremely wimp, they are not in thermal equilibrium and Y is suppreseed
again give correct abundance.

For this EWIMP, there are 2 cases, case one is that most DM is produced at high tempera-
ture, the other is at small temperature. The special example of the second case is called FIMP,
but FIMP is the new mechanism, which was already studied many times in the literatures in
the axino or RH sneutrino already.

Since EWIMP is not in thermal, their number can be neglected in the Boltzmann eq.
RH side, then the equation is easily integrated and the temperature dependance comes through
cross section.When the cross section is temperature independent like gravitino or axion with has
non-renormalizable interation, the final abundance is proportional to the reheating temperature
linearly. Another example is the heavy mediator, in this case sigma is proportional to T
squared, thus the abundance is cubic of reheating temperature. If DM is heavier than reheating
temperature, sigma depends on T to the 6 and the abundance is 7th of reheating temperature.
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UCMH production from the large perturbation
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zc=1000

[KYChoi, Tomo Takahashi, 2017]
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FIG. 2: Projected bound on Treh and kdom/kreh given that
f is constrained as f > 10−6, 10−3, 10−1 at the scale kc = 106

and 107 Mpc−1, which may be obtained from future obser-
vations by gravitational methods such as pulsar timing and
gravitational lensing. Hence this bound can also be applica-
ble to non-WIMP DM. The orange region is disfavoured by
BBN and CMB observations.

can be detectable by gamma-ray and cosmic ray for
WIMPs or by gravitational interactions in astrophysical
observations, from which one can constrain the fraction
of UCMHs in the total matter

f ≡
ΩUCMH

Ωm
, (8)

where Ωm and ΩUCMH are the mass density of UCMH
and matter in units of the critical density of the Universe.
For WIMP dark matter, the Fermi-LAT can put

bounds on f for scales from k ≃ 10 Mpc−1 to k ≃
107 Mpc−1 which reaches as lowest as f > 4 × 10−7

at k ∼ 103 Mpc−1 for the annihilation cross section of
⟨σv⟩ = 3× 10−26 cm3 s−1 of WIMPs into bb̄ pairs [26].
One could also probe the abundance of UCMHs with

gravitational ways such as pulsar timing, microlens-
ing, small-scale distortion of macrolensed images [27–30]
which could constrain f in the future as

f ! 0.1− 0.01, (9)

for the scale around k ∼ 102−106 Mpc−1 [27–30]. These
scales enter horizon around the cosmic temperature be-
low T ≃ 100 MeV in the standard big bang Universe.
This bound can be applied for any kind of dark matter
forming UCMHs since the observations are gravitational.
Here we briefly describe the formalism to constrain the

UCMH abundance and the reheating temperature. For
details, we refer the readers to [26]. Observations can
put bound on the fraction of UCMH mass in our galaxy,
which can be given as

f = β(R)fχ
zeq + 1

zc + 1
, (10)

where fχ = Ωχ/Ωm with Ωχ being the density param-
eter of dark matter and zc is the redshift at which the
structure formation starts and the growth of the mass is
assumed to be halted. The factor (zeq + 1)/(zc + 1) cor-
responds to the growth of the mass by the infall of dark
matter inside UCMH-forming region. β(R) is the proba-
bility of forming UCMHs for the region of comoving size
R, which can be given by

β(R) =
1

√

2πσ2
χ,H(R)

∫ δmax

δmin

exp

[

−
δ2χ

2σ2
χ,H(R)

]

. (11)

Here σ2
χ,H is the DM mass variance at horizon entry,

which is calculated as

σ2
χ,H(R) =

∫ ∞

0
W 2

top−hat(kR)Pχ(k)
dk

k
, (12)

with Wtop−hat(x) = 3(sinx − x cosx)/x3 being the top
hat window function. Here the matter power spectrum
Pχ(k) has a relation to that for the curvature perturba-
tion PR(k) as [26]

Pχ(k) = θ4Tχ(θ)
2PR(k), (13)

with θ = kR/
√
3 and Tχ(θ) is the transfer function for

DM.
The δmin (δmax) is the minimal (maximal) δ of dark

matter for the formation of the UCMHs eventually. The
effect of the growth of DM density fluctuations is ac-
commodated in the δmin. In the standard Universe,
δmin ∼ 10−3 and δmax ∼ 0.3. However due to the growth
during the eMD, in our scenario δmin can be lower. To
determine this, we follow the method in [26] with the
modification to the transfer function in accordance with
the evolution of δχ given in Eqs. (1) and (5). To be con-
servative, we require that the collapse happens before the
redshift zc = 1000.
Since β ∼ exp(−δmin) for small δmin, and δ grows as

