

Fragmentation Function measurements at Belle

ICHEP 2018, Seoul, July 4-11, 2018

Ralf Seidl (RIKEN)

Outline

- Single hadron fragmentation
 - Hyperon and charmed Baryon fragmentation
 - Λ polarizing fragmentation
- Di-hadron fragmentation
 - Unpolarized mass, z dependence
- Other ongoing measurments (kt deptendence)

nucleon P₁,s nucleon P₂,s nucleon P₂,s nucleon P₂,s

Access to FFs

- SIDIS: $\sigma^h(x, z, \dot{Q}^2, P_{h\perp}) \propto \sum e_q^2 q(x, p_t, Q^2) D_{1,q}^h(z, k_t, Q^2)$
 - Relies on unpol PDFs
 - Parton momentum known at LO
 - Flavor structure directly accessible
 - Transverse momenta convoluted between FF and PDF
 - pp:

$$\sigma^{h}(P_T) \propto \int_{x_1, x_2, z} \sum_{a, a' \in q, g} f_a(x_1) \otimes f_{a'}(x_2) \otimes \sigma_{aa'} \otimes D_{1, q}^{h}(z)$$

- Relies on unpol PDFs
- leading access to gluon FF
- Parton momenta not directly known
- e+e-:

$$\sigma^{h}(z, Q^{2}, k_{t}) \propto \sum_{z} e_{q}^{2} \left(D_{1,q}^{h}(z, k_{t}, Q^{2}) + D_{1,\overline{q}}^{h}(z, k_{t}, Q^{2}) \right)$$

- No PDFs necessary
- Clean initial state, parton momentum known at LO
- Flavor structure not directly accessible

Belle Detector and KEKB

- Asymmetric collider
- 8GeV e⁻ + 3.5GeV e⁺
- $\sqrt{s} = 10.58 \text{GeV} (Y(4S))$
- $e^+e^- \rightarrow Y(4S) \rightarrow B \overline{B}$
- Continuum production: 10.52 GeV
- $e^+e^- \rightarrow q q (u,d,s,c)$
- Integrated Luminosity: >1000 fb⁻¹
- >70fb⁻¹ => continuum

Single hadron fragmentation

$$D_{1,q}^{h}(z,Q^2)$$
 $D_{1,q}^{h}(z,k_T,Q^2)$

In
$$e^+e^-$$
 annihilation:
 $Q = \sqrt{s}$
 $z = \frac{2E_h}{Q} \approx \frac{E_h}{E_q}$

$$H_{1,q}^{\perp h}(z, k_T, Q^2)$$

$$H_{1,\mathbf{q}}^{\perp h}(z,\mathbf{k_T},Q^2)$$
 $D_{1,\mathbf{q}}^{\perp h}(z,\mathbf{k_T},Q^2)$

$$H_{1,q}^{h}(z,Q^{2})$$

$$\mathcal{G}_{\boldsymbol{q}}^{\boldsymbol{h}}(z,z_{\boldsymbol{h}},\omega_{J}R,\boldsymbol{j}_{\perp},Q^{2})$$

Hyperon Fragmentation

Belle: Niiyama et. al. PRD 97 (2018), 072005

- Hyperons similar to light hadron fragmentation \rightarrow peaking at low z (x_p)
- Baryon production not too well described by Pythia 6 default settings

Charmed baryon Fragmentation

Belle: Niiyama et. al. PRD 97 (2018), 072005

- Charmed baryons carry large fraction of parton momentum, similar to charmed mesons
- Charmed fragmentation reasonably described in Pythia for main states

Baryon production rates

- First feed-down corrected production rates extracted
- No $\Lambda(1520)$ enhancement seen
- Strangeness suppression seen for hyperons:

$$\frac{\sigma(S=-1)}{(2J+1)} > \frac{\sigma(S=-2,-3)}{(2J+1)}$$

• Difference in slopes for Λ_c and Σ_c in support of diquark production picture (spin 1 diquarks suppressed)

Single A polarization measurements

- Related to open question about Λ polarization in hadron collisions from 40 years ago!
- Fragmentation counterpart to the Sivers Function:

unpolarized parton fragments into transversely polarized baryon with transverse momentum wrt to parton direction

• Reconstruct Λ , its transverse momentum and polarization

YingHui Guan (Indiana/KEK): arXiv:1611.06648

Opposite hemisphere pion correlation

- Interesting z_{π} and z_{Λ} dependence :
- At low z_Λ light quark fragmentation dominant, some charm in π⁻ → different signs
- At high z_Λ strange + charm fragmentation more relevant → same signs

