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1 Introduction

Cosmic inflation [1–3] is widely believed to be a successful paradigm for the early universe
that solves major problems in Standard Big Bang Cosmology. It also predicts the scale invariant
spectrum of the anisotropies of Cosmic Microwave Background (CMB) and provides the seeds
to the large scale structure of the universe [4–8]. Moreover, inflation predict the generation
of the primordial gravitational wave (pGW), the ripples in the curvature of spacetime. The
existence of the pGW background can be confirmed, at di↵erent frequency ranges, indirectly
by the detection of the B-mode CMB polarization, which is induced by the tensor fluctuation
modes [9–12], and directly by the on going and the future mission concepts of the ground- and
space-based laser interferometric detectors and the pulsar timing experiments [13–15].

After inflation came to the end, the temperature of the universe became almost zero hence it
is necessary to reheat the universe. In order to reheat the universe, the inflaton field is considered
to be oscillating around the minimum of its potential, and it transfers its energy to a plasma of
the standard model particles. This period, a transition era between the end of inflation and the
beginning of radiation-dominated era, is known as the reheating epoch. Unfortunately, no direct
cosmological observation is traceable this period of reheating hence the physics of reheating is
highly uncertain and unconstrained. Thus, the era depends heavily on models of inflation.

Because the universe is transparent to the GWs up to the Planck era, the detection of the
pGW background by the future observation would open up a new window in exploring the early
universe; particularly, the reheating era. It was also claimed that the temperature of reheating
and the equation-of-state parameter during reheating can be probed by looking at the spectrum
of the GW background [16–27]. Therefore, in this work, we consider inflationary models with a
Gauss-Bonnet (GB) term to estimate the energy spectrum of the pGW and to provide constraints
on the reheating parameters. Inflationary models with a GB term is not uncommon, and it is
well studied in the context of inflation and the pGW [28–33], as well as for reheating [34–36].

Following the approach proposed in Refs. [37–40], we perform the analyses on the reheating
parameters including the equation-of-state, duration, and temperature of reheating. Since the
reheating parameters are often linked to the inflationary observation quantities such as the
scalar and tensor spectral indices, their running, tensor-to-scalar ration, and the number of e-
folds during inflation, one can provide constraints on the model parameters in light of current
and the future observation [4–8,41,42].

The paper is organized as follows. In section 2, we review the basics of inflationary models
with a GB term and the observable quantities. We classify inflationary models with a GB
term into two types in section 3; models that predict inflationary tensor power spectrum with
a red-tilt and those with a blue-tilt, respectively. With these models, we calculate the energy
spectrum of the pGW in section 4. Motivated by the fact that the reheating temperature can
be determined by the detection of the pGW background, we further perform the analyses on
the reheating parameters and provide constraints on those parameters in section 5. Finally, the
summary and the conclusion of the present work are provided in section 6.

2 Review: Gauss-Bonnet inflation

We consider the following action that involves the Einstein-Hilbert term and the GB term
that coupled with a canonical scalar field � through the coupling function ⇠(�) [28–32],
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Z
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The simplest scenario is based upon a single field, which is 
minimally coupled to a gravity, with a flat potential;
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Fig. 11. Marginalized joint 68 % and 95 % CL regions for (✏1 , ✏2 , ✏3) (top panels) and (✏V , ⌘V , ⇠2V ) (bottom panels) for Planck
TT+lowP (red contours), Planck TT,TE,EE+lowP (blue contours), and compared with the Planck 2013 results (grey contours).

Fig. 12. Marginalized joint 68 % and 95 % CL regions for ns and r at k = 0.002 Mpc�1 from Planck compared to the theoretical
predictions of selected inflationary models. Note that the marginalized joint 68 % and 95 % CL regions have been obtained by
assuming dns/d ln k = 0.

P.A.R. Ade et al. Astron. Astrophys. 594 (2016) A20
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2009, 2013), or PolyChord, which combines nested sam-
pling with slice sampling (Handley et al., 2015). The latter
two also compute the Bayesian evidence needed for model
comparison. Nevertheless, �2 values are often provided as
well (using CosmoMC’s implementation of the BOBYQA algo-
rithm (Powell, 2009) for maximizing the likelihood), and other
parts of the paper employ frequentist methods when appropriate.

4. Constraints on the primordial spectrum of
curvature perturbations

One of the most important results of the Planck nominal mission
was the determination of the departure from scale invariance for
the spectrum of scalar perturbations at high statistical signifi-
cance (Planck Collaboration XVI, 2014; Planck Collaboration
XXII, 2014). We now update these measurements with the
Planck full mission data in temperature and polarization.

4.1. Tilt of the curvature power spectrum

For the base ⇤CDM model with a power-law power spectrum
of curvature perturbations, the constraint on the scalar spectral
index, ns, with the Planck full mission temperature data is

ns = 0.9655 ± 0.0062 (68 % CL, Planck TT+lowP) . (14)

This result is compatible with the Planck 2013 constraint,
ns = 0.9603 ± 0.0073 (Planck Collaboration XV, 2014; Planck
Collaboration XVI, 2014). See Fig. 3 for the accompanying
changes in ⌧, ⌦bh2, and ✓MC. The shift towards higher values
for ns with respect to the nominal mission results is due to sev-
eral improvements in the data processing and likelihood which
are discussed in Sect. 3, including the removal of the 4 K cooler
systematics. For the values of other cosmological parameters in
the base ⇤CDM model, see Table 3. We also provide the results
for the base ⇤CDM model and extended models online.5

When the Planck high-` polarization is combined with tem-
perature, we obtain

ns = 0.9645 ± 0.0049 (68 % CL, Planck TT,TE,EE+lowP),
(15)

together with ⌧ = 0.079 ± 0.017 (68 % CL), which is consis-
tent with the TT+lowP results. The Planck high-` polarization
pulls ⌧ up to a slightly higher value. When the Planck lensing
measurement is added to the temperature data, we obtain

ns = 0.9677 ± 0.0060 (68 % CL, Planck TT+lowP+lensing),
(16)

with ⌧ = 0.066 ± 0.016 (68 % CL). The shift towards slightly
smaller values of the optical depth is driven by a marginal pref-
erence for a smaller primordial amplitude, As, in the Planck
lensing data (Planck Collaboration XV, 2016). Given that the
temperature data provide a sharp constraint on the combination
e�2⌧As, a slightly lower As requires a smaller optical depth to
reionization.

4.2. Viability of the Harrison-Zeldovich spectrum

Even though the estimated scalar spectral index has risen slightly
with respect to the Planck 2013 release, the assumption of
a Harrison-Zeldovich (HZ) scale-invariant spectrum (Harrison,
1970; Peebles & Yu, 1970; Zeldovich, 1972) continues to be

5
http://www.cosmos.esa.int/web/planck/pla

disfavoured (with a modest increase in significance, from 5.1�
in 2013 to 5.6� today), because the error bar on ns has de-
creased. The value of ns inferred from the Planck 2015 tem-
perature plus large-scale polarization data lies 5.6 standard de-
viations away from unity (with a corresponding ��2 = 29.9),
if one assumes the base ⇤CDM late-time cosmological model.
If we consider more general reionization models, parameterized
by a principal component analysis (Mortonson & Hu, 2008) in-
stead of ⌧ (where reionization is assumed to have occurred in-
stantaneously), we find ��2 = 14.9 for ns = 1. Previously,
simple one-parameter extensions of the base model, such as
⇤CDM+Ne↵ (where Ne↵ is the effective number of neutrino
flavours) or ⇤CDM+YP (where YP is the primordial value of the
helium mass fraction), could nearly reconcile the Planck tem-
perature data with ns = 1. They now lead to ��2 = 7.6 and 9.3,
respectively. For any of the cosmological models that we have
considered, the ��2 by which the HZ model is penalized with
respect to the tilted model has increased since the 2013 analy-
sis (PCI13) thanks to the constraining power of the full mission
temperature data. Adding Planck high-` polarization data further
disfavours the HZ model: in⇤CDM, the �2 increases by 57.8, for
general reionization we obtain ��2 = 41.3, and for ⇤CDM+Ne↵
and ⇤CDM+YP we find ��2 = 22.5 and 24.0, respectively.

4.3. Running of the spectral index

The running of the scalar spectral index is constrained by the
Planck 2015 full mission temperature data to

dns

d ln k
= �0.0084± 0.0082 (68 % CL, Planck TT+lowP) . (17)

The combined constraint including high-` polarization is

dns

d ln k
= �0.0057±0.0071 (68 % CL, Planck TT,TE,EE+lowP) .

(18)
Adding the Planck CMB lensing data to the tempera-
ture data further reduces the central value for the running,
i.e., dns/d ln k = �0.0033 ± 0.0074 (68 % CL, Planck
TT+lowP+lensing).

The central value for the running has decreased in magni-
tude with respect to the Planck 2013 nominal mission (Planck
Collaboration XVI (2014) found dns/d ln k = �0.013 ± 0.009;
see Fig. 4), and the improvement of the maximum likelihood
with respect to a power-law spectrum is smaller, ��2

⇡ �0.8.
Among the different effects contributing to the decrease in the
central value of the running with respect to the Planck 2013 re-
sult, we mention a change in HFI beams at ` <

⇠
200 (Planck

Collaboration XIII, 2016). Nevertheless, the deficit of power at
low multipoles in the Planck 2015 temperature power spectrum
contributes to a preference for slightly negative values of the run-
ning, but with low statistical significance.

The Planck constraints on ns and dns/d ln k are remarkably
stable against the addition of the BAO likelihood. The combina-
tion with BAO shifts ns to slighly higher values and shrinks its
uncertainty by about 30 % when only high-` temperature is con-
sidered, and by only about 15 % when high-` temperature and
polarization are combined. In slow-roll inflation, the running of
the scalar spectral index is connected to the third derivative of
the potential (Kosowsky & Turner, 1995). As was the case for
the nominal mission results, values of the running compatible
with the Planck 2015 constraints can be obtained in viable infla-
tionary models (Kobayashi & Takahashi, 2011).
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80
,C

.H
er

ná
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1 Introduction

Cosmic inflation [1–3] is widely believed to be a successful paradigm for the early universe
that solves major problems in Standard Big Bang Cosmology. It also predicts the scale invariant
spectrum of the anisotropies of Cosmic Microwave Background (CMB) and provides the seeds
to the large scale structure of the universe [4–8]. Moreover, inflation predict the generation
of the primordial gravitational wave (pGW), the ripples in the curvature of spacetime. The
existence of the pGW background can be confirmed, at di↵erent frequency ranges, indirectly
by the detection of the B-mode CMB polarization, which is induced by the tensor fluctuation
modes [9–12], and directly by the on going and the future mission concepts of the ground- and
space-based laser interferometric detectors and the pulsar timing experiments [13–15].

After inflation came to the end, the temperature of the universe became almost zero hence it
is necessary to reheat the universe. In order to reheat the universe, the inflaton field is considered
to be oscillating around the minimum of its potential, and it transfers its energy to a plasma of
the standard model particles. This period, a transition era between the end of inflation and the
beginning of radiation-dominated era, is known as the reheating epoch. Unfortunately, no direct
cosmological observation is traceable this period of reheating hence the physics of reheating is
highly uncertain and unconstrained. Thus, the era depends heavily on models of inflation.

Because the universe is transparent to the GWs up to the Planck era, the detection of the
pGW background by the future observation would open up a new window in exploring the early
universe; particularly, the reheating era. It was also claimed that the temperature of reheating
and the equation-of-state parameter during reheating can be probed by looking at the spectrum
of the GW background [16–27]. Therefore, in this work, we consider inflationary models with a
Gauss-Bonnet (GB) term to estimate the energy spectrum of the pGW and to provide constraints
on the reheating parameters. Inflationary models with a GB term is not uncommon, and it is
well studied in the context of inflation and the pGW [28–33], as well as for reheating [34–36].

Following the approach proposed in Refs. [37–40], we perform the analyses on the reheating
parameters including the equation-of-state, duration, and temperature of reheating. Since the
reheating parameters are often linked to the inflationary observation quantities such as the
scalar and tensor spectral indices, their running, tensor-to-scalar ration, and the number of e-
folds during inflation, one can provide constraints on the model parameters in light of current
and the future observation [4–8,41,42].

The paper is organized as follows. In section 2, we review the basics of inflationary models
with a GB term and the observable quantities. We classify inflationary models with a GB
term into two types in section 3; models that predict inflationary tensor power spectrum with
a red-tilt and those with a blue-tilt, respectively. With these models, we calculate the energy
spectrum of the pGW in section 4. Motivated by the fact that the reheating temperature can
be determined by the detection of the pGW background, we further perform the analyses on
the reheating parameters and provide constraints on those parameters in section 5. Finally, the
summary and the conclusion of the present work are provided in section 6.

2 Review: Gauss-Bonnet inflation

We consider the following action that involves the Einstein-Hilbert term and the GB term
that coupled with a canonical scalar field � through the coupling function ⇠(�) [28–32],

S =

Z
d
4
x
p
�g


1

22
R�

1

2
g
µ⌫
@µ�@⌫�� V (�)�
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Thus, we are interested in understanding the effects 
of this additional term
during inflation and reheating
its contribution to the Primordial GW spectra

where R
2
GB = Rµ⌫⇢�R

µ⌫⇢�
� 4Rµ⌫R

µ⌫ + R
2 is known as the GB term and 

2 = 8⇡G = M
�2
pl

is the reduced Planck mass. In the flat Friedmann-Robertson-Walker(FRW) universe with the
scale factor a,

ds
2 = �dt

2 + a
2
�
dr

2 + r
2
d⌦2

�
, (2)

the background dynamics of this system yields the Einstein and the field equations,
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where the dot represents the derivative with respect to the cosmic time t, H ⌘ ȧ/a denotes the
Hubble parameter, V� = @V/@�, ⇠� = @⇠/@�, and ⇠̇ implies ⇠̇ = ⇠��̇. The coupling function
⇠(�) is necessary to be a function of the scalar field; otherwise, the background dynamics will
not be a↵ected by the GB term.

In the context of slow-roll inflation, in which the friction term in Eq. (5) is dominating and �

is considered to be slowly rolling down its potential minimum, we define the slow-roll parameters,
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These parameters can be also expressed in terms of the potential and the coupling functions as
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1 Introduction

Cosmic inflation [1–3] is widely believed to be a successful paradigm for the early universe
that solves major problems in Standard Big Bang Cosmology. It also predicts the scale invariant
spectrum of the anisotropies of Cosmic Microwave Background (CMB) and provides the seeds
to the large scale structure of the universe [4–8]. Moreover, inflation predict the generation
of the primordial gravitational wave (pGW), the ripples in the curvature of spacetime. The
existence of the pGW background can be confirmed, at di↵erent frequency ranges, indirectly
by the detection of the B-mode CMB polarization, which is induced by the tensor fluctuation
modes [9–12], and directly by the on going and the future mission concepts of the ground- and
space-based laser interferometric detectors and the pulsar timing experiments [13–15].

After inflation came to the end, the temperature of the universe became almost zero hence it
is necessary to reheat the universe. In order to reheat the universe, the inflaton field is considered
to be oscillating around the minimum of its potential, and it transfers its energy to a plasma of
the standard model particles. This period, a transition era between the end of inflation and the
beginning of radiation-dominated era, is known as the reheating epoch. Unfortunately, no direct
cosmological observation is traceable this period of reheating hence the physics of reheating is
highly uncertain and unconstrained. Thus, the era depends heavily on models of inflation.

