Measurements of elastic pp interactions and exclusive production with the ATLAS detector

Leszek Adamczyk

AGH - UST Cracow
On behalf of ATLAS Collaboration

ICHEP2018, July 4-11, 2018 COEX, SEOUL

Elastic and Exclusive Production with ATLAS

- Elastic measurements
 - $pp \to pp$ at 7(8) TeV, 80(500) μb^{-1}
 - fundamental process for any accelerator at each energy
 - allows to give the upper bound on total pp cross sections
- Central Exclusive Production (CEP)
 - $pp(\gamma\gamma) \to p + l^+l^- + p$ at 7(13) TeV, 4.6(3.2) fb⁻¹
 - provides direct access to the elastic photon distributions in proton
 - non-negligible background to Drell-Yan like reactions
 - $pp(\gamma\gamma) \rightarrow p + W^+W^- + p$ at 8 TeV, 20.2 fb⁻¹
 - tests of SM $\gamma\gamma \textit{WW}$ quartic gauge coupling
 - can probe physics beyond the electroweak scale and set limits on anomalous quartic gauge couplings (aQGCs)
 - $pp(gg) \rightarrow p + Higgs + p \rightarrow p + W^+W^- + p$ at 8 TeV, 20.2 fb⁻¹
 - can be used for Higgs properties studies
 - $p + p \rightarrow p + M + p$ with forward proton detectors (analysis in progress)

ATLAS detector

- Inner Detector $(|\eta| < 2.5)$
- Calorimeters $(|\eta| < 4.9)$

- Muon spectrometer $(|\eta| < 2.7)$
- Minimum Bias Trigger Scintillator $(2.1 < |\eta| < 3.9)$

Forward proton detectors:

- ALFA: vertical RPs
 - located \approx 240 m from IP1
 - optimized for elastic scattering
 - suitable for processes with relatively high cross. sect. (low mass CEP)

- AFP : horizontal RPs
 - -located ≈ 210 m from IP1
 - -optimized for hard diffraction
 - -suitable for high mass CEP

Elastic and Total Cross Sections

 The total p + p → X cross section is a fundamental quantity that can not be calculated in perturbative QCD but still can be measured for example using the Optical Theorem:

$$\sigma_{\text{tot}} = 4\pi \operatorname{Im}(f_{\text{el}})|_{t\to 0} \quad \sigma_{\text{tot}}^2 = \frac{1}{L} \frac{16\pi}{1+\rho^2} \frac{dN_{\text{el}}}{dt}|_{t\to 0}$$

- Luminosity-dependent method where $\rho=\frac{\mathrm{Re}(f_{\mathrm{el}})}{\mathrm{Im}(f_{\mathrm{el}})}|_{t\to0}$ is taken from model extrapolation
- Measurement based on small angle elastic scattering ($t \rightarrow 0$)
 - Beam angular divergence should be smaller than scattering angle to be measured

small
$$\sigma_{\theta_{\text{beam}}} = \sqrt{\varepsilon}/\beta^* \Rightarrow \text{large} \quad \beta^*$$

• Elastic scattering is measured in a dedicated run of the LHC with special high $\beta^*=90$ m optics with the ALFA Roman Pot sub-detector.

Theoretical prediction

The theoretical prediction used to fit the elastic data consists of the Coulomb term, the Coulomb-Nuclear-Interference term and the dominant Nuclear term.

$$\frac{\mathrm{d}\sigma}{\mathrm{d}t} = \frac{1}{16\pi} |f_{N}(t) + f_{C}(t) \exp(i\alpha\phi(t))|^{2}$$

$$\begin{array}{ll} \frac{\mathrm{d}\sigma}{\mathrm{d}t} &=& \frac{4\pi\alpha^2(\hbar c)^2G^4}{t^2} \\ &+& \sigma_{\mathrm{tot}}\frac{\alpha G^2}{t}[\sin(\alpha\phi)+\rho\cos(\alpha\phi)]\exp(B\ t/2) \\ &+& \sigma_{\mathrm{tot}}^2\frac{1+\rho^2}{16\pi(\hbar c)^2}\exp(B\ t) \end{array}$$

Phys. Lett. B 761 (2016) 158-178: Elastic pp o pp at 8 TeV

$$\rho = \frac{\text{Re}(f_{cl})}{\text{Im}(f_{cl})}|_{t\to 0} = 0.1362$$

•
$$G(t) = \left(\frac{\Lambda}{\Lambda - t}\right)^2$$
, $\Lambda = 0.71 \text{ GeV}^2$

•
$$\phi(t) = -\ln(-Bt/2) - \phi_C$$
, $\phi_C = 0.577$

Phys. Lett. B 761 (2016) 158-178: Elastic pp o pp at 8 TeV

- Fit of $\frac{d\sigma_{el}}{dt}$ with two free parameters: σ_{tot} and B
- All statistical and experimental systematic uncertainties included
- Fit range of -t = [0.014, 0.1]GeV² possible deviations from exponential form of nuclear amplitude expected to be small
- Fit quality: $\chi^2/Ndof = 17.8/14$

$$B = 19.74 \pm 0.17 \text{ GeV}^{-2}$$

 $\sigma_{\text{tot}} = 96.07 \pm 0.86 \text{ mb}$

Further uncertainty arise from the extrapolation $t \to 0$, probed by a variation of the upper fit range to 0.152 and 0.065, lower end to 0.009 and 0.0245 and $\rho \pm 0.0034$

Extrapolation error $\Delta \sigma_{\text{tot}} = \pm 0.31$ mb, $\Delta B = \pm 0.15$ GeV²