Di-hadron fragmentation functions

$$D_{1,q}^{h_1h_2}(z,m,Q^2)$$

$$H_{1,q}^{h_1,h_2,\triangleleft}(z,Q^2,M_h)$$

$$D_{1,\mathbf{q}}^{\mathbf{h}}(z_1,Q^2)D_{1,\mathbf{q}}^{\mathbf{h}}(z_2,Q^2)$$

Di-hadrons

In
$$e^+e^-$$
 annihilation:
 $Q = \sqrt{s}$
 $z = \frac{2E_h}{Q} \approx \frac{E_h}{E_a}$

 Single inclusive hadron multiplicities (e+e-→hX) sum over all available flavors and quarks and antiquarks:

$$d\sigma(e^+e^- \to hX)/dz \propto \sum_q e_q^2(D_{1,q}^h(z,Q^2) + D_{1,\overline{q}}^h(z,Q^2))$$

- Especially distinction between favored (ie $u \rightarrow \pi^+$) and disfavored ($\bar{u} \rightarrow \pi^+$) fragmentation would be important
- Idea: Use di-hadron fragmentation, preferably from opposite hemispheres and access favored and disfavored combinations:

$$u\overline{u} \to \pi^{+}\pi^{-}X \quad \propto \quad D_{u,fav}^{\pi^{+}}(z_{1},Q^{2}) \cdot D_{\overline{u},fav}^{\pi^{-}}(z_{2},Q^{2}) + D_{\overline{u},dis}^{\pi^{+}}(z_{1},Q^{2}) \cdot D_{u,dis}^{\pi^{-}}(z_{2},Q^{2})$$
$$u\overline{u} \to \pi^{+}\pi^{+}X \quad \propto \quad D_{u,fav}^{\pi^{+}}(z_{1},Q^{2}) \cdot D_{\overline{u},dis}^{\pi^{+}}(z_{2},Q^{2}) + D_{\overline{u},dis}^{\pi^{+}}(z_{1},Q^{2}) \cdot D_{u,fav}^{\pi^{+}}(z_{2},Q^{2})$$

Also: unpol baseline for interference fragmentation

Ratios to opposite charge pion pairs

 $R \approx \frac{D_{dis}(z_1)D_{fav}(z_2) + D_{fav}(z_1)D_{dis}(z_2)}{D_{fav}(z_1)D_{fav}(z_2) + D_{dis}(z_1)D_{dis}(z_2)}$

 $\pi^+\pi^+$ comparable to $\pi^+\pi^-$ at low z, decreasing towards high z:

- → Favored and disfavored fragmentation similar at low z
- → Disfavored much smaller at high z

Hemisphere composition
Same hemisphere contribution drops rapidly: Consistent with LO assumption of

Same hemisphere: single quark \rightarrow di-hadron FF: ($z_1+z_2<1$)

Opposite hemisphere: single quark→single hadron FF

5¹)^{z₂} 092007 Belle: RS et.al., PRD92

natic uncertainties not displayed

Explicit di-hadron mass dependence

- IFF related asymmetries extracted by Belle in 2011 (PRL107:072004(2011))
- Global fits currently missing unpolarized dihadron FF baseline

- → Belle to the rescue
- Use same hemisphere dihadrons for this analysis
- 16 z bins between 0.2 1
- 100 mass bins between0.3 2.3 GeV
- Data analysis and correction steps same as previous di-hadron analysis, except for ISR treatment

Di-hadron mass dependence

Similar analysis in same hemisphere and mass – combined z binning. Important input for IFF based transversity global analysis

Mass dependence comparisons to Pythia tunes

Magnitude and z dependence reasonable in Pythia 6.4 default, Intermediate mass structure better described by LEP tunes (higher spin mesons)

Di-pion individual contributions

Contributions from various resonances and direct fragmentation

Summary and outlook

- Hyperon and charmed baryon fragmentation measurements just published, support for diquark picture in charm FF
- Nonzero Lambda polarization measured, interesting flavor dependence

- Di-hadron fragmentation functions measured, important input for dihadron related Transversity/Tensor charge extractions
- Transverse momentum dependent fragmentation analysis ongoing
- Other results being finalized as well (η,π⁰
 Collins)