δ ∼ k2 during the eMD, β (therefore f in Eq. (10)) is
highly sensitive to the scale k. This means that the for-
mation of UCMHs happens efficiently for a certain scale.
When this scale overlaps with the scales constrained by
observations, the production of UCMHs is easily con-
strained. That is the reason of the sharp boundary at
kdom/kreh ∼ 5 in Figs. 1 and 2.

Case for WIMP dark matter.— For the reheating
temperature around GeV or below, the usual WIMP
of 100 GeV mass is already chemically decoupled but
they continue to be in the kinetic equilibrium until MeV.
In this case, even in the kinetic equilibrium, the large
isocurvature perturbation can be generated as in Eq. (5)
and lead to the formation of UCMHs [19]. However the
free-streaming of WIMP also erases the enhanced den-
sity perturbation and the formation of UCMHs on the
scales smaller than kfs. From Eq. (7), the free-streaming
scale of WIMP with mass 100GeV and Tkd = 1MeV is
kfs ≃ 1.3× 107 Mpc−1.

Future Low bound on Treh with non-WIMP DM

Future gravitational 
observations: 

lensing, pulsar timing

One thing note is that the phase space distribution for type 2 can be di↵erent from Fermi-
Dirac, actually it is colder. This figure show the production of EWIMP via 2bosy decay 3 body,
scattering of s- and t-channel. They a↵ect the matter power spectrum and needs special care
for WDM.

Thermal production means DM is produced from the thermal particles, but there are non-
thermal production. The simple one is by decay of heavy decoupled particle X, and thus the
abundance is the same order of X. But if re-annihilation can happen again, the abundance
depends on the ann cross section and the temperature of decay. If the DM is complex and have
asymmetry, the the freeze-out can happen earlier when the anti-particle is exhausted, which is
similar to baryon. We call this as asymmetric DM. When the asymmetry of DM and baryon
are connected, the DM maybe 5 GeV has many attraction.

Another case of non-thermal production is the bosonic coherent motion with oscillating
scalar field. Since the oscillating field with quadratic potential has negligible pressure, it can be
a good candidate for dark matter. Recently this pressureless behavior was shown in the fully
non-linear order. BCM includes axino, fuzzy CDM or axion like particles.

There are more and more ways of non-thermal production but sorry that I cannot include
them.

For remaining time, I want to talk about the interesting features of DM with early matter
domination. Early MD can happen before RD. After inflation, the oscillating inflaton period,
or curvaton domination, to by heavy axino or saxion or moduli... When DM decouples during
eMD, it show some di↵erent features.

We know that the kinetic decoupling scale gives the smallest scale for the structure forma-
tion, since the damping occurs for the smaller scales during the kinetic decoupling.

GIMP, PIDM,
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After the discovery Higgs boson, the explanation of the 125 GeV Mass implies mul-TeV
spectrum for the susy particles, which is very consistent with the collider constraints.In this
respect, the natural candidate for DM is TeV Higgsino, which is exciting since the direct
detection exp with 1-tonne can probe them. This Higgsino is the robust solution also present
in a broad class of unified SUSY models. TeV Higgsino also can be probed by the indirect
detection which will be discussed by Viel after my talk.

Not only for WIMP, but the freeze-out of strongly interacting massive particle, SIMP, can
give correct abundance if 3 to 2 scattering is important in the early Unvierse. SIMP can help
to solve the small scale problem of CDM and recently the simple realization was introduced
with WZW term.

How about extremely weakly interaction particles? Maybe they cannot be in thermal equi-
librium in the early Universe, though some small amount can be produced. We can understand
the abundance with this figure for a GeV mass with change the cross section. For WIMP, Y is
suppressed. For weaker interaction, the abundance is increasing but still freeze-out with over-
abundance. But for exteremely wimp, they are not in thermal equilibrium and Y is suppreseed
again give correct abundance.

For this EWIMP, there are 2 cases, case one is that most DM is produced at high tempera-
ture, the other is at small temperature. The special example of the second case is called FIMP,
but FIMP is the new mechanism, which was already studied many times in the literatures in
the axino or RH sneutrino already.

