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o What do we do?
o We study QCD at low energies.
@ What do we need?
o Chiral perturbation theory (xPT) and Resonance chiral theory (RxT).
@ What is it?
o Effective description of low-energy QCD.
o xPT for E < M,.
@ Spontaneous breaking of the chiral SU(3)r x SU(3)r symmetry down to
SU(3)y in QCD leads to the presence of Goldstone bosons.

o We identify them with the octet of pseudoscalar mesons (7, K, ) as the
lightest hadronic observable states.

o RxT for M, < E <2GeV.

o RxT increases the number of degrees of freedom of xPT by including massive
U(3) multiplets of vector V(1= 7), axial-vector A(11%), scalar S(0T+) and
pseudoscalar P(0~1) resonances.

e What is it good for?

e To study important theoretical and phenomenological aspects of QCD.
@ What do we use?

e Green functions of chiral currents.
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Green functions of chiral currents

The amplitudes of physical processes can be computed using LSZ reduction
formula from the Green functions, the time ordered products of quantum
fields.

Three-point Green function:
/ d*zdty e e rav) (0T (04 (z) O2(y)O3(0)] [0) .

O;(x;) stand either for
e vector and axial-vector currents:

Vi(e) =a(@)y.T(x),  AL(@)=q@)ny:T"q(z),
e or scalar and pseudoscalar densities:
S5%x) =q(@)Tq(z),  P%(z) =1iq(z)vsT"q(x).

Nontrivial three-point Green functions in QCD:
o Set I: (SSS), (SPP), (VVP), (AAP), (VAS), (VVS), (AAS), (VAP).
o Set ll: (VVA), (AAA), (VVV), (ASP), (AAV), (VSS), (VPP).
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Green functions of chiral currents: Examples

e (VVP) Green function:

abc abe
[HVVP (pv q; T)] v = HVVP (p27 q2a 7”2)d b Euv(p)(q) +

o Direct connection to many phenomenologically important quantities:
-, RxT 2 2 .92y_ 2r2 oRxT ;[ 2 2 2
Transition formfactor F A/(p ,q%,1%) = 35y vp(0%, 4%, 7).

° 70y 3BoF
o Decays p — 7y, w(1300) — v, 7(1300) — pvy.
)
°

Significant importance in study of rare 79 decays: 70 — eTe~ 7, 70 = ete™.
Hadronic contribution to light-by-light scattering and g — 2.

e (VVA) Green function:

]2 — gab (M @2 ONIE
[HVVA(p’ 4 T)LWP =d* C[wLEW(p)(q)TP"'wT Hiw)p"'wT HEW)p"'wT Hﬁw)p] :
o The tensor part is nontrivial [M. Knecht et al. '04].
e The structure is thus given by longitudinal formfactor wy, (fixed by the
anomaly) and three formfactors wg}), wgg), w§§> .
o Related to the decay of axial resonance f1(1285) — p~.
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RxT at NLO in the odd-intrinsic parity sector of QCD

@ Special interest of ours: odd-intrinsic parity sector of QCD.

o (VVP), (AAP), (VAS), (VVA), (AAA).
We assume the saturation of dynamics with the lightest resonances.
At the NLO, relevant Lagrangian in the odd-intrinsic parity sector was
formulated for the first time in [K. Kampf and J. Novotny '11]:

6 :
0 = 3 Y O

X i

e X stands for the resonance fields V, A, S, P, double-resonance fields V'V,
AA, SA, SV, VA, PA, PV and triple-resonance fields VV P, VAS, AAP.
° CSS))(T: 67 operators and 67 corresponding unknown couplings X in total.
Topology of the Feynman diagrams (the crossing is implicitly assumed):

O N L TANA

Goal: express ;X in terms of known parameters (F, Fy, Fa, My, Ma etc.).
Our approach: hlgh energy behaviour of Green functions within OPE.
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Operator Product Expansion



Operator Product Expansion

@ Framework to study behaviour at high energies.

@ For z,y — 0 (i.e. for large external momenta) Green function can be
expanded into a series of nonperturbative parameters with c-number
coefficients:

(01(2)02(y)03(0)) = C11 + Cgey(@q) + C a2y (G G")
+ Cgaq) (70, G" @) + Cragy(@T1 qq T2 q)
+ Caay (G, G GE ) 2 +
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Operator Product Expansion

@ Framework to study behaviour at high energies.

@ For z,y — 0 (i.e. for large external momenta) Green function can be
expanded into a series of nonperturbative parameters with c-number
coefficients:

(01(2)02(y)03(0)) = C11 + Cgey(@q) + C a2y (G GM*)
+ Cgaq) (70, G" @) + Cragy(@T1 qq T2 q)
+ Caay (G, G GE ) 2 +

@ Perturbative contribution.
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Operator Product Expansion

@ Framework to study behaviour at high energies.

@ For z,y — 0 (i.e. for large external momenta) Green function can be
expanded into a series of nonperturbative parameters with c-number
coefficients:

(O1(2)02(y)O05(0)) = C11 + Cgqy (99) + Ca2) (G GM)
+ Clgag) (@0 G*" q) + Clagy(@T1 g T2 q)
+ Caay (G, G GE ) 2 +
@ Perturbative contribution.

