Recent results on charmonium states and search for pentaquark at Belle

Pavel Krokovny

Budker Institute and Novosibirsk University

Outline:

- Introduction
- Observation of $\chi_{c0}(2P)$ candidate in $e^+e^- \rightarrow J/\psi D\overline{D}$
- Measurement of the branching fractions of $B^+ \rightarrow X_{cc} K^+$ decays
- Search for hidden-strangeness pentaquark decay $P_s^{+} \rightarrow \phi p$ in $\Lambda_c^{-} \rightarrow \phi p \pi^0$. Summary

ICHEP18

X(3915) was observed by the Belle in B $\rightarrow J/\psi \ \omega$ K decays. J^{PC} is measured to be 0⁺⁺. As a result, it was identified as the $\chi_{c0}(2P)$ in PDG 2014. Doubts: expected main decay $\chi_{c0}(2P) \rightarrow D\overline{D}$ in an S-wave. We search for e⁺e⁻ $\rightarrow J/\psi \chi_{c0}(2P)$ with $\chi_{c0}(2P) \rightarrow D\overline{D}$ Only J/ ψ and one of the D mesons are reconstructed; the other \overline{D} meson is identified by the recoil mass of the J/ ψ D system.

Reconstructed channels:

- $D^+ \rightarrow K^0_{\ s} \pi^+$, $K^- \pi^+ \pi^+$, $K^0_{\ s} \pi^+ \pi^0$, $K^- \pi^+ \pi^+ \pi^0$, and $K^0_{\ s} \pi^+ \pi^+ \pi^-$.
- $D^0 \rightarrow K^- \pi^+$, $K^0_{\ S} \pi^+ \pi^-$, $K^- \pi^+ \pi^0$, and $K^- \pi^+ \pi^+ \pi^-$.
- $J/\psi \rightarrow e^+e^-$, $\mu^+\mu^-$.

Multivariable analysis to suppress background.

Phys.Rev.D95 112003 (2017)

Background contribution is estimated using J/ψ and D invariant masses:

- (1) pure combinatorial background
- (2) real D, combinatorial J/ ψ
- (3) real J/ ψ , combinatorial D

(4) – signal

Signal yield is extracted from the fit to the recoil mass to J/ψ D combination

Phys.Rev.D95 112003 (2017)

Amplitude analysis: 6 dimensions, $M_{D\overline{D}}$, θ_{prod} , $\theta_{J/\psi}$, θ_{X^*} , ϕ_{I_-} , ϕ_D . Background is described by 2nd order polynomia.

Fit to the data: Signal, non-resonant only, background

- A new charmonium-like state, the X*(3860) is observed, with mass of 3862^{+26} $^{+40}_{-32}$ MeV/c², and width 201^{+154} $^{+88}_{-67}$ MeV.
- The $J^{PC} 0^{++}$ is preferable, from 2^{++} at the level of 2.5σ .
- X*(3860) consistent with $\chi_c^{0}(2P)$ charmonium state hypotheses.
- The measured mass is close to potential model expectations for the $\chi_{c0}(2P)$.

X(3872) observed by Belle. $J^{PC}=1^{++}$ is confirmed by LHCb. Most natural explanation S-wave $D^0\overline{D}^{*0}$ molecular state. High cross section production in pp by CDF suggests admixture of molecular and $\chi_{c1}(2P)$. Absolute branching measurement of B⁺ \rightarrow X(3872)K⁺ would help to measure X(3872) \rightarrow F branching fractions and understand its nature.

Inclusive reconstruction of other B⁻ and K⁺ from signal B⁺. Fit to the K⁺ recoil mass distribution. Cross check channel: B⁺ $\rightarrow \overline{D}^{(*)0} \pi^+$.

Mode	$N_{ m sig}$	$(\mu_{\rm data} - \mu_{\rm MC}) \ ({\rm MeV}/c^2)$	$(\sigma_{ m data}/\sigma_{ m MC})$	$\epsilon(10^{-3})$	$\mathcal{B}(10^{-3})$	World average for \mathcal{B} (10 ⁻³) [10]
$B^+ \to \pi^+ \bar{D}^0$	8550 ± 190	-0.5 ± 0.8	0.994 ± 0.025	$2.48{\pm}0.02$	$4.34 \pm 0.10 \pm 0.25$	4.80 ± 0.15
$B^+ \to \pi^+ \bar{D}^{*0}$	9980 ± 250	-0.8 ± 0.8	1.035 ± 0.029	$2.61{\pm}0.02$	$4.82 \pm 0.12 \pm 0.35$	5.18 ± 0.26

Phys.Rev.D97 012005 (2018)

3.55

3.6

3.65

M_{miss(K⁺)} (GeV/c²)

3.7

3.75

- $B^+ \rightarrow X_{cc} K^+$ branching fractions have been measured.
- We significantly improve knowledge for $\eta_{\rm c}$ and $\eta_{\rm c}(\text{2S})$ branchings.
- Results for J/ ψ , χ_{c0} , χ_{c1} and ψ (2S) are consistent with world average.
- No significant signals are observed for ψ (3770), X(3872), X(3915). We set 90% CL ULs.