- Energy evolution of σ_{tot} and σ_{el}
- Elastic cross section from the nuclear part of the integrated fit function

- Energy evolution ofnuclear slope B
- Very good agreement with TOTEM measurement

ATLAS:
$$\sigma_{tot} = 96.07 \pm 0.92 \text{ mb}$$

TOTEM: $\sigma_{tot} = 101.7 \pm 2.9 \text{ mb}$

$$B = 19.74 \pm 0.19 \text{ GeV}^{-2}$$

 $B = 19.9 \pm 0.3 \text{ GeV}^{-2}$

- Our measurement is 5.63 mb smaller than TOTEM's
- ullet Corresponds to 1.9 σ , assuming uncorrelated uncertainties

CEP with ATLAS detector

Selection of exclusive production of state *X*:

- no additional activity in Inner Detector associated with the production vertex of state X
- without forward proton detectors:
 - search for kinematic variable with power to suppress non-exclusive (proton dissociation) production of state \boldsymbol{X}
- with forward proton detectors (ALFA/AFP) at low pile-up select events with single primary vertex:
 - direct proof of exclusive production
 - event kinematics fully reconstructed (make use of correlation between central and forward regions)
 - no additional activity in MBTS.
- with AFP forward proton detectors (high pile-up):
 - -Time Of Flight measurement required to associate forward protons with production vertex (still commissioning)

Phys. Lett. B 749 (2015) 242: Exclusive $\gamma\gamma o I^+I^-$ at 7 TeV Phys. Lett. B 777 (2018) 303: Exclusive $\gamma\gamma o \mu^+\mu^-$ at 13 TeV

- Signal modeling using the Equivalent Photon Approximation (EPA) + QED with non-negligible absorptive corrections
- Cross-section dominated by so-called single- and double-proton dissociative reactions
- Elastic process is characterized by the production of back-to-back leptons, $p_T^{II} \approx 0$, providing a way to separate the elastic from the dissociative production

Cross section measurement:

- Binned maximum-likelihood fit of the exclusive and single-dissociative contributions to the measured dilepton acoplanarity distribution
- Double-dissociative and Drell-Yan background are fixed to the MC predictions

Fiducial region:

- 7 TeV $\gamma\gamma \rightarrow ee$: $m_{e^+e^-} >$ 24 GeV, $p_{\tau}^e >$ 12 GeV
- 7 TeV $\gamma\gamma \to \mu\mu$: $m_{\mu^+\mu^-} >$ 20 GeV, $p_T^\mu >$ 10 GeV
- 13 TeV $\gamma\gamma \to \mu\mu$: 12 < $m_{\mu^+\mu^-}$ < 70 GeV, p_T^μ > 6 GeV

Phys. Lett. B 749 (2015) 242-261: Exclusive $\gamma\gamma\to I^+I^-$ at 7 TeV Phys. Lett. B 777 (2018) 303: Exclusive $\gamma\gamma\to\mu^+\mu^-$ at 13 TeV

Theory predictions (QED-EPA) with absorptive corrections(20 % effect) from PLB 741 (2015) 66-70

- Dominant uncertainty from template fit to acoplanarity shape (reducible with proton tagging)
- Measured cross-sections are in agreement with the predicted values corrected for proton absorptive effects
- They are also consistent with the CMS measurement JHEP 1201 (2012) 052

Exclusive production with forward proton detectors: ongoing measurements.

Data collected in special high $\beta^* = 90$ m optics runs with ALFA detector:

- Analysis of exclusive dipion production p + p → p + π⁺π⁻ + p
 @ √s = 7, 8, 13 TeV.
 Due to the ALFA geometrical acceptance range process dominated by Double Pomeron Exchange (DPE): IPIP → π⁺π⁻
- @ $\sqrt{s}=$ 13 TeV also candidates for exclusive production of $K\!K,pp,\pi\pi\pi\pi$ final states as well as $\gamma I\!P\to\pi^++\pi^-$ are observed

Data collected during normal running with AFP detector (fully installed in 2017):

- ullet \sim 32 fb $^{-1}$ collected in 2017 with $\mu\sim$ 50
- TOF still in commissioning plan for this year
- CEP QCD production (dijets)
- CEP from $\gamma\gamma$
 - Dilepton; diboson (aQGC)
 - AFP can provide large background and systematic uncertainty reduction on previous measurements
- Searches for heavy new particles

Summary and Plans

- The differential elastic cross section is measured with tracking detectors in Roman pot @ $\sqrt{s}=7,8\,\text{TeV}$
 - The total cross section is inferred using the optical theorem and is still observed to rise with energy
- Future elastic measurements :

Data in the Coulomb-Nuclear-Interference region at $-t \approx 10^{-3} \text{ GeV}^2$ allows a measurement of the ρ -parameter

- ullet Dispersion relations relates energy evolution of the $\sigma_{\it tot}$ and ho
- Allows high energy predictions of σ_{tot}
- Data has been collected at 8 TeV with $\beta^{\star} = 1 \text{ km}$
 - The analysis is in review.
- Data has been collected at 13 TeV with $\beta^* = 2.5$ km
 - The analysis is ongoing.
- Cross sections of the exclusive $\gamma\gamma\to I^+I^-$ production have been measured @ $\sqrt{s}=7,13~{\rm TeV}$
 - Observation is consistent with the suppression (20%) expected due to proton absorption contributions
- Ongoing measurements of low mass (DPE) exclusive processes using data collected in special high $\beta^\star=90$ m optics runs with protons measured in ALFA
- Lots of prospects for improvement on current measurements and brand new analysis with AFP during LHC Run-II and beyond.