Because the universe is transparent to the GWs up to the Planck era, the detection of the
pGW background by the future observation would open up a new window in exploring the early
universe; particularly, the reheating era. It was also claimed that the temperature of reheating
and the equation-of-state parameter during reheating can be probed by looking at the spectrum
of the GW background [16–27]. Therefore, in this work, we consider inflationary models with a
Gauss-Bonnet (GB) term to estimate the energy spectrum of the pGW and to provide constraints
on the reheating parameters. Inflationary models with a GB term is not uncommon, and it is
well studied in the context of inflation and the pGW [28–33], as well as for reheating [34–36].

Following the approach proposed in Refs. [37–40], we perform the analyses on the reheating
parameters including the equation-of-state, duration, and temperature of reheating. Since the
reheating parameters are often linked to the inflationary observation quantities such as the
scalar and tensor spectral indices, their running, tensor-to-scalar ration, and the number of e-
folds during inflation, one can provide constraints on the model parameters in light of current
and the future observation [4–8,41,42].

The paper is organized as follows. In section 2, we review the basics of inflationary models
with a GB term and the observable quantities. We classify inflationary models with a GB
term into two types in section 3; models that predict inflationary tensor power spectrum with
a red-tilt and those with a blue-tilt, respectively. With these models, we calculate the energy
spectrum of the pGW in section 4. Motivated by the fact that the reheating temperature can
be determined by the detection of the pGW background, we further perform the analyses on
the reheating parameters and provide constraints on those parameters in section 5. Finally, the
summary and the conclusion of the present work are provided in section 6.

2 Review: Gauss-Bonnet inflation

We consider the following action that involves the Einstein-Hilbert term and the GB term
that coupled with a canonical scalar field � through the coupling function ⇠(�) [28–32],
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In the early universe, approaching the Planck era, it is quite 
natural to consider corrections like this. 

In light of both the current and future observations, 
extended models of inflation seem to be more promising!
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where the dot represents the derivative with respect to the cosmic time t, H ⌘ ȧ/a denotes the
Hubble parameter, V� = @V/@�, ⇠� = @⇠/@�, and ⇠̇ implies ⇠̇ = ⇠��̇. The coupling function
⇠(�) is necessary to be a function of the scalar field; otherwise, the background dynamics will
not be a↵ected by the GB term.

In the context of slow-roll inflation, in which the friction term in Eq. (5) is dominating and �
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The amount of the inflationary expansion is encoded in the number of e-folds, N ,
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where ”⇤” indicates the moment when a mode k crosses the horizon during inflation. The
primordial power spectra of the scalar and the tensor perturbations at the time of horizon
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where � = �1/(1 � �1). The observable quantities such as the spectral indices of the scalar
and the tensor perturbations, their running spectral indices, and the tensor-to-scalar ratio are
derived respectively as follows
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where nS � 1 = d lnPS/d ln k, nT = d lnPT /d ln k, ↵S = dnS/d ln k, ↵T = dnT /d ln k, and
r = PS/PT . If the potentials V (�) and the coupling function ⇠(�) are given, it is straightforward
to calculate Eq. (20) by using Eqs. (7)–(12). Thus, the theoretical predictions of any particular
model of inflation obtained through Eq. (20) can be tested by the observational data [7, 8].

3 Gauss-Bonnet inflation models

The standard models of inflation discussed in Refs. [7,8] predict a slightly red-tilted primor-
dial tensor power spectrum, i.e. nT < 0 with |nT | ⌧ 1. However, a spectrum of the inflationary
tensor perturbations could have a blue tilt nT > 0 [43,44]. Therefore, any evidence of the blue-
tilted tensor mode spectrum would support non-standard models of inflation. In this section, we
consider two types of inflation models with a GB term based on their predictions for the nT ; a
positive and a negative.1 The models that predict the inflationary tensor power spectrum with
a red tilt (nT < 0) are classified as the ”Model-I ” whereas those that predict the blue-tilted
inflationary tensor power spectrum are grouped as the ”Model-II ”. In order for the tensor mode
spectrum to have a red-tilt (blue-tilt), the slow-roll parameter ✏ in Eq. (20) has to be negative
(positive).

In order for ✏ to be positive, the potentials and the coupling functions must satisfy the
following conditions from Eq. (7),
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where ”⇤” indicates the moment when a mode k crosses the horizon during inflation. The
primordial power spectra of the scalar and the tensor perturbations at the time of horizon
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Here, it is important to have:

because of the background EoM in flat FRW universe: 

Observable quantities are obtained as, 
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1 Introduction

Cosmic inflation [1–3] is widely believed to be a successful paradigm for the early universe
that solves major problems in Standard Big Bang Cosmology. It also predicts the scale invariant
spectrum of the anisotropies of Cosmic Microwave Background (CMB) and provides the seeds
to the large scale structure of the universe [4–8]. Moreover, inflation predict the generation
of the primordial gravitational wave (pGW), the ripples in the curvature of spacetime. The
existence of the pGW background can be confirmed, at di↵erent frequency ranges, indirectly
by the detection of the B-mode CMB polarization, which is induced by the tensor fluctuation
modes [9–12], and directly by the on going and the future mission concepts of the ground- and
space-based laser interferometric detectors and the pulsar timing experiments [13–15].

After inflation came to the end, the temperature of the universe became almost zero hence it
is necessary to reheat the universe. In order to reheat the universe, the inflaton field is considered
to be oscillating around the minimum of its potential, and it transfers its energy to a plasma of
the standard model particles. This period, a transition era between the end of inflation and the
beginning of radiation-dominated era, is known as the reheating epoch. Unfortunately, no direct
cosmological observation is traceable this period of reheating hence the physics of reheating is
highly uncertain and unconstrained. Thus, the era depends heavily on models of inflation.

Because the universe is transparent to the GWs up to the Planck era, the detection of the
pGW background by the future observation would open up a new window in exploring the early
universe; particularly, the reheating era. It was also claimed that the temperature of reheating
and the equation-of-state parameter during reheating can be probed by looking at the spectrum
of the GW background [16–27]. Therefore, in this work, we consider inflationary models with a
Gauss-Bonnet (GB) term to estimate the energy spectrum of the pGW and to provide constraints
on the reheating parameters. Inflationary models with a GB term is not uncommon, and it is
well studied in the context of inflation and the pGW [28–33], as well as for reheating [34–36].

Following the approach proposed in Refs. [37–40], we perform the analyses on the reheating
parameters including the equation-of-state, duration, and temperature of reheating. Since the
reheating parameters are often linked to the inflationary observation quantities such as the
scalar and tensor spectral indices, their running, tensor-to-scalar ration, and the number of e-
folds during inflation, one can provide constraints on the model parameters in light of current
and the future observation [4–8,41,42].

The paper is organized as follows. In section 2, we review the basics of inflationary models
with a GB term and the observable quantities. We classify inflationary models with a GB
term into two types in section 3; models that predict inflationary tensor power spectrum with
a red-tilt and those with a blue-tilt, respectively. With these models, we calculate the energy
spectrum of the pGW in section 4. Motivated by the fact that the reheating temperature can
be determined by the detection of the pGW background, we further perform the analyses on
the reheating parameters and provide constraints on those parameters in section 5. Finally, the
summary and the conclusion of the present work are provided in section 6.

2 Review: Gauss-Bonnet inflation

We consider the following action that involves the Einstein-Hilbert term and the GB term
that coupled with a canonical scalar field � through the coupling function ⇠(�) [28–32],
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where the dot represents the derivative with respect to the cosmic time t, H ⌘ ȧ/a denotes the
Hubble parameter, V� = @V/@�, ⇠� = @⇠/@�, and ⇠̇ implies ⇠̇ = ⇠��̇. The coupling function
⇠(�) is necessary to be a function of the scalar field; otherwise, the background dynamics will
not be a↵ected by the GB term.

In the context of slow-roll inflation, in which the friction term in Eq. (5) is dominating and �

is considered to be slowly rolling down its potential minimum, we define the slow-roll parameters,
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The amount of the inflationary expansion is encoded in the number of e-folds, N ,
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where ”⇤” indicates the moment when a mode k crosses the horizon during inflation. The
primordial power spectra of the scalar and the tensor perturbations at the time of horizon
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Ḣ +H

2
⌘
= 0 , (5)

where the dot represents the derivative with respect to the cosmic time t, H ⌘ ȧ/a denotes the
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where ⌧ is a conformal time, which is related to the cosmic time via ⌧ =
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where � = �1/(1 � �1). The observable quantities such as the spectral indices of the scalar
and the tensor perturbations, their running spectral indices, and the tensor-to-scalar ratio are
derived respectively as follows
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where nS � 1 = d lnPS/d ln k, nT = d lnPT /d ln k, ↵S = dnS/d ln k, ↵T = dnT /d ln k, and
r = PS/PT . If the potentials V (�) and the coupling function ⇠(�) are given, it is straightforward
to calculate Eq. (20) by using Eqs. (7)–(12). Thus, the theoretical predictions of any particular
model of inflation obtained through Eq. (20) can be tested by the observational data [7, 8].

3 Gauss-Bonnet inflation models

The standard models of inflation discussed in Refs. [7,8] predict a slightly red-tilted primor-
dial tensor power spectrum, i.e. nT < 0 with |nT | ⌧ 1. However, a spectrum of the inflationary
tensor perturbations could have a blue tilt nT > 0 [43,44]. Therefore, any evidence of the blue-
tilted tensor mode spectrum would support non-standard models of inflation. In this section, we
consider two types of inflation models with a GB term based on their predictions for the nT ; a
positive and a negative.1 The models that predict the inflationary tensor power spectrum with
a red tilt (nT < 0) are classified as the ”Model-I ” whereas those that predict the blue-tilted
inflationary tensor power spectrum are grouped as the ”Model-II ”. In order for the tensor mode
spectrum to have a red-tilt (blue-tilt), the slow-roll parameter ✏ in Eq. (20) has to be negative
(positive).

In order for ✏ to be positive, the potentials and the coupling functions must satisfy the
following conditions from Eq. (7),
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Among several successful inflationary models that satisfy these conditions [29–31], we consider
chaotic inflation with an inverse monomial coupling and identify this model as Model-I. The
inflaton potential and the coupling function for Model-I are given by

V (�) =
V0

4
(�)n , ⇠(�) = ⇠0(�)

�n
, (21)

where V0 is a dimensionless constant and n > 0 is assumed. From Eqs. (14) and (20), the
observable quantities are obtianed in terms of N⇤ as

nS � 1 = �
2(n+ 2)

4N⇤ + n
, nT = �
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4N⇤ + n
, r =

16n(1� ↵)

4N⇤ + n
(22)

↵S = �
8(n+ 2)

(4N⇤ + n)2
, ↵T = �

8n

(4N⇤ + n)2
,

where ↵ ⌘ 4V0⇠0/3. One can see from the above equations that the tensor spectral index for
Model-I is always negative as long as n > 0 hence the inflationary tensor power spectrum has a
red tilt, nT < 0. The tensor-to-scalar ratio r is suppressed for a positive ↵ while it is enhanced
for a negative ↵.

✏ could be negative if the potential and the coupling functions satisfy the following conditions
from Eq. (7): 8

<

:
⇠� < �

3
44

V�

V 2 , for V� > 0,

⇠� > �
3

44
V�

V 2 , for V� < 0 .

This kind of model is identified as Model-II. We take the following potential and the coupling
function for this type, which was first introduced in Ref. [32], as 2

V (�) =
sech2 (�)

4
[
p
µ+ sinh (�)]2 , ⇠(�) =

3
h
sinh2(�)� 1p

µsinh(�)
i

4
⇥p

µ+ sinh (�)
⇤2 , (23)

where µ > 0 is assumed. From Eqs. (14) and (20), the observable quantities are obtained as,

nS � 1 = �
2

N⇤ + µ
, nT =

2µ(N⇤ � 1)

(N⇤ + µ)(N2
⇤ + µ)

, r =
8
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, (24)
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(N⇤ + µ)2
, ↵T = �

2

(N⇤ + µ)2
+

2(N2
⇤ � µ)

(N2
⇤ + µ)2

.

Since nS is well constrained by the current observation, the range of the model parameter µ can
be determined from Eq. (24) to be µ = 2/(1�nS)�N⇤ ⇠ O(10) where 40  N⇤  70 is assumed.
nT is positive as long as N⇤ > 1, which is necessary condition for inflation to successfully solve
the horizon and the flatness problems of standard big bang cosmology. Thus, the inflationary
tensor power spectrum of Model-II always has a blue-tilt, nT > 0.

We plot the theoretical predictions of Model-I (dashed line) for n = 2 and Model-II (solid
line) against the observational data [8] in nS � r plane in Figure 1. For ↵ = 0 in Model-I,
its prediction locates at the edge of the 2� contour when N⇤ = 60, represented by the red
dot in Figure 1. The parameter range where ↵ < 0 is ruled out by the observation because
their prediction of the tensor-to-scalar ratio locates o↵ the 2� contour. However, models with a
positive ↵, particularly between 0  ↵  1, are preferred by the observation [8]. The predictions
for 0  ↵  1 is plotted in dashed line in Figure 1. The standard single-field slow-roll inflation

2The shape of the potential in Eq. (23) is similar to that of the ”T-model” in Ref. [45] in the µ ! 0 limit. For
µ 6= 0, there appears a small bump on the side of the potential, which di↵ers the model from the ”T-model”.
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crossing are calculated in Ref. [30] as

PS '
csc2 ⌫S⇡

⇡z
2
S�

2(1� ⌫S)

a
2

c
3
S |⌧ |

2

✓
cSk|⌧ |

2

◆3�2⌫S

, (15)

PT ' 8
csc2 ⌫T⇡

⇡z
2
T�

2(1� ⌫T )

a
2

c
3
T |⌧ |

2

✓
cTk|⌧ |

2

◆3�2⌫T

, (16)

where ⌧ is a conformal time, which is related to the cosmic time via ⌧ =
R
a
�1

dt. The quantities
⌫A, cA, and zA with A = {S, T} are given by

⌫S '
3

2
+ ✏+

2✏(2✏+ ⌘)� �1(�2 � ✏)

4✏� 2�1
, ⌫T '

3

2
+ ✏ , (17)

c
2
S = 1�

(4✏+ �1(1� 4✏� �2))�2

4✏� 2�1 � 2�1(2✏� �2) + 3�1�
, c

2
T = 1 +

�1(1� �2)

1� �1
, (18)

zS =

s
a2

2

2✏� �1(1 + 2✏� �2) +
3
2�1�

(1� 1
2�)2

, zT =

r
a2

2
(1� �1), (19)

where � = �1/(1 � �1). The observable quantities such as the spectral indices of the scalar
and the tensor perturbations, their running spectral indices, and the tensor-to-scalar ratio are
derived respectively as follows

nS � 1 ' �2✏�
2✏(2✏+ ⌘)� �1(�2 � ✏)

2✏� �1
, nT ' �2✏ ,

↵S = �2✏(2✏+ ⌘) +


2✏(2✏+ ⌘)� �1(�2 � ✏)

2✏� �1

�2
�

2✏(8✏2 + 7✏⌘ + ⇣) + �1(✏2 + ✏⌘ + ✏�2 � �3)

2✏� �1
,

↵T = �2✏(2✏+ ⌘) , r ' 8(2✏� �1) , (20)

where nS � 1 = d lnPS/d ln k, nT = d lnPT /d ln k, ↵S = dnS/d ln k, ↵T = dnT /d ln k, and
r = PS/PT . If the potentials V (�) and the coupling function ⇠(�) are given, it is straightforward
to calculate Eq. (20) by using Eqs. (7)–(12). Thus, the theoretical predictions of any particular
model of inflation obtained through Eq. (20) can be tested by the observational data [7, 8].