Since EWIMP is not in thermal, their number can be neglected in the Boltzmann eq.
RH side, then the equation is easily integrated and the temperature dependance comes through
cross section.When the cross section is temperature independent like gravitino or axion with has
non-renormalizable interation, the final abundance is proportional to the reheating temperature
linearly. Another example is the heavy mediator, in this case sigma is proportional to T
squared, thus the abundance is cubic of reheating temperature. If DM is heavier than reheating
temperature, sigma depends on T to the 6 and the abundance is 7th of reheating temperature.
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3. Baryogenesis with low-reheating temperature

[KYC, Jongkjuk Kim, Sinkyu Kang, PLB 2018]

[Jongkuk’s talk today afternoon]
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Matter >> anti-matter

We see only matters on Earth, and in the Universe.
Anti-matters are rare. They exist only in the laboratories or 
in the cosmic rays with small amount

Why there are more matters than anti-matter?
The amount of matter compared to the entropy (or photon):

Non-thermal WIMP baryogenesis
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Abstract

We propose a WIMP baryogensis achieved by the annihilation of non-thermally produced WIMPs from decay of heavy particles,
which can result in low reheating temerature. Dark matter (DM) can be produced non-thermally during a reheating period created
by the decay of long-lived heavy particle, and subsequently re-annihilate to lighter particles even after the thermal freeze-out. The
re-annihilation of DM provides the observed baryon asymmetry as well as the correct relic density of DM. We investigate how
wahout e↵ects can a↵ect the generation of the baryon asymmetry and study a model suppressing them. In this scenario, we find
that DM can be heavy enough and its annihilation cross section can also be larger than that adopted in the usual thermal WIMP
baryogenesis.

Keywords: Baryogenesis, dark matter, early Universe

1. Introduction

The baryon density at present inferred from Cosmic Mi-
crowave Background (CMB) anisotropy and Big Bang Nucle-
osynthesis (BBN) is [1]

⌦Bh2 = 0.0223 ± 0.0002, (1)

which corresponds to the baryon asymmetry

YB ⌘ nB

s
' 0.86 ⇥ 10�10, (2)

YB ⌘ nB

n�
s ' 7.04n� (3)

where nB and s is the baryon number density and entropy den-
sity respectively. There are many suggested models for baryo-
genesis. One of them is the thermal weakly interacting mas-
sive particle (WIMP) baryogenesis [2, 3, 4, 5], which has been
paid much attention for past few years thanks to the intrigu-
ing coincidence of the observed baryon and dark matter (DM)
abundances, ⌦B ' 5⌦DM . WIMP miraculously accounts for
⌦DM , and may play a role in generation of baryon asymmetry.
The WIMP baryogenesis mechanism [4] uses the WIMP dark
matter annihilation during thermal freeze-out. Baryogenesis is
successfully achieved because the WIMP annihilations violate
baryon number, C and CP, and the out-of-equilibrium is attained
when the DM number density is deviated from the thermal equi-
librium. For this scenario to be e↵ective, the temperature of the

⇤Corresponding author
Email addresses: kiyoungchoi@skku.edu (Ki-Young Choi),

skkang@snut.ac.kr (Sin Kyu Kang), jongkukkim@skku.edu (Jongkuk
Kim)

Universe must be larger than the freeze-out temperature of DM
which is Tfr ' m�/20. Therefore there is a limitation for low-
reheating temperature.

In new physics beyond the standard model (SM), there are
many long-lived massive particles (we call it � afterwards) that
can dominate the energy density of the Universe, and decay,
such as inflaton, moduli, gravitino, axino, curvaton, and etc [6].
These particles interact very weakly with visible sector and thus
decay very late in the Universe. The lifetime can be longer than
10�7 sec which corresponds to the cosmic temperature around
1 GeV, which is far after the electroweak phase transition and
freeze-out of WIMP DM with mass m� ⇠ O( TeV), whose
freeze-out temperature is around m�/20. Then, in the models
with such a long-lived particle, the reheating temperature can
be low enough. However, with such a low-reheating tempera-
ture, the relic abundance of DM can not be explained in simple
models for thermal WIMP freeze-out. In addition, it is ques-
tionable whether baryon asymmetry can be successfully gener-
ated in models with low-reheating temperature.

