Tests of Perturbative QCD with Photon Final States using the ATLAS Experiment

Brigitte Vachon
McGill University

On behalf of the ATLAS Collaboration
Motivation

Studies of the production of photons in proton-proton collisions at the LHC provide…

• testing ground for wide range of Standard Model predictions in new kinematic regimes.
 - Unique colourless probe to test pQCD predictions.

• constraints on the content of the proton.

• description of background event kinematics for different searches for new physics.
 - Identify regions of phase space that require improved MC modelling.
 - Study impact of treatment of heavy quarks in ME and PS computations.
What we measure?

Cross-sections in fiducial volume

\[
\frac{d\sigma}{dX}(i) = \frac{N^{(i)}_{\text{sig}} \Delta X^{(i)} \mathcal{L} \epsilon_{\text{trigger}} C^{(i)}_{\text{unfolding}}}{dX}
\]

- Number of background-subtracted data events
- Width of bin \(i\)
- Corrections for detector resolution, reconstruction and selection efficiencies
ATLAS data samples

Run 1

2010, 0.0489 fb$^{-1}$ (7 TeV)

2011, 5.6 fb$^{-1}$ (7 TeV)

2012, 23.3 fb$^{-1}$ (8 TeV)

13 TeV

Run 2

2015, 4.2 fb$^{-1}$

2016, 38.5 fb$^{-1}$

2017, 50.6 fb$^{-1}$

Total Integrated Luminosity Delivered (fb$^{-1}$)

Date (CET)
Outline

- **Inclusive prompt photon (13 TeV)**

- **Di-photon (8 TeV)**

- **Tri-photon (13 TeV)**

- **Photon+jets (13 TeV)**

- **Photon+b/c (8 TeV)**

Photon reconstruction

• "Prompt" photons: Photons that are not secondaries from hadron decays.

• Photon reconstruction:
 - EM calorimeter cell cluster.
 - Consider both unconverted and converted candidates.

• Photon identification:
 - Nine variables quantifying the shower shape.
 - Fine granularity of first calorimeter layer suppresses π^0 background.
 - "Tight" identification efficiency > 90% for $E_T > 40$ GeV.

• Photon isolation:
 - Require low amount of energy around photon.
 - Suppresses jets mis-identified as photons.

See talks:
- N. Proklova, “Electron and photon identification with the ATLAS detector”.
- S. Morgenstern, “Electron and photon energy measurement calibration with the ATLAS detector”
- P. Podberezko, “The ATLAS Electron and Photon Trigger”.
Inclusive photon

\[pp \to \gamma + X \]

- Sensitivity at LO to gluon density in proton.
- NLO pQCD calculations provide adequate description of measurements; however, test sensitivity limited by theoretical uncertainties associated with missing higher-order terms in pQCD.
Inclusive photon

- NNLO pQCD calculations now available.

- Theoretical uncertainties reduced by a factor of \(~ 2\), and now of the same order as experimental uncertainties.

- This opens up a new opportunity for precision QCD at LHC and inclusion of prompt photon data into PDF fits.

Di-photon

\[pp \rightarrow \gamma\gamma + X \]

• Cross-section at 8 TeV measured differentially as function of 6 kinematic observables: \(m_{\gamma\gamma}, |\cos \theta^{*}_\eta|, \Delta\phi_{\gamma\gamma}, p_{T,\gamma\gamma}, a_T, \phi^{*}_\eta. \)

• Systematic uncertainties reduced by up to x2 compared to measurements at 7 TeV, due to improvements in background estimation.
 - Despite higher pile-up conditions

Prediction from ME+PS at NLO (Sherpa) is in agreement with measurement.
Di-photon

- Measurements are well-described by SHERPA (ME+PS at NLO).
- Specific regions of phase space particularly sensitive to soft gluons emissions.
 - Low a_T region well described by parton shower (SHERPA) or inclusion of soft-gluon resummation (RESBOS)
- In some regions, disagreements of up to $x2$ between NLO and data.
 - Inclusion of NNLO corrections not sufficient to reproduce the measurements.
Tri-photon

$pp \rightarrow \gamma\gamma\gamma + X$

• Rare process: At LO contribution is order α_{EM}^3.

• Complementary phase space to inclusive photon and di-photon production.