Mode	Yield	Significance (σ)	$\epsilon(10^{-3})$	\mathcal{B} (10^{-4})	World average for \mathcal{B} (10 ⁻⁴) [10]
η_c	2590 ± 180	14.2	2.73 ± 0.02	$12.0 \pm 0.8 \pm 0.7$	9.6 ± 1.1
J/ψ	1860 ± 140	13.7	2.65 ± 0.02	$8.9\pm0.6\pm0.5$	10.26 ± 0.031
χ_{c0}	430 ± 190	2.2	2.67 ± 0.02	$2.0 \pm 0.9 \pm 0.1 \; (< 3.3)$	$1.50\substack{+0.15\\-0.14}$
χ_{c1}	1230 ± 180	6.8	2.68 ± 0.02	$5.8\pm0.9\pm0.5$	4.79 ± 0.23
$\eta_c(2S)$	1050 ± 240	4.1	2.77 ± 0.02	$4.8\pm1.1\pm0.3$	3.4 ± 1.8
$\psi(2S)$	1410 ± 210	6.6	2.79 ± 0.02	$6.4\pm1.0\pm0.4$	6.26 ± 0.24
$\psi(3770)$	-40 ± 310	-	2.76 ± 0.02	$-0.2 \pm 1.4 \pm 0.0 \ (< 2.3)$	4.9 ± 1.3
X(3872)	260 ± 230	1.1	2.79 ± 0.01	$1.2 \pm 1.1 \pm 0.1 ~(< 2.6)$	(< 3.2)
X(3915)	80 ± 350	0.3	2.79 ± 0.01	$0.4 \pm 1.6 \pm 0.0 \ (< 2.8)$	-

Phys.Rev.D97 012005 (2018)

Search for pentaquark in $\Lambda_c \rightarrow P_s^+[\phi p]\pi^0$

Observation of two hidden-charm pentaquark states, $P_c^+(4380)$ and $P_c^+(4450)$, by LHCb motivate us to search for hidden-strange partner $P_s^+ \rightarrow \phi(1019)$ p. We use decay $\Lambda_c^- \rightarrow \phi p \pi^0 \rightarrow K^+ K^- p \pi^0$.

Search for pentaquark in $\Lambda_c \rightarrow P_s^+[\phi p]\pi^0$

Significance of $\Lambda_c \rightarrow \varphi p \pi^0$ signal is below 3σ . Therefore we set 90% CL UL.

 $\frac{\mathcal{B}(\Lambda_c^+ \to \phi p \pi^0)}{\mathcal{B}(\Lambda_c^+ \to p K^- \pi^+)} = (1.538 \pm 0.641^{+0.077}_{-0.100}) \times 10^{-3}$

 $\mathcal{B}(\Lambda_c^+ \to \phi p \pi^0) < 15.3 \times 10^{-5},$ $\mathcal{B}(\Lambda_c^+ \to K^+ K^- p \pi^0)_{\rm NR} < 6.3 \times 10^{-5},$

Fit gives 78 ± 28 events for $\Lambda_c \rightarrow P_s^{+}[\phi p]\pi^0$. Local significance is below 3 σ . 90% CL UL is set. $B(\Lambda_c \rightarrow P_s^{+}\pi^0) B(P_s^{+} \rightarrow \phi p) < 8.3 \ 10^{-5}$

Phys.Rev.D96 051102 (2017)

Summary

- Observation of charmonium-like state X*(3860), consistent with $\chi_{c0}(2P)$. X(3915) observed by the Belle is NOT $\chi_{c0}(2P)$.
- The branching fractions of $B^+ \rightarrow X_{cc} K^+$ decays have been measured. Statistics is not enough to measure branching fraction of $B^+ \rightarrow X(3872) K^+$.
- No hidden-strangeness pentaquark $P_{s^+} \rightarrow \varphi p$ is found in decay $\Lambda_c \rightarrow \varphi p \pi^0$.

• More exciting results are going to come from Belle II.

Stay tuned!