Since the primodial asymmetry generated is diluted during
the late time reheating, new generation of asymmetry is re-
quired. At the low temperature below the electorweak scale,
leptogenesis does not work since the conversion of lepton asym-
metry to baryon asymmetry via Shpaleron processes is e↵ective
at temperatures above the electorweak scale. Thus, alternative
to leptogenesis is demaned to generate baryon asymmetry in
models with low-reheating temperature. A direct generation
of baryon asymmetry [7] may be possible without the help of
Sphaleron processes.

The aim of this letter is to propose a possible way to gen-
erate baryon asymmetry applicable to models with low reheat-
ing temperature. We will show that DM can be produced from
heavy long-lived unstable particles and then both baryon and
DM abundances can be achieved by the re-annihilation of DM.
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matter annihilation during thermal freeze-out. Baryogenesis is
successfully achieved because the WIMP annihilations violate
baryon number, C and CP, and the out-of-equilibrium is attained
when the DM number density is deviated from the thermal equi-
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Universe must be larger than the freeze-out temperature of DM
which is Tfr ' m�/20. Therefore there is a limitation for low-
reheating temperature.

In new physics beyond the standard model (SM), there are
many long-lived massive particles (we call it � afterwards) that
can dominate the energy density of the Universe, and decay,
such as inflaton, moduli, gravitino, axino, curvaton, and etc [6].
These particles interact very weakly with visible sector and thus
decay very late in the Universe. The lifetime can be longer than
10�7 sec which corresponds to the cosmic temperature around
1 GeV, which is far after the electroweak phase transition and
freeze-out of WIMP DM with mass m� ⇠ O( TeV), whose
freeze-out temperature is around m�/20. Then, in the models
with such a long-lived particle, the reheating temperature can
be low enough. However, with such a low-reheating tempera-
ture, the relic abundance of DM can not be explained in simple
models for thermal WIMP freeze-out. In addition, it is ques-
tionable whether baryon asymmetry can be successfully gener-
ated in models with low-reheating temperature.

Since the primodial asymmetry generated is diluted during
the late time reheating, new generation of asymmetry is re-
quired. At the low temperature below the electorweak scale,
leptogenesis does not work since the conversion of lepton asym-
metry to baryon asymmetry via Shpaleron processes is e↵ective
at temperatures above the electorweak scale. Thus, alternative
to leptogenesis is demaned to generate baryon asymmetry in
models with low-reheating temperature. A direct generation
of baryon asymmetry [7] may be possible without the help of
Sphaleron processes.

The aim of this letter is to propose a possible way to gen-
erate baryon asymmetry applicable to models with low reheat-
ing temperature. We will show that DM can be produced from
heavy long-lived unstable particles and then both baryon and
DM abundances can be achieved by the re-annihilation of DM.
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* Y is conserved quantity when s and n decreases as 1/a^3.
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While the SM particles produced from the decay of � are ther-
malized quickly and find themselves in the thermal equilib-
rium, the interactions of DM are so slow that can stay in the
out-of-equilibrium state until their re-annihilation. After re-
annihilation, the dark matter relic density is fixed [8, 9, 10, 11,
12, 13, 14]. As will be shown later, in this scenario, Sakharov
conditions [15] are satisfied with the violations of C and CP as
well as B number during the re-annihilation of the non-thermal
WIMP DMs 1 which are out-of-equlibrium.

This letter is organized as follows. In Section 2, we show
how non-thermal WIMP can generate baryon asymmetry. Nu-
merical results are presented in Section 3. A simple model to
successfully achieve non-thermal WIMP baryogenesis is pro-
vided in Section 4. We discuss how washout can be suppressed
before the baryon asymmetry is generated. Conclusions are
given in Section 5.

2. Non-thermal WIMP Baryogenesis

We begin by considering a long-lived heavy particle, �, so
that the corresponding reheating temperature is relatively low.
Using a sudden-decay approximation, the relation between the
reheating temperature and the lifetime, ⌧�, is roughly given by

Treh '
 

90
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!1/4 q
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10�7 sec
⌧�
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, (4)

where we used the decay width �� = ⌧�1
� . For a heavy scalar

particle whose interactions to SM particles are suppressed by
a certain high scale ⇤, its decay rate and lifetime are roughly
given by
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64⇡

m3
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⇤

1012 GeV

!2

,

(5)

respectively. Therefore in the following we will focus on the
case of m� ' O( TeV) with ⇤ = 1012 GeV, which gives a re-
heating temperature lower than the WIMP freeze-out tempera-
ture.