• Study topology and kinematics of individual photons, pairs of photons and three-photon system (13 kinematic variables).

• Main background: electron and jet mis-identification.
 - Electron mis-identified as a photon
 ‣ Estimated from $ee\gamma$, $ee\gamma\gamma$, $e\nu\gamma\gamma$ MC events (LO Sherpa).
 ‣ Mis-ID rate corrected to match measurement in $Z \rightarrow ee$ data.
 - Jet mis-identified as a photon
 ‣ 2D sideband applied to account for all combinations of photons meeting or failing to meet the tight identification or isolation criteria.
Tri-photon

- NLO predictions underestimate measured cross-section by \(\sim x1.5-2 \).
- NLO fails to describe regions of low \(E_T \).
- Addition of PS to NLO improves agreement.
- Need improved MC modelling of this process.

\[
\sigma_{\text{meas}} = 72.6 \pm 6.5 \text{ (stat.)} \pm 9.2 \text{ (syst.) fb}
\]

\[
\sigma_{\text{NLO}} = 31.5^{+3.2}_{-2.5} \text{ fb (MCFM)}
\]

\[
\sigma_{\text{NLO+PS}} = 46.6^{+5.7}_{-3.6} \text{ fb (MadGraph5\text{_aMC\@NLO})}
\]
Photon + jets

\[pp \rightarrow \gamma + \text{jets} \]

- Study dynamics of \(\gamma + \text{jets} \) production.
- Differential cross-sections measured as function of \(E_T^\gamma, p_T^{\text{lead}}, \Delta \phi^{\gamma-\text{jet}}, m^{\gamma-\text{jet}}, |\cos \theta^*| \).
- NLO calculations provide good description of measurements.
- For most of the phase space studied, theoretical uncertainties are larger than experimental uncertainties.
Photon + jets

Cross-section as function of θ^* provides insight into relative contributions of direct vs fragmentation components, as well as possibility of testing dominance of t-channel quark exchange.

Quark exchange diagrams observed to dominate.
Photon + b/c

- \(pp \rightarrow \gamma + b/c \)

- Sensitive to b/c-quark content of proton.
 - Sensitive to intrinsic charm hypothesis.
- Test modelling of b-quark in MC generators
 - Test flavour number scheme: 4F vs 5F.
- Analysis overview:
 - Select photon + jets events.
 - Photon purity estimated using data-driven 2D sideband method.
 - Use template fit method to extract b and c fractions.

New

Compton

Gluon splitting

ATLAS
- \(\sqrt{s} = 8 \) TeV, 20.2 fb\(^{-1}\)
- \(1.56 < |\eta| < 2.37 \)
- \(300 < E_T^\gamma < 350 \) GeV

MV1c b-jet efficiency

ATLAS
- \(\sqrt{s} = 8 \) TeV, 4.58 pb\(^{-1}\) - 20.2 fb\(^{-1}\)

HF jet fraction

Photon + b/c

\[pp \rightarrow \gamma + b \]

- LO: Sherpa provides good description of data.
- NLO: 5F scheme provides better description of data up to 200 GeV.
 - Higher-order calculations expected to improve modelling at higher \(E_T \).

\[pp \rightarrow \gamma + c \]

- Within uncertainties, LO and NLO provide good description of data.
- Predictions with IC predict higher cross-section at high \(x \).
Summary

• Large data samples, well-understood detector performance and effective pile-up mitigation techniques make it possible to perform precision measurements of known Standard Model processes.

• Study of photon production in pp collisions provides stringent tests of QCD.
 - Calculations beyond NLO needed to reduce theoretical uncertainties and improve modelling.

• Measurements can be used to set constraints on proton PDFs.
Backup
b/c-jet identification

- MV1c neural network trained to differentiate b-jets from c-jet and light jets
 - Takes as input three types of parameters
 - **Impact parameter** information
 - **Secondary vertex** information
 - **Decay chain path** information, up to tertiary vertex

- Efficiency calibrated in independent analyses for the three flavours of jets
Electron/photon energy calibration

Schematic overview of the procedure used to calibrate the energy response of electrons and photons in ATLAS.

- S. Morgenstern, “Electron and photon energy measurement calibration with the ATLAS detector”