3 Gauss-Bonnet inflation models

The standard models of inflation discussed in Refs. [7,8] predict a slightly red-tilted primor-
dial tensor power spectrum, i.e. nT < 0 with |nT | ⌧ 1. However, a spectrum of the inflationary
tensor perturbations could have a blue tilt nT > 0 [43,44]. Therefore, any evidence of the blue-
tilted tensor mode spectrum would support non-standard models of inflation. In this section, we
consider two types of inflation models with a GB term based on their predictions for the nT ; a
positive and a negative.1 The models that predict the inflationary tensor power spectrum with
a red tilt (nT < 0) are classified as the ”Model-I ” whereas those that predict the blue-tilted
inflationary tensor power spectrum are grouped as the ”Model-II ”. In order for the tensor mode
spectrum to have a red-tilt (blue-tilt), the slow-roll parameter ✏ in Eq. (20) has to be negative
(positive).

In order for ✏ to be positive, the potentials and the coupling functions must satisfy the
following conditions from Eq. (7),

8
<

:
⇠� > �

3
44

V�

V 2 , for V� > 0,

⇠� < �
3

44
V�

V 2 , for V� < 0 .

1We exclude the scale invariant case where nT = 0 in the present work.
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Figure 2: We plot Eqs. (66)–(67) in the first row. The relation between the potential and the
coupling function is plotted in Fig. 2(c). Fig. 2(d) shows the comparison between the numerical
solution (solid) of Eqs. (3)–(5) and the slow-roll solution (dashed) obtained in Eq. (68).

Previously, in p = 1 case, we were able to see an inverse relation between the potentials
and the Gauss-Bonnet coupling functions if c2 = 0. In p = 2 case, on the other hand, such
inverse relation can be hold in an infinitely large region �1 < � < 1, everywhere except a
finite interval O(5) near � = 0 in Fig. 2(c). By substituting Eqs. (66)–(67) with � = 2 into
Eqs. (8)–(10), we obtain the following slow-roll solution for the scalar-field,

�(N) = �
r

q

82
arcsinh

 
Np
↵
�

s
82

q
C

!
, (68)

where C is an arbitrary constant. We compare the slow-roll solution obtained in Eq. (68) with
the numerical solution of Eqs. (3)–(5) in Fig. 2(d). As is seen in Fig. 2(d) that the slow-roll
solution fits well with the numerical solution during inflationary period. In the ↵ ! 0 limit,
Eqs. (66)–(67) can be reduce to

V (�) ⇠ tanh2
✓r

8

q
�

◆
, ⇠(�) ⇠ � 3c1

4
p
↵4

csch

✓r
8

q
�

◆
. (69)

In Fig. 3 we compare the predictions of spectral index and tensor-to-scalar for three di↵erent
models; namely, the chaotic inflation with dilatonlike coupling [9], the chaotic inflation with an
inverse power-law coupling [11] which we also discussed in Subsection 3.2.1, and the inflation
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Among several successful inflationary models that satisfy these conditions [29–31], we consider
chaotic inflation with an inverse monomial coupling and identify this model as Model-I. The
inflaton potential and the coupling function for Model-I are given by

V (�) =
V0

4
(�)n , ⇠(�) = ⇠0(�)

�n
, (21)

where V0 is a dimensionless constant and n > 0 is assumed. From Eqs. (14) and (20), the
observable quantities are obtianed in terms of N⇤ as

nS � 1 = �
2(n+ 2)

4N⇤ + n
, nT = �

2n

4N⇤ + n
, r =

16n(1� ↵)

4N⇤ + n
(22)

↵S = �
8(n+ 2)

(4N⇤ + n)2
, ↵T = �

8n

(4N⇤ + n)2
,

where ↵ ⌘ 4V0⇠0/3. One can see from the above equations that the tensor spectral index for
Model-I is always negative as long as n > 0 hence the inflationary tensor power spectrum has a
red tilt, nT < 0. The tensor-to-scalar ratio r is suppressed for a positive ↵ while it is enhanced
for a negative ↵.

✏ could be negative if the potential and the coupling functions satisfy the following conditions
from Eq. (7): 8
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3

44
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This kind of model is identified as Model-II. We take the following potential and the coupling
function for this type, which was first introduced in Ref. [32], as 2

V (�) =
sech2 (�)
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[
p
µ+ sinh (�)]2 , ⇠(�) =

3
h
sinh2(�)� 1p

µsinh(�)
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4
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µ+ sinh (�)
⇤2 , (23)

where µ > 0 is assumed. From Eqs. (14) and (20), the observable quantities are obtained as,

nS � 1 = �
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N⇤ + µ
, nT =

2µ(N⇤ � 1)

(N⇤ + µ)(N2
⇤ + µ)

, r =
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(N2
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.

Since nS is well constrained by the current observation, the range of the model parameter µ can
be determined from Eq. (24) to be µ = 2/(1�nS)�N⇤ ⇠ O(10) where 40  N⇤  70 is assumed.
nT is positive as long as N⇤ > 1, which is necessary condition for inflation to successfully solve
the horizon and the flatness problems of standard big bang cosmology. Thus, the inflationary
tensor power spectrum of Model-II always has a blue-tilt, nT > 0.

We plot the theoretical predictions of Model-I (dashed line) for n = 2 and Model-II (solid
line) against the observational data [8] in nS � r plane in Figure 1. For ↵ = 0 in Model-I,
its prediction locates at the edge of the 2� contour when N⇤ = 60, represented by the red
dot in Figure 1. The parameter range where ↵ < 0 is ruled out by the observation because
their prediction of the tensor-to-scalar ratio locates o↵ the 2� contour. However, models with a
positive ↵, particularly between 0  ↵  1, are preferred by the observation [8]. The predictions
for 0  ↵  1 is plotted in dashed line in Figure 1. The standard single-field slow-roll inflation

2The shape of the potential in Eq. (23) is similar to that of the ”T-model” in Ref. [45] in the µ ! 0 limit. For
µ 6= 0, there appears a small bump on the side of the potential, which di↵ers the model from the ”T-model”.
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for 0  ↵  1 is plotted in dashed line in Figure 1. The standard single-field slow-roll inflation

2The shape of the potential in Eq. (23) is similar to that of the ”T-model” in Ref. [45] in the µ ! 0 limit. For
µ 6= 0, there appears a small bump on the side of the potential, which di↵ers the model from the ”T-model”.
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0 < µ  50 where the big blue dot corresponds to µ = 0. By using the observational best-fit
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II to be r ' 0.0032 for N⇤ = 50 and r ' 0.0022 for N⇤ = 60 which are nearly insensitive on µ.
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Figure 1: The marginalized 68% and 95% confidence level contours for nS and r0.002 from
Planck2015 TT+lowP and the theoretical predictions of models in Eqs. (21) and (23). The red
line indicates Model-I with fixed ↵ = 0 but varying n. The parameter ↵ then grows from zero to
unity along each n = 1, n = 2, and n = 4 lines. For Model-II, the black solid line, the values of
µ also increase from larger blue end-point to smaller one; where 10�4

< µ  50. The e-folding
number is set to N⇤ = 60 along each line.

4 Primordial Gravitational Waves induced by the blue-tilted
and red-tiled tensor spectra

We discussed two types of GB inflation models in the previous section. In this section, we
calculate the energy spectrum of the pGW background for selected models; Model-I and Model-
II. We start the present section by reviewing a formalism to calculate the energy spectrum of
the pGW background. The pGWs are described by a tensor part of the metric fluctuations in
the linearized flat FRW metric of the form
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0 ≤ α ≤ 1

0 < μ ≤ 𝒪(10)

nT < 0, nT > 0.

Among several successful inflationary models that satisfy these conditions [29–31], we consider
chaotic inflation with an inverse monomial coupling and identify this model as Model-I. The
inflaton potential and the coupling function for Model-I are given by

V (�) =
V0

4
(�)n , ⇠(�) = ⇠0(�)

�n
, (21)

where V0 is a dimensionless constant and n > 0 is assumed. From Eqs. (14) and (20), the
observable quantities are obtianed in terms of N⇤ as
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(4N⇤ + n)2
,

where ↵ ⌘ 4V0⇠0/3. One can see from the above equations that the tensor spectral index for
Model-I is always negative as long as n > 0 hence the inflationary tensor power spectrum has a
red tilt, nT < 0. The tensor-to-scalar ratio r is suppressed for a positive ↵ while it is enhanced
for a negative ↵.

✏ could be negative if the potential and the coupling functions satisfy the following conditions
from Eq. (7): 8
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This kind of model is identified as Model-II. We take the following potential and the coupling
function for this type, which was first introduced in Ref. [32], as 2
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where µ > 0 is assumed. From Eqs. (14) and (20), the observable quantities are obtained as,
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Since nS is well constrained by the current observation, the range of the model parameter µ can
be determined from Eq. (24) to be µ = 2/(1�nS)�N⇤ ⇠ O(10) where 40  N⇤  70 is assumed.
nT is positive as long as N⇤ > 1, which is necessary condition for inflation to successfully solve
the horizon and the flatness problems of standard big bang cosmology. Thus, the inflationary
tensor power spectrum of Model-II always has a blue-tilt, nT > 0.

We plot the theoretical predictions of Model-I (dashed line) for n = 2 and Model-II (solid
line) against the observational data [8] in nS � r plane in Figure 1. For ↵ = 0 in Model-I,
its prediction locates at the edge of the 2� contour when N⇤ = 60, represented by the red
dot in Figure 1. The parameter range where ↵ < 0 is ruled out by the observation because
their prediction of the tensor-to-scalar ratio locates o↵ the 2� contour. However, models with a
positive ↵, particularly between 0  ↵  1, are preferred by the observation [8]. The predictions
for 0  ↵  1 is plotted in dashed line in Figure 1. The standard single-field slow-roll inflation

2The shape of the potential in Eq. (23) is similar to that of the ”T-model” in Ref. [45] in the µ ! 0 limit. For
µ 6= 0, there appears a small bump on the side of the potential, which di↵ers the model from the ”T-model”.

5

Model-I:

Model-II:

Among several successful inflationary models that satisfy these conditions [29–31], we consider
chaotic inflation with an inverse monomial coupling and identify this model as Model-I. The
inflaton potential and the coupling function for Model-I are given by

V (�) =
V0

4
(�)n , ⇠(�) = ⇠0(�)

�n
, (21)

where V0 is a dimensionless constant and n > 0 is assumed. From Eqs. (14) and (20), the
observable quantities are obtianed in terms of N⇤ as

nS � 1 = �
2(n+ 2)

4N⇤ + n
, nT = �

2n

4N⇤ + n
, r =

16n(1� ↵)

4N⇤ + n
(22)

↵S = �
8(n+ 2)

(4N⇤ + n)2
, ↵T = �

8n

(4N⇤ + n)2
,

where ↵ ⌘ 4V0⇠0/3. One can see from the above equations that the tensor spectral index for
Model-I is always negative as long as n > 0 hence the inflationary tensor power spectrum has a
red tilt, nT < 0. The tensor-to-scalar ratio r is suppressed for a positive ↵ while it is enhanced
for a negative ↵.

✏ could be negative if the potential and the coupling functions satisfy the following conditions
from Eq. (7): 8

<

:
⇠� < �

3
44

V�

V 2 , for V� > 0,

⇠� > �
3

44
V�

V 2 , for V� < 0 .

This kind of model is identified as Model-II. We take the following potential and the coupling
function for this type, which was first introduced in Ref. [32], as 2

V (�) =
1

4
[tanh (�) +

p
µ sech (�)]2 , ⇠(�) =

3
h
sinh2(�)� 1p

µsinh(�)
i

4
⇥p

µ+ sinh (�)
⇤2 , (23)

where µ > 0 is assumed. From Eqs. (14) and (20), the observable quantities are obtained as,

nS � 1 = �
2

N⇤ + µ
, nT =

2µ(N⇤ � 1)

(N⇤ + µ)(N2
⇤ + µ)

, r =
8

N2
⇤ + µ

, (24)

↵S = �
2

(N⇤ + µ)2
, ↵T = �

2

(N⇤ + µ)2
+

2(N2
⇤ � µ)

(N2
⇤ + µ)2

.

Since nS is well constrained by the current observation, the range of the model parameter µ can
be determined from Eq. (24) to be µ = 2/(1�nS)�N⇤ ⇠ O(10) where 40  N⇤  70 is assumed.
nT is positive as long as N⇤ > 1, which is necessary condition for inflation to successfully solve
the horizon and the flatness problems of standard big bang cosmology. Thus, the inflationary
tensor power spectrum of Model-II always has a blue-tilt, nT > 0.

We plot the theoretical predictions of Model-I (dashed line) for n = 2 and Model-II (solid
line) against the observational data [8] in nS � r plane in Figure 1. For ↵ = 0 in Model-I,
its prediction locates at the edge of the 2� contour when N⇤ = 60, represented by the red
dot in Figure 1. The parameter range where ↵ < 0 is ruled out by the observation because
their prediction of the tensor-to-scalar ratio locates o↵ the 2� contour. However, models with a
positive ↵, particularly between 0  ↵  1, are preferred by the observation [8]. The predictions
for 0  ↵  1 is plotted in dashed line in Figure 1. The standard single-field slow-roll inflation

2The shape of the potential in Eq. (23) is similar to that of the ”T-model” in Ref. [45] in the µ ! 0 limit. For
µ 6= 0, there appears a small bump on the side of the potential, which di↵ers the model from the ”T-model”.
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model is recovered when ↵ = 0. The predictions of Model-II are plotted in solid line with
0 < µ  50 where the big blue dot corresponds to µ = 0. By using the observational best-fit
value for nS = 0.9655±0.0062 [8], we get the upper limit of the tensor-to-scalar ratio for Model-
II to be r ' 0.0032 for N⇤ = 50 and r ' 0.0022 for N⇤ = 60 which are nearly insensitive on µ.
Further details of the each inflation model can be found in corresponding references [29–32]

Figure 1: The marginalized 68% and 95% confidence level contours for nS and r0.002 from
Planck2015 TT+lowP and the theoretical predictions of models in Eqs. (21) and (23). The red
line indicates Model-I with fixed ↵ = 0 but varying n. The parameter ↵ then grows from zero to
unity along each n = 1, n = 2, and n = 4 lines. For Model-II, the black solid line, the values of
µ also increase from larger blue end-point to smaller one; where 10�4

< µ  50. The e-folding
number is set to N⇤ = 60 along each line.

4 Primordial Gravitational Waves induced by the blue-tilted
and red-tiled tensor spectra

We discussed two types of GB inflation models in the previous section. In this section, we
calculate the energy spectrum of the pGW background for selected models; Model-I and Model-
II. We start the present section by reviewing a formalism to calculate the energy spectrum of
the pGW background. The pGWs are described by a tensor part of the metric fluctuations in
the linearized flat FRW metric of the form

ds
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where hij is symmetric under the exchange of indices, and satisfies the transverse-traceless
condition @ih

ij = 0 , �ijhij = 0. The tensor perturbation can be expanded in Fourier space as
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where � denotes each polarization state of the tensor perturbations and ✏
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relation
P

i,j ✏
�
ij

⇣
✏
�0
ij

⌘⇤
= 2���

0
. The GW energy density ⇢GW is defined by ⇢GW = �T

0
0 and

can be written as

⇢GW =
M

2
p

4

Z
d ln k

✓
k

a

◆2
k
3

⇡2

X

�

hh
†
�, kh�, ki. (27)

6

where the bracket h. . .i indicates the spatial average. The strength of GW is characterized by
their energy spectrum, which is written by

⌦GW (k) =
1

⇢crit

d⇢GW

d ln k
, (28)

where ⇢crit = 3H2
0M

2
p is the critical density and H0 is the present Hubble constant, which is

measured by the observation as H0 = 100h0km s�1Mpc�1 with h0 = 0.6731 [8]. By using Eqs.
(27) and (28), we rewrite

⌦GW (k) =
k
2

12H2
0

PT (k), (29)

where PT is the power spectrum of the pGW observed today and is related to that of the
inflationary one PT (k) through the transfer function T (k) as follows

PT ⌘
k
3

⇡2

X
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hh
†
�, kh�, ki = T

2(k)PT (k). (30)

The inflationary power spectrum for the tensor perturbations can be parameterized as follows

PT (k) = PT (k⇤)
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k⇤

◆nT+
↵T
2 ln(k/k⇤)

, (31)

where k⇤ is the reference pivot scale. The amplitude PT (k⇤) is often characterized by the tensor-
to-scalar ratio r as PT (k⇤) = rPS(k⇤) where PS(k⇤) is well measured by the observation as
ln(1010PS) = 3.089+0.024

�0.027 at k⇤ = 0.05Mpc�1 [8].
The transfer function reflects the evolution of GWs after horizon re-entry hence it depends on

the thermal history of the universe. One can attempt a task to calculate the transfer function
by numerically integrating the evolution equation for the pGW following Refs. [16–27]. The
evolution equation of the pGW for our models is given by [32],

h
00
�,k + 2

z
0
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zT
h
0
�,k + k

2
c
2
Th�,k = 0, (32)

where 0
⌘ d/d⌧ . The mode solutions to this equation have qualitative behavior in two regimes

[44]; either outside the horizon (k ⌧ aH) where the amplitude of h�,k remains constant or inside
the horizon (k � aH) where the amplitude begins to damp.