@ QCD condensates (with dimension D < 6):
e Quark condensate.
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Operator Product Expansion

@ Framework to study behaviour at high energies.

@ For z,y — 0 (i.e. for large external momenta) Green function can be
expanded into a series of nonperturbative parameters with c-number
coefficients:

(01(x)02(y)03(0)) = C11 + Cgey(@q) + Ca2y (G G")
+ Cgaq) (70, G" @) + Cragy(@T1 qq T2 q)
+ Caay (G, G GE ) 2 +

@ Perturbative contribution.
@ QCD condensates (with dimension D < 6):

e Quark condensate.
o Gluon condensate.
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Operator Product Expansion

@ Framework to study behaviour at high energies.

@ For z,y — 0 (i.e. for large external momenta) Green function can be
expanded into a series of nonperturbative parameters with c-number
coefficients:

(01(2)02(y)03(0)) = C11 + Cgey(@q) + C a2y (G G")
+ Cgaq) (@0, G" @) + Cragy(@T1 qq T2 q)
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@ Perturbative contribution.
@ QCD condensates (with dimension D < 6):

e Quark condensate.
o Gluon condensate.
e Quark-gluon condensate.
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Operator Product Expansion

@ Framework to study behaviour at high energies.

@ For z,y — 0 (i.e. for large external momenta) Green function can be
expanded into a series of nonperturbative parameters with c-number
coefficients:

(01(2)02(y)03(0)) = C11 + Cgey(@q) + C a2y (G G")
+ Cgaq) (70, G" @) + Cragy(@T1 qq T2 q)
+ Caay (G, G GE ) o +

@ Perturbative contribution.
@ QCD condensates (with dimension D < 6):

o Quark condensate.

Gluon condensate.

Quark-gluon condensate.

Four-quark condensate.

Three-gluon condensate (vanishes in the chiral limit).
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Matching Ry T to OPE

with two large momenta



Example: (VV A) Green function

@ Calculation in RxT at NLO leads to the formfactors [TK, K. Kampf and
J. Novotny '18]:

8m2r2’
C2V2Fy [RY7 (07 + ¢° — 2M7) — V2Fy kY]

wr(p?, ¢ %) =

Wl )
wp) (. %z—%@ﬂwf—fX%g+ﬁn—4w

(p?> — MZ)(q> — M}) ’

P2 2,12 = 2V2Fy (p* — ¢°) (2/@}/1 yonY, — KV - \/éFA/ié/A> _
WP~ M)~ M) T

(3)(
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Example: (VV A) Green function

@ Calculation in RxT at NLO leads to the formfactors [TK, K. Kampf and
J. Novotny '18]:

C

wr(p?, ¢ %) =

8m2r2’
o 2 2\/§Fv [kY2(p? + ¢* — 2ME) — V2Fy kY V]
el (p? — M) (¢ — M) ’
W@ (P, ) = — 22V (0" = )2t 4wl — i)

(p?> — MZ)(q> — M}) ’

2\/§F p2_q2 \/éF HVA
w0, 1) = et L (a2 ey - A

L
07— M2) (" — M) SR

@ Phenomenologically important formfactor wr(Q?):

wr(Q?) = —167*[w (-Q%,0,—Q%) + vl (-Q2,0,-Q%)] .
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Example: (VV A) Green function

o Calculation in RxT at NLO leads to the formfactors [TK, K. Kampf and
J. Novotny '18]:

C

wr(p?, %, r%) =

8m2r2’
Wi o 2V2Fy[Rip(0* + ¢ — 2M3) — V2Fy Ry Y]
whehr) = (7 = MY — M) |
w? (0%, ¢, 12) = _2V2Fy (p° — ¢%) (2615 + KYg — KY7)

(p* = MP)(q* — Mp) ’

() 2 2V2Fy (p° — ¢%) 1% 1% v V2FaREA
0, % r%) = 0% — MZ)(& — M2) 2“11+2“12_“17_W :

e Phenomenologically important formfactor wr(Q?):

wr(Q?) = —167° [wi (—Q2,0,-Q?) + wi (-Q%,0,-Q?)] .
o Idea: expand wr(Q?) in terms of Q% up to O(gsx)-
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(VV A) Green function: (V*V A)

@ Why? We know OPE for (V*V A) [P. Colangelo et al. '12]:

N, 128713 s x (Gq)> 1
- gt e o)

o One momentum soft, two momenta large.

wr(Q?)