The decay of � is continuous and even before reaching the
lifetime, i.e. when t ⌧ ⌧�, the relativistic particles and DMs
are produced continuously. Right after the production, they
are non-thermal with the energy of E ⇠ m�/2. The SM parti-
cles which have gauge interactions and large Yukawa couplings
scatter e�ciently and quickly settle down to the thermal equi-
librium with corresponding temperature T , defined by

⇢r =
⇡2

30
g⇤T 4, (6)

where ⇢r is the energy density of the relativistic particles in the
thermal equilibrium with the e↵ective degrees of freedom g⇤.

1A leptogenesis at the reheating era was considered [16, 17]. Here they
consider the SM particles from the inflaton decay are out-of equilibrium until
the thermalization. During the scattering process, the asymmetry is generated
in the SM sector.

However for DMs which have weak interactions, their scatter-
ings are relatively slow and do not lead to the thermal equilib-
rium quickly. Instead they stay in the out-of-equilibrium un-
til the re-annihilation happens e�ciently. There is a thermal
component of DM which is produced from the thermal plasma,
and its number density follows equilibrium and then becomes
frozen at around Tfr ' m�/20. However, the component are
soon dominated by the non-thermal DM.

Even though Treh ⌧ Tfr and thermally produced dark mat-
ters are already frozen, the non-thermal DMs can re-annihilate
again into light particles, when their number density is large
enough to satisfy

n�h�Avi > H, (7)

T < Tfr n�h�Avi >< H (8)

where h�Avi ⇠ �A is the total annihilation cross section of non-
thermal DM arising from the decay of �, which is relativistic
with energy m�/2. 2 The Hubble parameter H is given by the
total sum of the energy density in the Universe as

H2 =
1

3M2
P

(⇢� + ⇢r + ⇢�), (9)

where ⇢� is the energy density of DM.
The Boltzmann equations which govern the evolution are

written as

⇢̇� + 3H⇢� = ���⇢� , (10)

⇢̇r + 4H⇢r = (1 � f�)��⇢� + 2h�Avi
✓m�
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ṅ� + 3Hn� = f���
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�̄ ) , (12)

ṅ�̄ + 3Hn�̄ = f���
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m�
� h�Avi(n�n�̄ � neq

� neq
�̄ ) , (13)

where f� is the branching ratio of � decay to DM, e.g. � !
� + �̄.

When the decay is the dominant source, the approximate
scaling solutions for � and the radiation are given by

⇢� = ⇢�,i

✓ai

a

◆3
e���t,

⇢r ' 2
5

(1 � f�)��
H

⇢� / a�3/2.

(14)

For DMs, they follow the thermal equilibrium initially and soon
freeze out settling into the quasi-stable state where the produc-
tion from decay and the annihilation equals to each other. At
this epoch, the scaling solutions are given by

n� ' n�̄ '
 

f���⇢�
h�Avim�

!1/2

/ a�3/2. (15)

2For complete calculations, we need to keep track of the momentum depen-
dence of the DM distribution function. However, its e↵ect is expected to be not
so substantial to change our main results.
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with energy m�/2. 2 The Hubble parameter H is given by the
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For DMs, they follow the thermal equilibrium initially and soon
freeze out settling into the quasi-stable state where the produc-
tion from decay and the annihilation equals to each other. At
this epoch, the scaling solutions are given by
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After reheating, when there is no more production of non-thermal
DM, the DM annihilation is e�cient and the final abundance is

2For complete calculations, we need to keep track of the momentum depen-
dence of the DM distribution function. However, its e↵ect is expected to be not
so substantial to change our main results.
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Non-thermal WIMP Baryogenesis
Baryogenesis model which is working

 for low-reheating temperature.
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Summary

• The smallest scale of objects

• Non-thermal WIMP Baryogenesis

20

• Early Matter Domination (eMD) occurs often.
: They decay and produced light particles for the later 
radiation domination

: The smallest scale may be smaller than the kinetic decoupling scale.

: Baryogenesis model from WIMP dark matter at low-reheating 
temperaure

• Low-bound on the reheating temperature

: a few MeV - 100 MeV 
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