For modes that are re-enter the horizon during the matter dominated (MD) era, the solution
to Eq. (32) evolves as h�,k ⇠ 3j1(k⌧)/(k⌧) [16–18][44]. The changes in the relativistic degrees
of freedom g⇤(Tin) and their counterpart g⇤s(Tin) for entropy give another damping factor, see
the third and fourth terms on the right-hand side of Eq. (33) [18]. Here Tin is the temperature
of the universe at which the mode re-enter the horizon. The amplitude of modes that re-enter
the horizon before matter and radiation equality would be suppressed by the expansion of the
universe. The suppression should be larger for modes re-enter the horizon earlier, as g⇤ and
g⇤s would be larger than those for modes that re-enter the horizon later, see the mid-frequency
range in Figure 3. However, the modes that re-enter the horizon during MD era should not be
a↵ected by changes in the g⇤ and g⇤s as they do not change during MD era [18]. Taking all these
into account, a good fit to the transfer function is given by
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model is recovered when ↵ = 0. The predictions of Model-II are plotted in solid line with
0 < µ  50 where the big blue dot corresponds to µ = 0. By using the observational best-fit
value for nS = 0.9655±0.0062 [8], we get the upper limit of the tensor-to-scalar ratio for Model-
II to be r ' 0.0032 for N⇤ = 50 and r ' 0.0022 for N⇤ = 60 which are nearly insensitive on µ.
Further details of the each inflation model can be found in corresponding references [29–32]

Figure 1: The marginalized 68% and 95% confidence level contours for nS and r0.002 from
Planck2015 TT+lowP and the theoretical predictions of models in Eqs. (21) and (23). The red
line indicates Model-I with fixed ↵ = 0 but varying n. The parameter ↵ then grows from zero to
unity along each n = 1, n = 2, and n = 4 lines. For Model-II, the black solid line, the values of
µ also increase from larger blue end-point to smaller one; where 10�4

< µ  50. The e-folding
number is set to N⇤ = 60 along each line.

4 Primordial Gravitational Waves induced by the blue-tilted
and red-tiled tensor spectra

We discussed two types of GB inflation models in the previous section. In this section, we
calculate the energy spectrum of the pGW background for selected models; Model-I and Model-
II. We start the present section by reviewing a formalism to calculate the energy spectrum of
the pGW background. The pGWs are described by a tensor part of the metric fluctuations in
the linearized flat FRW metric of the form
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where the bracket h. . .i indicates the spatial average. The strength of GW is characterized by
their energy spectrum, which is written by

⌦GW (k) =
1

⇢crit

d⇢GW

d ln k
, (28)

where ⇢crit = 3H2
0M

2
p is the critical density and H0 is the present Hubble constant, which is

measured by the observation as H0 = 100h0km s�1Mpc�1 with h0 = 0.6731 [8]. By using Eqs.
(27) and (28), we rewrite

⌦GW (k) =
k
2

12H2
0

PT (k), (29)

where PT is the power spectrum of the pGW observed today and is related to that of the
inflationary one PT (k) through the transfer function T (k) as follows
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The inflationary power spectrum for the tensor perturbations can be parameterized as follows
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where k⇤ is the reference pivot scale. The amplitude PT (k⇤) is often characterized by the tensor-
to-scalar ratio r as PT (k⇤) = rPS(k⇤) where PS(k⇤) is well measured by the observation as
ln(1010PS) = 3.089+0.024

�0.027 at k⇤ = 0.05Mpc�1 [8].
The transfer function reflects the evolution of GWs after horizon re-entry hence it depends on

the thermal history of the universe. One can attempt a task to calculate the transfer function
by numerically integrating the evolution equation for the pGW following Refs. [16–27]. The
evolution equation of the pGW for our models is given by [32],
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where 0
⌘ d/d⌧ . The mode solutions to this equation have qualitative behavior in two regimes

[44]; either outside the horizon (k ⌧ aH) where the amplitude of h�,k remains constant or inside
the horizon (k � aH) where the amplitude begins to damp.

For modes that are re-enter the horizon during the matter dominated (MD) era, the solution
to Eq. (32) evolves as h�,k ⇠ 3j1(k⌧)/(k⌧) [16–18][44]. The changes in the relativistic degrees
of freedom g⇤(Tin) and their counterpart g⇤s(Tin) for entropy give another damping factor, see
the third and fourth terms on the right-hand side of Eq. (33) [18]. Here Tin is the temperature
of the universe at which the mode re-enter the horizon. The amplitude of modes that re-enter
the horizon before matter and radiation equality would be suppressed by the expansion of the
universe. The suppression should be larger for modes re-enter the horizon earlier, as g⇤ and
g⇤s would be larger than those for modes that re-enter the horizon later, see the mid-frequency
range in Figure 3. However, the modes that re-enter the horizon during MD era should not be
a↵ected by changes in the g⇤ and g⇤s as they do not change during MD era [18]. Taking all these
into account, a good fit to the transfer function is given by
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where the bracket h. . .i indicates the spatial average. The strength of GW is characterized by
their energy spectrum, which is written by

⌦GW (k) =
1
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d⇢GW
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, (28)

where ⇢crit = 3H2
0M

2
p is the critical density and H0 is the present Hubble constant, which is

measured by the observation as H0 = 100h0km s�1Mpc�1 with h0 = 0.6731 [8]. By using Eqs.
(27) and (28), we rewrite

⌦GW (k) =
k
2

12H2
0

PT (k), (29)

where PT is the power spectrum of the pGW observed today and is related to that of the
inflationary one PT (k) through the transfer function T (k) as follows
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where k⇤ is the reference pivot scale. The amplitude PT (k⇤) is often characterized by the tensor-
to-scalar ratio r as PT (k⇤) = rPS(k⇤) where PS(k⇤) is well measured by the observation as
ln(1010PS) = 3.089+0.024

�0.027 at k⇤ = 0.05Mpc�1 [8].
The transfer function reflects the evolution of GWs after horizon re-entry hence it depends on

the thermal history of the universe. One can attempt a task to calculate the transfer function
by numerically integrating the evolution equation for the pGW following Refs. [16–27]. The
evolution equation of the pGW for our models is given by [32],
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where 0
⌘ d/d⌧ . The mode solutions to this equation have qualitative behavior in two regimes

[44]; either outside the horizon (k ⌧ aH) where the amplitude of h�,k remains constant or inside
the horizon (k � aH) where the amplitude begins to damp.

For modes that are re-enter the horizon during the matter dominated (MD) era, the solution
to Eq. (32) evolves as h�,k ⇠ 3j1(k⌧)/(k⌧) [16–18][44]. The changes in the relativistic degrees
of freedom g⇤(Tin) and their counterpart g⇤s(Tin) for entropy give another damping factor, see
the third and fourth terms on the right-hand side of Eq. (33) [18]. Here Tin is the temperature
of the universe at which the mode re-enter the horizon. The amplitude of modes that re-enter
the horizon before matter and radiation equality would be suppressed by the expansion of the
universe. The suppression should be larger for modes re-enter the horizon earlier, as g⇤ and
g⇤s would be larger than those for modes that re-enter the horizon later, see the mid-frequency
range in Figure 3. However, the modes that re-enter the horizon during MD era should not be
a↵ected by changes in the g⇤ and g⇤s as they do not change during MD era [18]. Taking all these
into account, a good fit to the transfer function is given by

T
2(k) = ⌦2

m

✓
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◆2✓
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where the bracket h. . .i indicates the spatial average. The strength of GW is characterized by
their energy spectrum, which is written by

⌦GW (k) =
1

⇢crit

d⇢GW

d ln k
, (28)

where ⇢crit = 3H2
0M

2
p is the critical density and H0 is the present Hubble constant, which is

measured by the observation as H0 = 100h0km s�1Mpc�1 with h0 = 0.6731 [8]. By using Eqs.
(27) and (28), we rewrite

⌦GW (k) =
k
2

12H2
0

PT (k), (29)

where PT is the power spectrum of the pGW observed today and is related to that of the
inflationary one PT (k) through the transfer function T (k) as follows

PT ⌘
k
3

⇡2

X

�

hh
†
�, kh�, ki = T

2(k)PT (k). (30)

The inflationary power spectrum for the tensor perturbations can be parameterized as follows

PT (k) = PT (k⇤)

✓
k

k⇤

◆nT+
↵T
2 ln(k/k⇤)

, (31)

where k⇤ is the reference pivot scale. The amplitude PT (k⇤) is often characterized by the tensor-
to-scalar ratio r as PT (k⇤) = rPS(k⇤) where PS(k⇤) is well measured by the observation as
ln(1010PS) = 3.089+0.024

�0.027 at k⇤ = 0.05Mpc�1 [8].
The transfer function reflects the evolution of GWs after horizon re-entry hence it depends on

the thermal history of the universe. One can attempt a task to calculate the transfer function
by numerically integrating the evolution equation for the pGW following Refs. [16–27]. The
evolution equation of the pGW for our models is given by [32],

h
00
�,k + 2

z
0
T

zT
h
0
�,k + k

2
c
2
Th�,k = 0, (32)

where 0
⌘ d/d⌧ . The mode solutions to this equation have qualitative behavior in two regimes

[44]; either outside the horizon (k ⌧ aH) where the amplitude of h�,k remains constant or inside
the horizon (k � aH) where the amplitude begins to damp.

For modes that are re-enter the horizon during the matter dominated (MD) era, the solution
to Eq. (32) evolves as h�,k ⇠ 3j1(k⌧)/(k⌧) [16–18][44]. The changes in the relativistic degrees
of freedom g⇤(Tin) and their counterpart g⇤s(Tin) for entropy give another damping factor, see
the third and fourth terms on the right-hand side of Eq. (33) [18]. Here Tin is the temperature
of the universe at which the mode re-enter the horizon. The amplitude of modes that re-enter
the horizon before matter and radiation equality would be suppressed by the expansion of the
universe. The suppression should be larger for modes re-enter the horizon earlier, as g⇤ and
g⇤s would be larger than those for modes that re-enter the horizon later, see the mid-frequency
range in Figure 3. However, the modes that re-enter the horizon during MD era should not be
a↵ected by changes in the g⇤ and g⇤s as they do not change during MD era [18]. Taking all these
into account, a good fit to the transfer function is given by

T
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m
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◆2✓
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The pGWs are described by the tensor part of the pert. metric 

The strength of GW is characterized by their energy spectrum 

where ⌦mh
2
0 = 0.1344 is the matter density of the universe, g⇤s(Tth) is the e↵ective number of

light species for the entropy at the end of reheating and Tth is the reheating temperature, and
the subscript ”0” denotes that the quantity is evaluated at the present time [8]. In the k⌧0 ! 0
limit, the first spherical Bessel function becomes j1(k⌧0) = 1/(

p
2k⌧0) where ⌧0 ' 2H�1

0 is being
the present conformal time. The transfer functions T 2

1 (k/keq) and T
2
2 (k/kth) are calculated by

numerically integrating Eq. (32). For modes that re-enter the horizon before or after matter
and radiation equality, we get

T
2
1

✓
k

keq

◆
= 1 + 1.65

✓
k

keq

◆
+ 1.92

✓
k

keq

◆2

, (34)

where keq = 7.3⇥ 10�2⌦mh
2
0Mpc�1 is the comoving wavenumbers corresponding to the scale at

the time of matter and radiation equality. The transfer function for modes that re-entered the
horizon after the end of inflation and before the end of reheating is calculated as

T
2
2

✓
k

kth

◆
=

"
1 + �

✓
k

kth

◆ 3
2

+ �

✓
k

kth

◆2
#�1

, (35)

where kth = 1.7 ⇥ 1013Mpc�1 (g⇤s(Tth)/106.75)
1/6 �

Tth/106GeV
�
is the comoving wavenumber

corresponding to the scale at the time of the completion of reheating when the universe became
radiation dominated.3 The coe�cients � and � are di↵erent for di↵erent inflationary models.
In Figure 2, we plot the result of Eq. (35) for Model-I (dashed-black) and Model-II (green) in
comparison with Eq. (2.16) of Ref. [23] (red), which is the case where the GB term is absent. In
the figure, ”o” and ” ” denote the numerical solutions of the transfer function while the dashed-
black and green lines are the fitted transfer functions of Eq. (35) for Model-I and Model-II,
respectively. One can see that the transfer functions for Model-I and Model-II have the same
shape with coe�cients of � ' �0.23 and � ' 0.58.

Figure 2: Transfer functions given in Eq. (35) for Model-I and Model-II in comparison with that
of the Ref.[23].

By substituting Eqs. (31) and (33) into Eq. (30), then into Eq. (29), we obtain

h
2
0⌦GW =

3h20
32⇡2H2

0⌧
4
0 f

2
⌦2
mT

2
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f

feq

◆
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2

✓
f

fth

◆
rPS

✓
f

f⇤

◆nT+
↵T
2 ln(f/f⇤)

, (36)

where the frequency relation, k = 2⇡f , is used. The quantities nT , ↵T , and r are the functions
of the slow-roll parameters. However, they can be expressed in terms of nS and the model

3The coe�cients of the transfer functions depend on the choice of reference wavenumber, keq and kth.
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where the bracket h. . .i indicates the spatial average. The strength of GW is characterized by
their energy spectrum, which is written by

⌦GW (k) =
1

⇢crit

d⇢GW

d ln k
, (28)

where ⇢crit = 3H2
0M

2
p is the critical density and H0 is the present Hubble constant, which is

measured by the observation as H0 = 100h0km s�1Mpc�1 with h0 = 0.6731 [8]. By using Eqs.
(27) and (28), we rewrite

⌦GW (k) =
k
2

12H2
0

PT (k), (29)

where PT is the power spectrum of the pGW observed today and is related to that of the
inflationary one PT (k) through the transfer function T (k) as follows

PT ⌘
k
3

⇡2

X

�

hh
†
�, kh�, ki = T

2(k)PT (k). (30)

The inflationary power spectrum for the tensor perturbations can be parameterized as follows

PT (k) = PT (k⇤)

✓
k

k⇤

◆nT+
↵T
2 ln(k/k⇤)

, (31)

where k⇤ is the reference pivot scale. The amplitude PT (k⇤) is often characterized by the tensor-
to-scalar ratio r as PT (k⇤) = rPS(k⇤) where PS(k⇤) is well measured by the observation as
ln(1010PS) = 3.089+0.024

�0.027 at k⇤ = 0.05Mpc�1 [8].
The transfer function reflects the evolution of GWs after horizon re-entry hence it depends on

the thermal history of the universe. One can attempt a task to calculate the transfer function
by numerically integrating the evolution equation for the pGW following Refs. [16–27]. The
evolution equation of the pGW for our models is given by [32],

h
00
�,k + 2

z
0
T

zT
h
0
�,k + k

2
c
2
Th�,k = 0, (32)

where 0
⌘ d/d⌧ . The mode solutions to this equation have qualitative behavior in two regimes

[44]; either outside the horizon (k ⌧ aH) where the amplitude of h�,k remains constant or inside
the horizon (k � aH) where the amplitude begins to damp.

