# Precision Measurement of Positron Fraction and Combined Positron Electron Flux by AMS

Zuhao LI / IHEP, CAS On behalf of the AMS Collaboration ICHEP 2018 7, July, 2018

5m x 4m x 3m 7.5 tons

# Dark Matter search in space

- There are particles (protons, electrons) and antiparticles (positrons, antiprotons, anti-deuterons) in the cosmos.
- Particles are produced in many astrophysical sources.
- Antiparticles are much less abundant from astrophysical processes.
- Both particles and antiparticles can be produced by new physics sources, like Dark Matter.



Measuring antiparticles are more sensitive to Dark Matter, because the astrophysical background is much smaller.

### AMS: A unique TeV precision, multipurpose, magnetic spectrometer

#### Transition Radiation Detector (TRD) Identify e<sup>+</sup>, e<sup>-</sup>

#### Time of Flight (TOF) Z, E



# **Unique feature of AMS**

- The synergy of the Energy from ECAL and the Momentum from tracker can be used for proton separation .
- The protons deposit less energy in the calorimeter



# **Unique feature of AMS**

- The energy scale is the most important source of systematic errors for non-magnetic cosmic ray experiments.
- AMS determines the energy scale by using the tracker and magnet



By comparing the ISS data with beam data and MC simulation, the energy scale uncertainty is estimated to be 2% from 10-290GeV, 3% at 2 TeV

5

# **Proton rejection power**

- Proton rejection 10<sup>3</sup> to 10<sup>4</sup>
  with TRD
- Proton rejection is above 10<sup>4</sup> with ECAL and tracker
- TRD and ECAL is separated by the magnet, and have independent proton rejection power.
- The proton rejection power is better than 10<sup>6</sup>



## **Calibration of the AMS Detector**



## In 7 years on ISS, AMS has collected over 120 billion cosmic rays. Search for Dark Matter is one of the main physics topic of AMS .



# The measurement of electrons and positrons in AMS

#### A 960 GeV positron

### Primary cosmic ray particle:

• E>1.2·max cutoff

### TOF:

- Down-going particle β>0.8
- Charge |Z|=1 particle

### TRD:

- Provide proton rejection
- tracker and magnet:
- Provide accurate momentum measurement
- Charge |Z|=1 particle

### ECAL:

- Provide accurate energy measurement.
- Provide proton rejection with 3D shower shape



## Analysis method to determine the number of $e^+$

- ECAL selection to remove bulk of the proton background.
- For each bin, fit templates to positive data sample in ( $\Lambda_{TRD} \Lambda_{CC}$ ) plane
- Positron signal template from data using electrons
- Proton background template from proton data
- Charge confusion electron template from electron MC



With 28.1 million electrons and 1.9 million positrons,

the study of systematic errors is crucial

- 1. Charge confusion
- 2. Template selection
- 3. Template statistical fluctuation



Statistical errors dominates above 30 GeV for positron flux

## **AMS Positron fraction**



## **AMS Positron fraction together with earlier experiments**



#### A sample of papers on AMS data from more than 2300 publications



### **Models to explain the AMS Positron Fraction Measurements**

0.4

0.3

0.2

Some models are constrained by other measurements by AMS. **Examples 1: Modified propagation of cosmic rays** 

R. Cowsik et al., Ap. J. 786 (2014) 124, (pink band) explaining that the AMS positron fraction (gray circles) above 10 GV is due to propagation effects. However, this requires a specific energy dependence of the B/C ratio



#### The AMS Boron-to-Carbon (B/C) flux ratio

PRL 117, 231102 (2016)

11 million nuclei

**10<sup>3</sup>** 

**Models explain the AMS Positron Fraction Measurements** 

Some models are constrained by other measurements by AMS.

### **Examples 2: Supernova Remnants**



Not able to fit simultaneously the positron and B/C.



AMS measurement of positron anisotropy (presentation by Jorge Casaus) constrains the pulsar origin of positrons



## The combined (e<sup>+</sup> + e<sup>-</sup>) flux



#### The spectrum is smooth, no sharp structure is observed

## AMS (e<sup>+</sup> + e<sup>-</sup>) data with a few non-magnetic detectors





With 1.9 million positrons and 28.1 million electrons, AMS extends the positron fraction measurement to 1 TeV, and the combined (positron + electron) flux to 2 TeV.

AMS positron fraction by far exceeds the prediction from collisions of cosmic rays and appears to be in excellent agreement with a Dark Matter model.

By 2024 AMS will collect 4 million positrons, and will be able to determine the origin of the positron excess.