For modes that are re-enter the horizon during the matter dominated (MD) era, the solution
to Eq. (32) evolves as h�,k ⇠ 3j1(k⌧)/(k⌧) [16–18][44]. The changes in the relativistic degrees
of freedom g⇤(Tin) and their counterpart g⇤s(Tin) for entropy give another damping factor, see
the third and fourth terms on the right-hand side of Eq. (33) [18]. Here Tin is the temperature
of the universe at which the mode re-enter the horizon. The amplitude of modes that re-enter
the horizon before matter and radiation equality would be suppressed by the expansion of the
universe. The suppression should be larger for modes re-enter the horizon earlier, as g⇤ and
g⇤s would be larger than those for modes that re-enter the horizon later, see the mid-frequency
range in Figure 3. However, the modes that re-enter the horizon during MD era should not be
a↵ected by changes in the g⇤ and g⇤s as they do not change during MD era [18]. Taking all these
into account, a good fit to the transfer function is given by

T
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where the bracket h. . .i indicates the spatial average. The strength of GW is characterized by
their energy spectrum, which is written by

⌦GW (k) =
1

⇢crit

d⇢GW

d ln k
, (28)

where ⇢crit = 3H2
0M

2
p is the critical density and H0 is the present Hubble constant, which is

measured by the observation as H0 = 100h0km s�1Mpc�1 with h0 = 0.6731 [8]. By using Eqs.
(27) and (28), we rewrite

⌦GW (k) =
k
2

12H2
0

PT (k), (29)

where PT is the power spectrum of the pGW observed today and is related to that of the
inflationary one PT (k) through the transfer function T (k) as follows

PT ⌘
k
3

⇡2

X

�

hh
†
�, kh�, ki = T

2(k)PT (k). (30)

The inflationary power spectrum for the tensor perturbations can be parameterized as follows

PT (k) = PT (k⇤)

✓
k

k⇤

◆nT+
↵T
2 ln(k/k⇤)

, (31)

where k⇤ is the reference pivot scale. The amplitude PT (k⇤) is often characterized by the tensor-
to-scalar ratio r as PT (k⇤) = rPS(k⇤) where PS(k⇤) is well measured by the observation as
ln(1010PS) = 3.089+0.024

�0.027 at k⇤ = 0.05Mpc�1 [8].
The transfer function reflects the evolution of GWs after horizon re-entry hence it depends on

the thermal history of the universe. One can attempt a task to calculate the transfer function
by numerically integrating the evolution equation for the pGW following Refs. [16–27]. The
evolution equation of the pGW for our models is given by [32],

h
00
�,k + 2

z
0
T

zT
h
0
�,k + k

2
c
2
Th�,k = 0, (32)

where 0
⌘ d/d⌧ . The mode solutions to this equation have qualitative behavior in two regimes

[44]; either outside the horizon (k ⌧ aH) where the amplitude of h�,k remains constant or inside
the horizon (k � aH) where the amplitude begins to damp.

For modes that are re-enter the horizon during the matter dominated (MD) era, the solution
to Eq. (32) evolves as h�,k ⇠ 3j1(k⌧)/(k⌧) [16–18][44]. The changes in the relativistic degrees
of freedom g⇤(Tin) and their counterpart g⇤s(Tin) for entropy give another damping factor, see
the third and fourth terms on the right-hand side of Eq. (33) [18]. Here Tin is the temperature
of the universe at which the mode re-enter the horizon. The amplitude of modes that re-enter
the horizon before matter and radiation equality would be suppressed by the expansion of the
universe. The suppression should be larger for modes re-enter the horizon earlier, as g⇤ and
g⇤s would be larger than those for modes that re-enter the horizon later, see the mid-frequency
range in Figure 3. However, the modes that re-enter the horizon during MD era should not be
a↵ected by changes in the g⇤ and g⇤s as they do not change during MD era [18]. Taking all these
into account, a good fit to the transfer function is given by
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where ⌦mh
2
0 = 0.1344 is the matter density of the universe, g⇤s(Tth) is the e↵ective number of

light species for the entropy at the end of reheating and Tth is the reheating temperature, and
the subscript ”0” denotes that the quantity is evaluated at the present time [8]. In the k⌧0 ! 0
limit, the first spherical Bessel function becomes j1(k⌧0) = 1/(

p
2k⌧0) where ⌧0 ' 2H�1

0 is being
the present conformal time. The transfer functions T 2

1 (k/keq) and T
2
2 (k/kth) are calculated by

numerically integrating Eq. (32). For modes that re-enter the horizon before or after matter
and radiation equality, we get

T
2
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◆
= 1 + 1.65
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k

keq

◆
+ 1.92
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k

keq

◆2

, (34)

where keq = 7.3⇥ 10�2⌦mh
2
0Mpc�1 is the comoving wavenumbers corresponding to the scale at

the time of matter and radiation equality. The transfer function for modes that re-entered the
horizon after the end of inflation and before the end of reheating is calculated as

T
2
2
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1 + �
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k

kth

◆ 3
2
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✓
k
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, (35)

where kth = 1.7 ⇥ 1013Mpc�1 (g⇤s(Tth)/106.75)
1/6 �

Tth/106GeV
�
is the comoving wavenumber

corresponding to the scale at the time of the completion of reheating when the universe became
radiation dominated.3 The coe�cients � and � are di↵erent for di↵erent inflationary models.
In Figure 2, we plot the result of Eq. (35) for Model-I (dashed-black) and Model-II (green) in
comparison with Eq. (2.16) of Ref. [23] (red), which is the case where the GB term is absent. In
the figure, ”o” and ” ” denote the numerical solutions of the transfer function while the dashed-
black and green lines are the fitted transfer functions of Eq. (35) for Model-I and Model-II,
respectively. One can see that the transfer functions for Model-I and Model-II have the same
shape with coe�cients of � ' �0.23 and � ' 0.58.

Figure 2: Transfer functions given in Eq. (35) for Model-I and Model-II in comparison with that
of the Ref.[23].

By substituting Eqs. (31) and (33) into Eq. (30), then into Eq. (29), we obtain

h
2
0⌦GW =

3h20
32⇡2H2

0⌧
4
0 f

2
⌦2
mT

2
1

✓
f

feq

◆
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2
2

✓
f

fth

◆
rPS

✓
f

f⇤

◆nT+
↵T
2 ln(f/f⇤)

, (36)

where the frequency relation, k = 2⇡f , is used. The quantities nT , ↵T , and r are the functions
of the slow-roll parameters. However, they can be expressed in terms of nS and the model

3The coe�cients of the transfer functions depend on the choice of reference wavenumber, keq and kth.
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(a) Model-I with varying model parameter ↵.
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(b) Model-II with varying model parameter µ.

(c) Model-I with ↵ = 0 and varying Tth. (d) Model-II with µ = 40 and varying Tth.

(e) Model-I with ↵T = 0 and ↵T ' �0.0003. (f) Model-II with ↵T = 0 and ↵T ' 0.0037.

Figure 3: The frequency dependence of the energy spectrum for Model-I and Model-II together
with sensitivities of the DECIGO [15]. We set nS = 0.9655 and Tth = 108 GeV. The red lines
in Figure 3(a) and 3(e) indicate the absence of the GB term.

As we can see in Figure 3, both Model-I and Model-II predict observable GW spectrum
around frequency 0.1 � 10 Hz. The amplitude of the pGW spectrum sourced by Model-I is
suppressed as ↵ increases, see Figure 3(a). On the other hand for Model-II, the amplitude is
enhanced for increasing values of µ as is seen in Figure 3(b). In the figure, we used observationally
preferred values of ↵ and µ from Figure 1; namely, 0  ↵  1 for Model-I and 0 < µ . 50
Model-II. The running of the spectral index of the tensor perturbations, ↵T , further suppresses
(enhances) the spectrum for Model-I (Model-II ) as frequency increases as is seen in Figure 3(e)
(Figure 3(f)) where spectra with and without ↵T are compared. This suppression (enhancement)
implies that ↵T is negative (positive).
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Model-I: Model-II:

α ≡
4
3

V0ξ0

Among several successful inflationary models that satisfy these conditions [29–31], we consider
chaotic inflation with an inverse monomial coupling and identify this model as Model-I. The
inflaton potential and the coupling function for Model-I are given by

V (�) =
V0

4
(�)n , ⇠(�) = ⇠0(�)

�n
, (21)

where V0 is a dimensionless constant and n > 0 is assumed. From Eqs. (14) and (20), the
observable quantities are obtianed in terms of N⇤ as

nS � 1 = �
2(n+ 2)

4N⇤ + n
, nT = �

2n

4N⇤ + n
, r =

16n(1� ↵)

4N⇤ + n
(22)

↵S = �
8(n+ 2)

(4N⇤ + n)2
, ↵T = �

8n

(4N⇤ + n)2
,

where ↵ ⌘ 4V0⇠0/3. One can see from the above equations that the tensor spectral index for
Model-I is always negative as long as n > 0 hence the inflationary tensor power spectrum has a
red tilt, nT < 0. The tensor-to-scalar ratio r is suppressed for a positive ↵ while it is enhanced
for a negative ↵.

✏ could be negative if the potential and the coupling functions satisfy the following conditions
from Eq. (7): 8

<

:
⇠� < �

3
44

V�

V 2 , for V� > 0,

⇠� > �
3

44
V�

V 2 , for V� < 0 .

This kind of model is identified as Model-II. We take the following potential and the coupling
function for this type, which was first introduced in Ref. [32], as 2

V (�) =
sech2 (�)

4
[
p
µ+ sinh (�)]2 , ⇠(�) =

3
h
sinh2(�)� 1p

µsinh(�)
i

4
⇥p

µ+ sinh (�)
⇤2 , (23)

where µ > 0 is assumed. From Eqs. (14) and (20), the observable quantities are obtained as,

nS � 1 = �
2

N⇤ + µ
, nT =

2µ(N⇤ � 1)

(N⇤ + µ)(N2
⇤ + µ)

, r =
8

N2
⇤ + µ

, (24)

↵S = �
2

(N⇤ + µ)2
, ↵T = �

2

(N⇤ + µ)2
+

2(N2
⇤ � µ)

(N2
⇤ + µ)2

.

Since nS is well constrained by the current observation, the range of the model parameter µ can
be determined from Eq. (24) to be µ = 2/(1�nS)�N⇤ ⇠ O(10) where 40  N⇤  70 is assumed.
nT is positive as long as N⇤ > 1, which is necessary condition for inflation to successfully solve
the horizon and the flatness problems of standard big bang cosmology. Thus, the inflationary
tensor power spectrum of Model-II always has a blue-tilt, nT > 0.

We plot the theoretical predictions of Model-I (dashed line) for n = 2 and Model-II (solid
line) against the observational data [8] in nS � r plane in Figure 1. For ↵ = 0 in Model-I,
its prediction locates at the edge of the 2� contour when N⇤ = 60, represented by the red
dot in Figure 1. The parameter range where ↵ < 0 is ruled out by the observation because
their prediction of the tensor-to-scalar ratio locates o↵ the 2� contour. However, models with a
positive ↵, particularly between 0  ↵  1, are preferred by the observation [8]. The predictions
for 0  ↵  1 is plotted in dashed line in Figure 1. The standard single-field slow-roll inflation

2The shape of the potential in Eq. (23) is similar to that of the ”T-model” in Ref. [45] in the µ ! 0 limit. For
µ 6= 0, there appears a small bump on the side of the potential, which di↵ers the model from the ”T-model”.
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Model-I:

Model-II:

Among several successful inflationary models that satisfy these conditions [29–31], we consider
chaotic inflation with an inverse monomial coupling and identify this model as Model-I. The
inflaton potential and the coupling function for Model-I are given by

V (�) =
V0

4
(�)n , ⇠(�) = ⇠0(�)

�n
, (21)

where V0 is a dimensionless constant and n > 0 is assumed. From Eqs. (14) and (20), the
observable quantities are obtianed in terms of N⇤ as

nS � 1 = �
2(n+ 2)

4N⇤ + n
, nT = �

2n

4N⇤ + n
, r =

16n(1� ↵)

4N⇤ + n
(22)

↵S = �
8(n+ 2)

(4N⇤ + n)2
, ↵T = �

8n

(4N⇤ + n)2
,

where ↵ ⌘ 4V0⇠0/3. One can see from the above equations that the tensor spectral index for
Model-I is always negative as long as n > 0 hence the inflationary tensor power spectrum has a
red tilt, nT < 0. The tensor-to-scalar ratio r is suppressed for a positive ↵ while it is enhanced
for a negative ↵.

✏ could be negative if the potential and the coupling functions satisfy the following conditions
from Eq. (7): 8

<

:
⇠� < �

3
44

V�

V 2 , for V� > 0,

⇠� > �
3

44
V�

V 2 , for V� < 0 .

This kind of model is identified as Model-II. We take the following potential and the coupling
function for this type, which was first introduced in Ref. [32], as 2

V (�) =
1

4
[tanh (�) +

p
µ sech (�)]2 , ⇠(�) =

3
h
sinh2(�)� 1p

µsinh(�)
i

4
⇥p

µ+ sinh (�)
⇤2 , (23)

where µ > 0 is assumed. From Eqs. (14) and (20), the observable quantities are obtained as,

nS � 1 = �
2

N⇤ + µ
, nT =

2µ(N⇤ � 1)

(N⇤ + µ)(N2
⇤ + µ)

, r =
8
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⇤ + µ

, (24)

↵S = �
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(N⇤ + µ)2
, ↵T = �

2

(N⇤ + µ)2
+

2(N2
⇤ � µ)

(N2
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.

Since nS is well constrained by the current observation, the range of the model parameter µ can
be determined from Eq. (24) to be µ = 2/(1�nS)�N⇤ ⇠ O(10) where 40  N⇤  70 is assumed.
nT is positive as long as N⇤ > 1, which is necessary condition for inflation to successfully solve
the horizon and the flatness problems of standard big bang cosmology. Thus, the inflationary
tensor power spectrum of Model-II always has a blue-tilt, nT > 0.

We plot the theoretical predictions of Model-I (dashed line) for n = 2 and Model-II (solid
line) against the observational data [8] in nS � r plane in Figure 1. For ↵ = 0 in Model-I,
its prediction locates at the edge of the 2� contour when N⇤ = 60, represented by the red
dot in Figure 1. The parameter range where ↵ < 0 is ruled out by the observation because
their prediction of the tensor-to-scalar ratio locates o↵ the 2� contour. However, models with a
positive ↵, particularly between 0  ↵  1, are preferred by the observation [8]. The predictions
for 0  ↵  1 is plotted in dashed line in Figure 1. The standard single-field slow-roll inflation

2The shape of the potential in Eq. (23) is similar to that of the ”T-model” in Ref. [45] in the µ ! 0 limit. For
µ 6= 0, there appears a small bump on the side of the potential, which di↵ers the model from the ”T-model”.
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(a) Model-I with varying model parameter ↵. (b) Model-II with varying model parameter µ.

(c) Model-I with ↵ = 0 and varying Tth. (d) Model-II with µ = 40 and varying Tth.

ultimate-DECIGOModel-I with α=0

correlated-DECIGO

without running

with running

10210-210-610-610-1010-1410-18

10-18

10-17

10-16

10-15

Frequency [Hz]

h 0
2 Ω

G
W

(e) Model-I with ↵T = 0 and ↵T ' �0.0003.
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(f) Model-II with ↵T = 0 and ↵T ' 0.0037.

Figure 3: The frequency dependence of the energy spectrum for Model-I and Model-II together
with sensitivities of the DECIGO [15]. We set nS = 0.9655 and Tth = 108 GeV. The red lines
in Figure 3(a) and 3(e) indicate the absence of the GB term.

As we can see in Figure 3, both Model-I and Model-II predict observable GW spectrum
around frequency 0.1 � 10 Hz. The amplitude of the pGW spectrum sourced by Model-I is
suppressed as ↵ increases, see Figure 3(a). On the other hand for Model-II, the amplitude is
enhanced for increasing values of µ as is seen in Figure 3(b). In the figure, we used observationally
preferred values of ↵ and µ from Figure 1; namely, 0  ↵  1 for Model-I and 0 < µ . 50
Model-II. The running of the spectral index of the tensor perturbations, ↵T , further suppresses
(enhances) the spectrum for Model-I (Model-II ) as frequency increases as is seen in Figure 3(e)
(Figure 3(f)) where spectra with and without ↵T are compared. This suppression (enhancement)
implies that ↵T is negative (positive).
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(a) Model-I with varying model parameter ↵. (b) Model-II with varying model parameter µ.

ultimate-DECIGOModel-I without running

correlated-DECIGO

Tth=106 GeV

Tth=108 GeV

Tth=1010 GeV

10210-210-610-610-1010-1410-18

10-18

10-17

10-16

10-15

Frequency [Hz]

h 0
2 Ω

G
W

(c) Model-I with ↵ = 0 and varying Tth.
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(d) Model-II with µ = 40 and varying Tth.

(e) Model-I with ↵T = 0 and ↵T ' �0.0003. (f) Model-II with ↵T = 0 and ↵T ' 0.0037.

Figure 3: The frequency dependence of the energy spectrum for Model-I and Model-II together
with sensitivities of the DECIGO [15]. We set nS = 0.9655 and Tth = 108 GeV. The red lines
in Figure 3(a) and 3(e) indicate the absence of the GB term.

As we can see in Figure 3, both Model-I and Model-II predict observable GW spectrum
around frequency 0.1 � 10 Hz. The amplitude of the pGW spectrum sourced by Model-I is
suppressed as ↵ increases, see Figure 3(a). On the other hand for Model-II, the amplitude is
enhanced for increasing values of µ as is seen in Figure 3(b). In the figure, we used observationally
preferred values of ↵ and µ from Figure 1; namely, 0  ↵  1 for Model-I and 0 < µ . 50
Model-II. The running of the spectral index of the tensor perturbations, ↵T , further suppresses
(enhances) the spectrum for Model-I (Model-II ) as frequency increases as is seen in Figure 3(e)
(Figure 3(f)) where spectra with and without ↵T are compared. This suppression (enhancement)
implies that ↵T is negative (positive).
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Model-I: Model-II:

where ⌦mh
2
0 = 0.1344 is the matter density of the universe, g⇤s(Tth) is the e↵ective number of

light species for the entropy at the end of reheating and Tth is the reheating temperature, and
the subscript ”0” denotes that the quantity is evaluated at the present time [8]. In the k⌧0 ! 0
limit, the first spherical Bessel function becomes j1(k⌧0) = 1/(

p
2k⌧0) where ⌧0 ' 2H�1

0 is being
the present conformal time. The transfer functions T 2

1 (k/keq) and T
2
2 (k/kth) are calculated by

numerically integrating Eq. (32). For modes that re-enter the horizon before or after matter
and radiation equality, we get

T
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k

keq

◆
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✓
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keq

◆
+ 1.92

✓
k

keq

◆2

, (34)

where keq = 7.3⇥ 10�2⌦mh
2
0Mpc�1 is the comoving wavenumbers corresponding to the scale at

the time of matter and radiation equality. The transfer function for modes that re-entered the
horizon after the end of inflation and before the end of reheating is calculated as

T
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✓
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kth

◆
=

"
1 + �

✓
k

kth

◆ 3
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+ �

✓
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kth

◆2
#�1

, (35)

where kth = 1.7 ⇥ 1013Mpc�1 (g⇤s(Tth)/106.75)
1/6 �

Tth/106GeV
�
is the comoving wavenumber

corresponding to the scale at the time of the completion of reheating when the universe became
radiation dominated.3 The coe�cients � and � are di↵erent for di↵erent inflationary models.
In Figure 2, we plot the result of Eq. (35) for Model-I (dashed-black) and Model-II (green) in
comparison with Eq. (2.16) of Ref. [23] (red), which is the case where the GB term is absent. In
the figure, ”o” and ” ” denote the numerical solutions of the transfer function while the dashed-
black and green lines are the fitted transfer functions of Eq. (35) for Model-I and Model-II,
respectively. One can see that the transfer functions for Model-I and Model-II have the same
shape with coe�cients of � ' �0.23 and � ' 0.58.

Figure 2: Transfer functions given in Eq. (35) for Model-I and Model-II in comparison with that
of the Ref.[23].

By substituting Eqs. (31) and (33) into Eq. (30), then into Eq. (29), we obtain

h
2
0⌦GW =

3h20
32⇡2H2

0⌧
4
0 f
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fth
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✓
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2 ln(f/f⇤)

, (36)

where the frequency relation, k = 2⇡f , is used. The quantities nT , ↵T , and r are the functions
of the slow-roll parameters. However, they can be expressed in terms of nS and the model

3The coe�cients of the transfer functions depend on the choice of reference wavenumber, keq and kth.
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(b) Model-II with varying model parameter µ.

(c) Model-I with ↵ = 0 and varying Tth. (d) Model-II with µ = 40 and varying Tth.

(e) Model-I with ↵T = 0 and ↵T ' �0.0003. (f) Model-II with ↵T = 0 and ↵T ' 0.0037.

Figure 3: The frequency dependence of the energy spectrum for Model-I and Model-II together
with sensitivities of the DECIGO [15]. We set nS = 0.9655 and Tth = 108 GeV. The red lines
in Figure 3(a) and 3(e) indicate the absence of the GB term.

As we can see in Figure 3, both Model-I and Model-II predict observable GW spectrum
around frequency 0.1 � 10 Hz. The amplitude of the pGW spectrum sourced by Model-I is
suppressed as ↵ increases, see Figure 3(a). On the other hand for Model-II, the amplitude is
enhanced for increasing values of µ as is seen in Figure 3(b). In the figure, we used observationally
preferred values of ↵ and µ from Figure 1; namely, 0  ↵  1 for Model-I and 0 < µ . 50
Model-II. The running of the spectral index of the tensor perturbations, ↵T , further suppresses
(enhances) the spectrum for Model-I (Model-II ) as frequency increases as is seen in Figure 3(e)
(Figure 3(f)) where spectra with and without ↵T are compared. This suppression (enhancement)
implies that ↵T is negative (positive).
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where ⌦mh
2
0 = 0.1344 is the matter density of the universe, g⇤s(Tth) is the e↵ective number of

light species for the entropy at the end of reheating and Tth is the reheating temperature, and
the subscript ”0” denotes that the quantity is evaluated at the present time [8]. In the k⌧0 ! 0
limit, the first spherical Bessel function becomes j1(k⌧0) = 1/(
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0 is being
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where kth = 1.7 ⇥ 1013Mpc�1 (g⇤s(Tth)/106.75)
1/6 �

Tth/106GeV
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is the comoving wavenumber

corresponding to the scale at the time of the completion of reheating when the universe became
radiation dominated.3 The coe�cients � and � are di↵erent for di↵erent inflationary models.
In Figure 2, we plot the result of Eq. (35) for Model-I (dashed-black) and Model-II (green) in
comparison with Eq. (2.16) of Ref. [23] (red), which is the case where the GB term is absent. In
the figure, ”o” and ” ” denote the numerical solutions of the transfer function while the dashed-
black and green lines are the fitted transfer functions of Eq. (35) for Model-I and Model-II,
respectively. One can see that the transfer functions for Model-I and Model-II have the same
shape with coe�cients of � ' �0.23 and � ' 0.58.

Figure 2: Transfer functions given in Eq. (35) for Model-I and Model-II in comparison with that
of the Ref.[23].

By substituting Eqs. (31) and (33) into Eq. (30), then into Eq. (29), we obtain
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where the frequency relation, k = 2⇡f , is used. The quantities nT , ↵T , and r are the functions
of the slow-roll parameters. However, they can be expressed in terms of nS and the model

3The coe�cients of the transfer functions depend on the choice of reference wavenumber, keq and kth.
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light species for the entropy at the end of reheating and Tth is the reheating temperature, and
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is the comoving wavenumber

corresponding to the scale at the time of the completion of reheating when the universe became
radiation dominated.3 The coe�cients � and � are di↵erent for di↵erent inflationary models.
In Figure 2, we plot the result of Eq. (35) for Model-I (dashed-black) and Model-II (green) in
comparison with Eq. (2.16) of Ref. [23] (red), which is the case where the GB term is absent. In
the figure, ”o” and ” ” denote the numerical solutions of the transfer function while the dashed-
black and green lines are the fitted transfer functions of Eq. (35) for Model-I and Model-II,
respectively. One can see that the transfer functions for Model-I and Model-II have the same
shape with coe�cients of � ' �0.23 and � ' 0.58.
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of the Ref.[23].
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where the frequency relation, k = 2⇡f , is used. The quantities nT , ↵T , and r are the functions
of the slow-roll parameters. However, they can be expressed in terms of nS and the model
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Once the pGWs from inflationary origin are detected:

where ⌦mh
2
0 = 0.1344 is the matter density of the universe, g⇤s(Tth) is the e↵ective number of

light species for the entropy at the end of reheating and Tth is the reheating temperature, and
the subscript ”0” denotes that the quantity is evaluated at the present time [8]. In the k⌧0 ! 0
limit, the first spherical Bessel function becomes j1(k⌧0) = 1/(

p
2k⌧0) where ⌧0 ' 2H�1

0 is being
the present conformal time. The transfer functions T 2

1 (k/keq) and T
2
2 (k/kth) are calculated by

numerically integrating Eq. (32). For modes that re-enter the horizon before or after matter
and radiation equality, we get

T
2
1

✓
k

keq

◆
= 1 + 1.65

✓
k

keq

◆
+ 1.92

✓
k

keq

◆2

, (34)

where keq = 7.3⇥ 10�2⌦mh
2
0Mpc�1 is the comoving wavenumbers corresponding to the scale at

the time of matter and radiation equality. The transfer function for modes that re-entered the
horizon after the end of inflation and before the end of reheating is calculated as

T
2
2

✓
k

kth

◆
=

"
1 + �

✓
k

kth

◆ 3
2

+ �

✓
k

kth

◆2
#�1

, (35)

where kth = 1.7 ⇥ 1013Mpc�1 (g⇤s(Tth)/106.75)
1/6 �

Tth/106GeV
�
is the comoving wavenumber
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comparison with Eq. (2.16) of Ref. [23] (red), which is the case where the GB term is absent. In
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black and green lines are the fitted transfer functions of Eq. (35) for Model-I and Model-II,
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where the frequency relation, k = 2⇡f , is used. The quantities nT , ↵T , and r are the functions
of the slow-roll parameters. However, they can be expressed in terms of nS and the model
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Numerical results:



Part-III:  
Constraints on Reheating



By assuming, 
constant equation-of-state during reheating,
no entropy production after the end of reheating

we calculate the duration of reheating and the thermalization 
temperature at the end of reheating,

where g⇤(Tth) is the number of relativistic degrees of freedom at the end of reheating. On the
other hand, ⇢th is related to the energy density at the end of inflation, ⇢end, through Nth and
!th [37–39],

⇢th = ⇢ende
�3(1+!th)Nth . (43)

The ⇢end is a model dependent quantity and is determined by the potential at the end of inflation
Vend as follows,

⇢end = �endVend , (44)

where �end is an e↵ective ratio of kinetic energy to potential energy at the end of inflation. In
our case, however, it includes the e↵ect of the Gauss-Bonnet term and is calculated as follows
(see Appendix A),

�end =
6

6� 2✏� �1(5� 2✏+ �2)

����
�=�end

. (45)

Substituting Eqs. (42)–(44) into Eq. (41), then into Eq. (40), we get the duration of reheating,
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Vend

H4
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+N⇤

�
. (46)

With fiducial values; Mpl = 
�1 = 2.435⇥ 1018 GeV, a0 = 1, T0 = 2.725 K, 1 K = (0.23 cm)�1,

1 Mpc = 3.0857⇥1019 km, g⇤ = g⇤s ' 106.75, and Planck’s pivot scale of k⇤ = 0.05Mpc�1 [7,8],
Eq. (46) is simplified as

Nth =
4

3!th � 1


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4
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✓
3�end

100⇡2

◆
+
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Vend
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⇤

◆
+N⇤

�
, (47)

where !th 6= 1/3 is assumed. If !th is smaller (larger) than 1/3 in Eq. (47), the sign of the
factor in front of the parentheses is positive (negative). Since Nth � 0, we obtain N⇤ � Nextra

for !th < 1/3 or N⇤  Nextra for ! > 1/3, where Nextra represents the first three terms in the
parentheses. The expression for the reheating temperature is derived from Eqs. (42)–(43),

Tth =

✓
30�endVend

⇡2g⇤

◆ 1
4

e
� 3

4 (1+!th)Nth . (48)

The reheating temperature reaches to its maximum value if Nth = 0 or N⇤ = Nextra, which
implies that reheating occurs instantaneously after the end of inflation. From Eqs. (47) and
(48), we see that Nth and Tth are linked to the inflationary quantities through �end, Vend, N⇤,
and H⇤. These quantities need to be calculated for each model we consider in this work.

Inflation ends when the slow-roll parameters (✏ and �1) become order of the unity; ✏(�end) ' 1
or �1(�end) ' 1, respectively. Substitution of Eqs. (21) and (23) into Eqs. (7) and (10) therefore
gives the inflaton value at the end of inflation, �end. Once �end is found for both Model-I and
Model-II, one can also calculate Vend and �end as follows,
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2
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2
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4↵(n+ 1)� 2n
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Model-II : Vend =
(µ+ x)2

4 (1 + x2)
, (50)

�end =
6µ3/2

�
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µ+ x

�

6µ3/2 (x5 + 4x3 + 3x) + 6µ2 (x2 + 1)2 � 3µ (x2 + 3) +
p
µ (5x3 + 2x) + 2x2 � 1

,
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where g⇤(Tth) is the number of relativistic degrees of freedom at the end of reheating. On the
other hand, ⇢th is related to the energy density at the end of inflation, ⇢end, through Nth and
!th [37–39],

⇢th = ⇢ende
�3(1+!th)Nth . (43)

The ⇢end is a model dependent quantity and is determined by the potential at the end of inflation
Vend as follows,

⇢end = �endVend , (44)

where �end is an e↵ective ratio of kinetic energy to potential energy at the end of inflation. In
our case, however, it includes the e↵ect of the Gauss-Bonnet term and is calculated as follows
(see Appendix A),

�end =
6

6� 2✏� �1(5� 2✏+ �2)

����
�=�end

. (45)

Substituting Eqs. (42)–(44) into Eq. (41), then into Eq. (40), we get the duration of reheating,
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With fiducial values; Mpl = 
�1 = 2.435⇥ 1018 GeV, a0 = 1, T0 = 2.725 K, 1 K = (0.23 cm)�1,

1 Mpc = 3.0857⇥1019 km, g⇤ = g⇤s ' 106.75, and Planck’s pivot scale of k⇤ = 0.05Mpc�1 [7,8],
Eq. (46) is simplified as
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where !th 6= 1/3 is assumed. If !th is smaller (larger) than 1/3 in Eq. (47), the sign of the
factor in front of the parentheses is positive (negative). Since Nth � 0, we obtain N⇤ � Nextra

for !th < 1/3 or N⇤  Nextra for ! > 1/3, where Nextra represents the first three terms in the
parentheses. The expression for the reheating temperature is derived from Eqs. (42)–(43),
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e
� 3

4 (1+!th)Nth . (48)

The reheating temperature reaches to its maximum value if Nth = 0 or N⇤ = Nextra, which
implies that reheating occurs instantaneously after the end of inflation. From Eqs. (47) and
(48), we see that Nth and Tth are linked to the inflationary quantities through �end, Vend, N⇤,
and H⇤. These quantities need to be calculated for each model we consider in this work.

Inflation ends when the slow-roll parameters (✏ and �1) become order of the unity; ✏(�end) ' 1
or �1(�end) ' 1, respectively. Substitution of Eqs. (21) and (23) into Eqs. (7) and (10) therefore
gives the inflaton value at the end of inflation, �end. Once �end is found for both Model-I and
Model-II, one can also calculate Vend and �end as follows,
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2
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,
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ωth = const,

where g⇤(Tth) is the number of relativistic degrees of freedom at the end of reheating. On the
other hand, ⇢th is related to the energy density at the end of inflation, ⇢end, through Nth and
!th [37–39],

⇢th = ⇢ende
�3(1+!th)Nth . (43)

The ⇢end is a model dependent quantity and is determined by the potential at the end of inflation
Vend as follows,

⇢end = �endVend , (44)

where �end is an e↵ective ratio of kinetic energy to potential energy at the end of inflation. In
our case, however, it includes the e↵ect of the Gauss-Bonnet term and is calculated as follows
(see Appendix A),
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Substituting Eqs. (42)–(44) into Eq. (41), then into Eq. (40), we get the duration of reheating,
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where !th 6= 1/3 is assumed. If !th is smaller (larger) than 1/3 in Eq. (47), the sign of the
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for !th < 1/3 or N⇤  Nextra for ! > 1/3, where Nextra represents the first three terms in the
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The reheating temperature reaches to its maximum value if Nth = 0 or N⇤ = Nextra, which
implies that reheating occurs instantaneously after the end of inflation. From Eqs. (47) and
(48), we see that Nth and Tth are linked to the inflationary quantities through �end, Vend, N⇤,
and H⇤. These quantities need to be calculated for each model we consider in this work.

Inflation ends when the slow-roll parameters (✏ and �1) become order of the unity; ✏(�end) ' 1
or �1(�end) ' 1, respectively. Substitution of Eqs. (21) and (23) into Eqs. (7) and (10) therefore
gives the inflaton value at the end of inflation, �end. Once �end is found for both Model-I and
Model-II, one can also calculate Vend and �end as follows,
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where

α ≡
4
3

V0ξ0

Among several successful inflationary models that satisfy these conditions [29–31], we consider
chaotic inflation with an inverse monomial coupling and identify this model as Model-I. The
inflaton potential and the coupling function for Model-I are given by

V (�) =
V0

4
(�)n , ⇠(�) = ⇠0(�)

�n
, (21)

where V0 is a dimensionless constant and n > 0 is assumed. From Eqs. (14) and (20), the
observable quantities are obtianed in terms of N⇤ as

nS � 1 = �
2(n+ 2)

4N⇤ + n
, nT = �

2n

4N⇤ + n
, r =

16n(1� ↵)

4N⇤ + n
(22)

↵S = �
8(n+ 2)

(4N⇤ + n)2
, ↵T = �

8n

(4N⇤ + n)2
,

where ↵ ⌘ 4V0⇠0/3. One can see from the above equations that the tensor spectral index for
Model-I is always negative as long as n > 0 hence the inflationary tensor power spectrum has a
red tilt, nT < 0. The tensor-to-scalar ratio r is suppressed for a positive ↵ while it is enhanced
for a negative ↵.

✏ could be negative if the potential and the coupling functions satisfy the following conditions
from Eq. (7): 8

<

:
⇠� < �

3
44

V�

V 2 , for V� > 0,

⇠� > �
3

44
V�

V 2 , for V� < 0 .

This kind of model is identified as Model-II. We take the following potential and the coupling
function for this type, which was first introduced in Ref. [32], as 2

V (�) =
sech2 (�)

4
[
p
µ+ sinh (�)]2 , ⇠(�) =

3
h
sinh2(�)� 1p

µsinh(�)
i

4
⇥p

µ+ sinh (�)
⇤2 , (23)

where µ > 0 is assumed. From Eqs. (14) and (20), the observable quantities are obtained as,

nS � 1 = �
2

N⇤ + µ
, nT =

2µ(N⇤ � 1)

(N⇤ + µ)(N2
⇤ + µ)

, r =
8
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⇤ + µ

, (24)

↵S = �
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(N⇤ + µ)2
, ↵T = �

2

(N⇤ + µ)2
+

2(N2
⇤ � µ)

(N2
⇤ + µ)2

.

Since nS is well constrained by the current observation, the range of the model parameter µ can
be determined from Eq. (24) to be µ = 2/(1�nS)�N⇤ ⇠ O(10) where 40  N⇤  70 is assumed.
nT is positive as long as N⇤ > 1, which is necessary condition for inflation to successfully solve
the horizon and the flatness problems of standard big bang cosmology. Thus, the inflationary
tensor power spectrum of Model-II always has a blue-tilt, nT > 0.

We plot the theoretical predictions of Model-I (dashed line) for n = 2 and Model-II (solid
line) against the observational data [8] in nS � r plane in Figure 1. For ↵ = 0 in Model-I,
its prediction locates at the edge of the 2� contour when N⇤ = 60, represented by the red
dot in Figure 1. The parameter range where ↵ < 0 is ruled out by the observation because
their prediction of the tensor-to-scalar ratio locates o↵ the 2� contour. However, models with a
positive ↵, particularly between 0  ↵  1, are preferred by the observation [8]. The predictions
for 0  ↵  1 is plotted in dashed line in Figure 1. The standard single-field slow-roll inflation

2The shape of the potential in Eq. (23) is similar to that of the ”T-model” in Ref. [45] in the µ ! 0 limit. For
µ 6= 0, there appears a small bump on the side of the potential, which di↵ers the model from the ”T-model”.
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Model-II:

Among several successful inflationary models that satisfy these conditions [29–31], we consider
chaotic inflation with an inverse monomial coupling and identify this model as Model-I. The
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where V0 is a dimensionless constant and n > 0 is assumed. From Eqs. (14) and (20), the
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where ↵ ⌘ 4V0⇠0/3. One can see from the above equations that the tensor spectral index for
Model-I is always negative as long as n > 0 hence the inflationary tensor power spectrum has a
red tilt, nT < 0. The tensor-to-scalar ratio r is suppressed for a positive ↵ while it is enhanced
for a negative ↵.

✏ could be negative if the potential and the coupling functions satisfy the following conditions
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This kind of model is identified as Model-II. We take the following potential and the coupling
function for this type, which was first introduced in Ref. [32], as 2
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where µ > 0 is assumed. From Eqs. (14) and (20), the observable quantities are obtained as,
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Since nS is well constrained by the current observation, the range of the model parameter µ can
be determined from Eq. (24) to be µ = 2/(1�nS)�N⇤ ⇠ O(10) where 40  N⇤  70 is assumed.
nT is positive as long as N⇤ > 1, which is necessary condition for inflation to successfully solve
the horizon and the flatness problems of standard big bang cosmology. Thus, the inflationary
tensor power spectrum of Model-II always has a blue-tilt, nT > 0.

We plot the theoretical predictions of Model-I (dashed line) for n = 2 and Model-II (solid
line) against the observational data [8] in nS � r plane in Figure 1. For ↵ = 0 in Model-I,
its prediction locates at the edge of the 2� contour when N⇤ = 60, represented by the red
dot in Figure 1. The parameter range where ↵ < 0 is ruled out by the observation because
their prediction of the tensor-to-scalar ratio locates o↵ the 2� contour. However, models with a
positive ↵, particularly between 0  ↵  1, are preferred by the observation [8]. The predictions
for 0  ↵  1 is plotted in dashed line in Figure 1. The standard single-field slow-roll inflation

2The shape of the potential in Eq. (23) is similar to that of the ”T-model” in Ref. [45] in the µ ! 0 limit. For
µ 6= 0, there appears a small bump on the side of the potential, which di↵ers the model from the ”T-model”.
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In our numerical study, we consider following models:



is seen in Figure 4(c). The black and red vertical dashed lines at ↵ = 0 and 1/4, and 1/3
correspond to the same !th = 0 dashed lines in Figures 4(a) and 4(b), respectively. There is no
vertical red line in Figure 5(b) because the red point in Figure 4(b) locates at the boundary of
the 1� region.
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(a) 0  ↵ < 1/4 along the black dots. (b) 0  ↵ < 1/3 along the black dots. (c) 0  ↵ < 2/5 along the black dots.

Figure 4: The ns dependence on Nth and Tth for Model-I with V0 = 0.5 ⇥ 10�12. The solid
black and red lines correspond to !th = �1/3, the dashed lines to !th = 0, the dot-dashed
lines to !th = 1/4, and the dotted lines to !th = 1. The black dots reaching up to the red one
indicate the instantaneous reheating process with Nth = 0 and the increasing of ↵. The arrow
indicates that N⇤ increases along the line. The green shaded region corresponds to the current
1� range nS = 0.9655 ± 0.0062 from Planck data [8] while the yellow band assumes the future
CMB experiments with sensitivity ±10�3 [41, 42], using the same central nS = 0.9655 value as
Planck. The horizontal blue lines at TEW = 102 GeV (dotted) and Tth = 106 GeV (dashed)
indicate the EW scale and the lower bound from pGW detection by DECIGO, respectively.

(a) (b)

Figure 5: The reheating temperature Tth as a function of ↵ where !th = 0. The vertical black
and red dashed lines correspond to !th = 0 dashed lines in Figure 4. The black dots reaching
up to the red one indicate the instantaneous reheating with Nth = 0. The background shared
regions, as well as the horizontal lines, are as for Figure 4.

When ↵ = 0, the reheating temperature peaks at Tth ⇠ 1015 GeV in each three cases; see the
bigger black intersecting points in Figure 4 and 5. When ↵ 6= 0, the maximum Tth is denoted
by the red points, but the exact values depend on the range of ↵ for each n. Previously from
Eq. (22) and Figure 1, we learned that the range 0  ↵  1 is favored by inflation. However,
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Among several successful inflationary models that satisfy these conditions [29–31], we consider
chaotic inflation with an inverse monomial coupling and identify this model as Model-I. The
inflaton potential and the coupling function for Model-I are given by

V (�) =
V0

4
(�)n , ⇠(�) = ⇠0(�)

�n
, (21)

where V0 is a dimensionless constant and n > 0 is assumed. From Eqs. (14) and (20), the
observable quantities are obtianed in terms of N⇤ as
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,

where ↵ ⌘ 4V0⇠0/3. One can see from the above equations that the tensor spectral index for
Model-I is always negative as long as n > 0 hence the inflationary tensor power spectrum has a
red tilt, nT < 0. The tensor-to-scalar ratio r is suppressed for a positive ↵ while it is enhanced
for a negative ↵.

✏ could be negative if the potential and the coupling functions satisfy the following conditions
from Eq. (7): 8
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This kind of model is identified as Model-II. We take the following potential and the coupling
function for this type, which was first introduced in Ref. [32], as 2
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where µ > 0 is assumed. From Eqs. (14) and (20), the observable quantities are obtained as,
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Since nS is well constrained by the current observation, the range of the model parameter µ can
be determined from Eq. (24) to be µ = 2/(1�nS)�N⇤ ⇠ O(10) where 40  N⇤  70 is assumed.
nT is positive as long as N⇤ > 1, which is necessary condition for inflation to successfully solve
the horizon and the flatness problems of standard big bang cosmology. Thus, the inflationary
tensor power spectrum of Model-II always has a blue-tilt, nT > 0.

We plot the theoretical predictions of Model-I (dashed line) for n = 2 and Model-II (solid
line) against the observational data [8] in nS � r plane in Figure 1. For ↵ = 0 in Model-I,
its prediction locates at the edge of the 2� contour when N⇤ = 60, represented by the red
dot in Figure 1. The parameter range where ↵ < 0 is ruled out by the observation because
their prediction of the tensor-to-scalar ratio locates o↵ the 2� contour. However, models with a
positive ↵, particularly between 0  ↵  1, are preferred by the observation [8]. The predictions
for 0  ↵  1 is plotted in dashed line in Figure 1. The standard single-field slow-roll inflation

2The shape of the potential in Eq. (23) is similar to that of the ”T-model” in Ref. [45] in the µ ! 0 limit. For
µ 6= 0, there appears a small bump on the side of the potential, which di↵ers the model from the ”T-model”.
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ωth = − 1/3; 0; 1/4 and 1.From solid to dotted:

Numerical results:



Nth

ωth

for reheating, the positivity of �end in Eq. (47) puts another constraint on the model parameter.
Therefore, a new range for ↵ is found to be 0  ↵ < n/(2n + 2). The parameter space of ↵
therefore reduces for n > 0. Thus, we emphasize that reheating can be used as an additional
constraint to the models of inflation.

If the temperature of reheating is determined by the detection of the pGW, the equation-
of-state, as well as the duration of reheating, can be read o↵ from Figure 4 by matching both
upper and bottom panels with the same nS value. In other words, we can estimate !th and Nth

by using nS value if Tth is known. For example, let us assume that the scalar spectral index
and the temperature of reheating are determined by the current and the future experiments
such as Planck data [8] and DECIGO [15] to be nS = 0.9655 and Tth = 106 GeV, respectively.
With these values, both !th and Nth for Model-I with n = 1 and n = 2 can be computed as
follows. In order to compare cases with and without the GB term, let us first consider ↵ = 0
case. From the bottom panels of Figure 4, by matching nS = 0.9655 with Tth = 106 GeV,
we obtain !th ' �0.1550 for n = 1 and !th ' 0.4012 for n = 2. Using these !th values with
nS = 0.9655 in the upper panel, we obtain Nth = 32.452 for n = 1 and Nth = 19.816 for n = 2
cases. Similarly for ↵ 6= 0, we obtain (n,!th, Nth) = (1, 0.2092, 32.3801) when ↵ ' 0.2499 and
(n,!th, Nth) = (2, 0.9280, 19.6133) when ↵ ' 0.3333, respectively. To compare with ↵ = 0 case,
the duration of reheating seems to be slightly decreasing in the presence of the GB term. In
Figure 6, by using nS = 0.9655 and Tth = 106 GeV, we plot !th dependence of Nth for Model-I
with n = 1 and n = 2. Figure 6 confirms that reheating lasts shorter in the presence of the GB
term where than that of its absence. This result robust and holds even for changes of nS and
Tth values as long as they are observationally favored. It is also worth noting from Figure 4 and
6 that Model-I with n = 1 (n=2) favors the equation-of-state smaller (larger) than 1/3.

Model-I with n=1
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32.36
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(a) From black to red lines 0  ↵ < 1/4. (b) From black to red lines 0  ↵ < 1/3.

Figure 6: Nth as a function of !th when nS = 0.9655 and Tth = 106 GeV. From the black to red
lines ↵ value increases. If ↵ increases, Nth decreases.

The similar result is also obtained for Model-II. Although wide range of µ is acceptable,
the reliable once must give �end > 0. Thus, we plot �end as a function of µ in Figure 9, see
appendix B for further details. After obtaining the reliable range of µ, we plot Figure 7. Together
with Figure 8(a) where !th is assumed, it shows that reheating temperature is increasing as µ

increases. The result is valid for other constant values of !th. In contrast to Model-I, we find
from Figure 8(b) that the duration of reheating is longer in the presence of the GB term for
Model-II.
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With these values, both !th and Nth for Model-I with n = 1 and n = 2 can be computed as
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For Tth=106 GeV and nS=0.9655:

Model-I: α ≡
4
3

V0ξ0

Among several successful inflationary models that satisfy these conditions [29–31], we consider
chaotic inflation with an inverse monomial coupling and identify this model as Model-I. The
inflaton potential and the coupling function for Model-I are given by

V (�) =
V0

4
(�)n , ⇠(�) = ⇠0(�)

�n
, (21)

where V0 is a dimensionless constant and n > 0 is assumed. From Eqs. (14) and (20), the
observable quantities are obtianed in terms of N⇤ as

nS � 1 = �
2(n+ 2)

4N⇤ + n
, nT = �

2n

4N⇤ + n
, r =

16n(1� ↵)

4N⇤ + n
(22)

↵S = �
8(n+ 2)

(4N⇤ + n)2
, ↵T = �

8n

(4N⇤ + n)2
,

where ↵ ⌘ 4V0⇠0/3. One can see from the above equations that the tensor spectral index for
Model-I is always negative as long as n > 0 hence the inflationary tensor power spectrum has a
red tilt, nT < 0. The tensor-to-scalar ratio r is suppressed for a positive ↵ while it is enhanced
for a negative ↵.

✏ could be negative if the potential and the coupling functions satisfy the following conditions
from Eq. (7): 8

<

:
⇠� < �

3
44

V�

V 2 , for V� > 0,

⇠� > �
3

44
V�

V 2 , for V� < 0 .

This kind of model is identified as Model-II. We take the following potential and the coupling
function for this type, which was first introduced in Ref. [32], as 2

V (�) =
sech2 (�)

4
[
p
µ+ sinh (�)]2 , ⇠(�) =

3
h
sinh2(�)� 1p

µsinh(�)
i

4
⇥p

µ+ sinh (�)
⇤2 , (23)

where µ > 0 is assumed. From Eqs. (14) and (20), the observable quantities are obtained as,

nS � 1 = �
2

N⇤ + µ
, nT =

2µ(N⇤ � 1)

(N⇤ + µ)(N2
⇤ + µ)

, r =
8

N2
⇤ + µ

, (24)

↵S = �
2

(N⇤ + µ)2
, ↵T = �

2

(N⇤ + µ)2
+

2(N2
⇤ � µ)

(N2
⇤ + µ)2

.

Since nS is well constrained by the current observation, the range of the model parameter µ can
be determined from Eq. (24) to be µ = 2/(1�nS)�N⇤ ⇠ O(10) where 40  N⇤  70 is assumed.
nT is positive as long as N⇤ > 1, which is necessary condition for inflation to successfully solve
the horizon and the flatness problems of standard big bang cosmology. Thus, the inflationary
tensor power spectrum of Model-II always has a blue-tilt, nT > 0.

We plot the theoretical predictions of Model-I (dashed line) for n = 2 and Model-II (solid
line) against the observational data [8] in nS � r plane in Figure 1. For ↵ = 0 in Model-I,
its prediction locates at the edge of the 2� contour when N⇤ = 60, represented by the red
dot in Figure 1. The parameter range where ↵ < 0 is ruled out by the observation because
their prediction of the tensor-to-scalar ratio locates o↵ the 2� contour. However, models with a
positive ↵, particularly between 0  ↵  1, are preferred by the observation [8]. The predictions
for 0  ↵  1 is plotted in dashed line in Figure 1. The standard single-field slow-roll inflation

2The shape of the potential in Eq. (23) is similar to that of the ”T-model” in Ref. [45] in the µ ! 0 limit. For
µ 6= 0, there appears a small bump on the side of the potential, which di↵ers the model from the ”T-model”.
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with

where g⇤(Tth) is the number of relativistic degrees of freedom at the end of reheating. On the
other hand, ⇢th is related to the energy density at the end of inflation, ⇢end, through Nth and
!th [37–39],

⇢th = ⇢ende
�3(1+!th)Nth . (43)

The ⇢end is a model dependent quantity and is determined by the potential at the end of inflation
Vend as follows,

⇢end = �endVend , (44)

where �end is an e↵ective ratio of kinetic energy to potential energy at the end of inflation. In
our case, however, it includes the e↵ect of the Gauss-Bonnet term and is calculated as follows
(see Appendix A),

�end =
6

6� 2✏� �1(5� 2✏+ �2)

����
�=�end

. (45)

Substituting Eqs. (42)–(44) into Eq. (41), then into Eq. (40), we get the duration of reheating,

Nth =
4

3!th � 1


ln

✓
k

a0T0

◆
+

1

3
ln

✓
11g⇤s
43

◆
+

1

4
ln

✓
30�end

⇡2g⇤

◆
+

1

4
ln

✓
Vend

H4
⇤

◆
+N⇤

�
. (46)

With fiducial values; Mpl = 
�1 = 2.435⇥ 1018 GeV, a0 = 1, T0 = 2.725 K, 1 K = (0.23 cm)�1,

1 Mpc = 3.0857⇥1019 km, g⇤ = g⇤s ' 106.75, and Planck’s pivot scale of k⇤ = 0.05Mpc�1 [7,8],
Eq. (46) is simplified as

Nth =
4

3!th � 1


�60.0085 +

1

4
ln

✓
3�end

100⇡2

◆
+

1

4
ln

✓
Vend

H4
⇤

◆
+N⇤

�
, (47)

where !th 6= 1/3 is assumed. If !th is smaller (larger) than 1/3 in Eq. (47), the sign of the
factor in front of the parentheses is positive (negative). Since Nth � 0, we obtain N⇤ � Nextra

for !th < 1/3 or N⇤  Nextra for ! > 1/3, where Nextra represents the first three terms in the
parentheses. The expression for the reheating temperature is derived from Eqs. (42)–(43),

Tth =

✓
30�endVend

⇡2g⇤

◆ 1
4

e
� 3

4 (1+!th)Nth . (48)

The reheating temperature reaches to its maximum value if Nth = 0 or N⇤ = Nextra, which
implies that reheating occurs instantaneously after the end of inflation. From Eqs. (47) and
(48), we see that Nth and Tth are linked to the inflationary quantities through �end, Vend, N⇤,
and H⇤. These quantities need to be calculated for each model we consider in this work.

Inflation ends when the slow-roll parameters (✏ and �1) become order of the unity; ✏(�end) ' 1
or �1(�end) ' 1, respectively. Substitution of Eqs. (21) and (23) into Eqs. (7) and (10) therefore
gives the inflaton value at the end of inflation, �end. Once �end is found for both Model-I and
Model-II, one can also calculate Vend and �end as follows,

Model-I : Vend =
V0

4


n
2

2
(1� ↵)

�n
2

, �end = �
3n

4↵(n+ 1)� 2n
, (49)

Model-II : Vend =
(µ+ x)2

4 (1 + x2)
, (50)

�end =
6µ3/2

�
x
2 + 1

�2 �p
µ+ x

�

6µ3/2 (x5 + 4x3 + 3x) + 6µ2 (x2 + 1)2 � 3µ (x2 + 3) +
p
µ (5x3 + 2x) + 2x2 � 1

,
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0 ≤ α <
n

2n + 2
.0 ≤ α ≤ 1

where g⇤(Tth) is the number of relativistic degrees of freedom at the end of reheating. On the
other hand, ⇢th is related to the energy density at the end of inflation, ⇢end, through Nth and
!th [37–39],

⇢th = ⇢ende
�3(1+!th)Nth . (43)

The ⇢end is a model dependent quantity and is determined by the potential at the end of inflation
Vend as follows,

⇢end = �endVend , (44)

where �end is an e↵ective ratio of kinetic energy to potential energy at the end of inflation. In
our case, however, it includes the e↵ect of the Gauss-Bonnet term and is calculated as follows
(see Appendix A),
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The reheating temperature reaches to its maximum value if Nth = 0 or N⇤ = Nextra, which
implies that reheating occurs instantaneously after the end of inflation. From Eqs. (47) and
(48), we see that Nth and Tth are linked to the inflationary quantities through �end, Vend, N⇤,
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or �1(�end) ' 1, respectively. Substitution of Eqs. (21) and (23) into Eqs. (7) and (10) therefore
gives the inflaton value at the end of inflation, �end. Once �end is found for both Model-I and
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> 0;

Numerical results:



Figure 7: The ns dependence on Nth and Tth for Model-II with V0 = 0.5 ⇥ 10�12. The solid
black and red lines correspond to !th = �1/3, the dashed lines to !th = 0, the dot-dashed
lines to !th = 1/4, and the dotted lines to !th = 1. The black dots reaching up to the red
one indicate the instantaneous reheating process with Nth = 0 and the increasing of µ between
10�4

 µ  0.3517. The arrow indicates that N⇤ increases along the line. The shaded regions,
as well as the horizontal lines, are as for Figure 4.
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Figure 8: (Left) The black and red dots respectively at (µ, Tth) = (10�4
, 1.27 ⇥ 1017GeV) and

(0.3517, 2.69⇥ 1019GeV) correspond to the maximum reheating temperatures for instantaneous
reheating. The vertical black and red dashed lines represent !th = 0 lines of Figure 7. The
shaded regions, as well as the horizontal lines, are as for Figure 4. (Right) From black to red µ

increases; 10�4
 µ  0.3517.

Our results therefore imply that the presence of the GB term during inflation significantly
enhances the thermalization temperature at the end of reheating. Moreover, in comparison to
the standard case, the presence of the GB term shortens the duration of reheating for Model-I,
but extends it for Model-II. Once reheating temperature is determined by the detection of pGW,
in light of the current or future observational data, other parameters including !th and Tth can
also be determined with a help of Figure 4 and 7.
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Model-II:

Among several successful inflationary models that satisfy these conditions [29–31], we consider
chaotic inflation with an inverse monomial coupling and identify this model as Model-I. The
inflaton potential and the coupling function for Model-I are given by

V (�) =
V0

4
(�)n , ⇠(�) = ⇠0(�)

�n
, (21)

where V0 is a dimensionless constant and n > 0 is assumed. From Eqs. (14) and (20), the
observable quantities are obtianed in terms of N⇤ as

nS � 1 = �
2(n+ 2)

4N⇤ + n
, nT = �

2n

4N⇤ + n
, r =

16n(1� ↵)

4N⇤ + n
(22)

↵S = �
8(n+ 2)

(4N⇤ + n)2
, ↵T = �

8n

(4N⇤ + n)2
,

where ↵ ⌘ 4V0⇠0/3. One can see from the above equations that the tensor spectral index for
Model-I is always negative as long as n > 0 hence the inflationary tensor power spectrum has a
red tilt, nT < 0. The tensor-to-scalar ratio r is suppressed for a positive ↵ while it is enhanced
for a negative ↵.

✏ could be negative if the potential and the coupling functions satisfy the following conditions
from Eq. (7): 8

<

:
⇠� < �

3
44

V�

V 2 , for V� > 0,

⇠� > �
3

44
V�

V 2 , for V� < 0 .

This kind of model is identified as Model-II. We take the following potential and the coupling
function for this type, which was first introduced in Ref. [32], as 2

V (�) =
1

4
[tanh (�) +

p
µ sech (�)]2 , ⇠(�) =

3
h
sinh2(�)� 1p

µsinh(�)
i

4
⇥p

µ+ sinh (�)
⇤2 , (23)

where µ > 0 is assumed. From Eqs. (14) and (20), the observable quantities are obtained as,

nS � 1 = �
2

N⇤ + µ
, nT =

2µ(N⇤ � 1)

(N⇤ + µ)(N2
⇤ + µ)

, r =
8

N2
⇤ + µ

, (24)

↵S = �
2

(N⇤ + µ)2
, ↵T = �

2

(N⇤ + µ)2
+

2(N2
⇤ � µ)

(N2
⇤ + µ)2

.

Since nS is well constrained by the current observation, the range of the model parameter µ can
be determined from Eq. (24) to be µ = 2/(1�nS)�N⇤ ⇠ O(10) where 40  N⇤  70 is assumed.
nT is positive as long as N⇤ > 1, which is necessary condition for inflation to successfully solve
the horizon and the flatness problems of standard big bang cosmology. Thus, the inflationary
tensor power spectrum of Model-II always has a blue-tilt, nT > 0.

We plot the theoretical predictions of Model-I (dashed line) for n = 2 and Model-II (solid
line) against the observational data [8] in nS � r plane in Figure 1. For ↵ = 0 in Model-I,
its prediction locates at the edge of the 2� contour when N⇤ = 60, represented by the red
dot in Figure 1. The parameter range where ↵ < 0 is ruled out by the observation because
their prediction of the tensor-to-scalar ratio locates o↵ the 2� contour. However, models with a
positive ↵, particularly between 0  ↵  1, are preferred by the observation [8]. The predictions
for 0  ↵  1 is plotted in dashed line in Figure 1. The standard single-field slow-roll inflation

2The shape of the potential in Eq. (23) is similar to that of the ”T-model” in Ref. [45] in the µ ! 0 limit. For
µ 6= 0, there appears a small bump on the side of the potential, which di↵ers the model from the ”T-model”.
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By defining a new variable x ⌘ sinh(�) in Eq. (61), we can write ✏(�end) = 1 as follows

p
µx

3 + µx
2 + 2

p
µx+ µ� 1 = 0 . (62)

This equation has a real solution of the form

x = �

p
µ

3

"
1 + (µ� 6)

✓
2

x1

◆ 1
3

+
1

µ

✓
2

x1

◆� 1
3

#
, (63)

where

x1 = 2µ3 + 9µ2
� 27µ+

p
27(4µ5 � 17µ4 + 14µ3 + 27µ2) . (64)

It is worth noting that x1 is positive for µ > 0. However, x is positive for 0 < µ < 1 and is
negative for µ > 1. When µ = 1, we have x = 0.

Solving sinh(�end) = x for �end, we find the inflaton field value at the end of inflation as

�end = �arcsinh

"
p
µ

3

 
1 + (µ� 6)

✓
2

x1

◆ 1
3

+
1

µ

✓
2

x1

◆� 1
3

!#
+ 2⇡ic1 . (65)

where c1 is an arbitrary constant. The potential energy at the end of inflation therefore becomes

Vend =
1

4

(µ+ x)2

1 + x2
, (66)

and �end gets

�end =
6µ3/2

�
x
2 + 1

�2 �p
µ+ x

�

6µ2 (x2 + 1)2 � 3µ (x2 + 3) +
p
µx (5x2 + 2) + 2x2 + 6µ3/2x (x4 + 4x2 + 3)� 1

. (67)

Since x is given in Eq. (63) as a function of µ, both Vend and �end are functions only of µ. As
we mentioned earlier, �end must be positive in order to yield Nth � 0. Thus, in Figure 9, we
plot the positive range of �end as a function of µ. We see that �end diverges around µ ' 0.3517.
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Figure 9: The functional dependence of �end on µ from Eq. (67).
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Numerical results:



CONCLUSSION:

we are interested in understanding the effects of 
this additional term
during inflation and reheating
its contribution to the Primordial GW spectra

?

Inflationary models with a Gauss-Bonnet term are consistent 
with observational data,
These models predict both red- and blue-tilted inflationary 
tensor power spectrum,
Primordial GW spectrum suppresses (enhances) for nT<0 (nT>0),
Once pGWs are detected (DECIGO), Tth can be determined hence 
the other parameter of reheating including Nth and ωth can also 
be determined.
Tth significantly increases in the presence of the GB term
Moreover, reheating can be used as an additional constraint to 
inflationary models!  
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