@ Comparison leads to a system of equations:
_Ne
6472 Fy

FVK,;‘))/V — FAK:gA
P - 2
Mz +V2

+V2(ki1 + K1) =

(K/YI + HYQ) =

2
vaMi

F vaiF I‘CVA
M+\/§(H¥1+K¥2)7FAI€5 W
Vv

M3

Fvry" — Fary? % v va M3 M3
M—%+\/§(H11+K12)—FA"€5 Miﬁ, 1+M7‘2, =

0,

o Ne
6412 Fy

=0,

2masx(7g)’
OFy M
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(VV A) Green function: (V*V A)

@ Why? We know OPE for (V*V A) [P. Colangelo et al. '12]:

N, | 1287%ayx(qq)?
Q? 9Q"

o One momentum soft, two momenta large.

wr(Q*) =

@ Comparison leads to a system of equations:

o(3)

64]\;F + f(/-en + K12) 0,
FVH;‘a/V]VZQ/FA’€5 +V2(k11 + K1) = _647]:]72017‘/ ’
Fvﬂé’VAZQFA“gA + V2(k11 + Ki2) — Fard? AZ\;[[Q —
[Fvn;‘{v — Fard* + \/5(,1‘1/1 + ;.;YQ) — Faks AJ\]\/;: <1 + %é) - _%

"
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(VV A) Green function: Coupling constants constraints

@ It is possible to extract the following coupling constants constraints:

4
kY, +wY, = ~ Ne KYV = - N My, kYA = néf‘/&
) ) .
64v2m2Fy 64m2 M3 F2 Fa
e Since it is not possible to solve the system of equations completely, the
relevance of the constraints should be taken with caution!
e For example, determination of kY 4:
o Numerically: ¥4 = —0.086.
o From the decay f1(1285) — py: x¥“ = —0.062 + 0.030.
@ Using the constraints for V'V P we can also determine:
1A% 1 2 NcMé PV F? N MV MV
= ) = — 1 -1 .
"2 T GaF2 sm2Mz )0 ™ 3o0vodFy | sneF? \ M2
o However: BABAR dictates k¥ = m(l + dBL) with the value

opr, = —0,055 £ 0.025 from VV P.
@ However, our prediction from V'V A gives oy, = —1.342.
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(VV A) Green function: .7-"7()_% formfactor revisited

M@ﬁﬁfﬁ’%f T

0 10 20 30 40
Q[Gev?]

Figure: A plot of BABAR (green), BELLE (red) and CLEO (blue) data fitted with the
formfactor F&"WTW(O, —Q?;0) using the modified Brodsky-Lepage condition. The full

black line represents our fit with dgr, = —1.342, and the full brown line is a fit using the
LMD formfactor. The dashed line stands for dgr, = —0.055 and the dot-dashed line for
5BL = O
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Matching Ry T to OPE
with three large momenta



OPE: Perturbative contribution

o Leading order; for example (VV A):

a4 Te[vuly (L — )75 (£ + p)]
2m)* (- q)* (0 +p)? '

= i Te[TTbT°] /

@ Anomaly:
o If vector Ward identities are imposed, the axial Ward identity picks up an extra
term.
o EW for mass fermions: r*T,5% (p, ¢, s m) = 2mT ., (p, ¢, 7;m) + #aw(m(q) .
o Non-renormalization of the (VV A) correlator:
o (VV A) is not modified by QCD radiative corrections at two loops.
o Does it persist at higher orders?

e Three-loop corrections do not vanish and they are proportional to the QCD
B-function [J. Mondejar and K. Melnikov '12].
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OPE: Propagation of QCD condensates

@ The Fock-Schwinger gauge, (z — )" A, (x) = 0, allows us to obtain
expansion of the nonlocal QCD condensates in terms of local ones:

(@ (@)ag s (1) ~ [@qm + 55 @G0) (@ — v)*6, + (30)*[F 7 (a, y>]m] 0007,

T

32

@0 (DAL DIE 5N ~ [ 5060 o s + T @ [ 01 2)], | (900642

with:

1T Ols

[P (@,9)] = 535 |40 —9) = 0% = )¢ +9)] -

2 , 1 eox 2, 1 by
[F4D (2,4, 2)] = i(guri — Grp ) (5(33 +2)" = 3y yA) ~ 58— WY Vs

@ Therefore, nonlocal quark and quark-gluon condensates propagate as local
quark, quark-gluon and four-quark condensates.
o " This effect has been one of the main source of errors in the existing QSSR
(QCD spectral sum rules) literature.” [S. Narison '07]
@ Our results are in the most general form.
e So far in the literature, one usually takes one of the coordinates as zero, so the
formulas were not applicable for three-point Green functions.
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OPE: Quark condensate (gq)

@ LO: two contractions between three currents/densities:

JAVAV.

@ First nontrivial QCD condensate:

o Implicates the chiral symmetry breaking.
o Contributes to the order parameters of the xSB.

X

@ The LO was studied a long time ago.
o For example: (VV P) [B. Moussallam '94]

abe _ (qq)
72 6p2q2r2

[Hg{l/}P (pa q; 7”‘)] (p2 + q2 + T2)dabcsuy(p)(q) .
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OPE: Quark condensate (gq)

@ NLO: gluonic corrections at O(a;) [M. Jamin and V. Mateu '08].

e An opportunity to explore the renormalisation dependence of such condensate
in full QCD.

ANLALNLS

@ General structure of the contributions:

2 e 2
Lplog(2>+quog< )+L 10g<>+LdC0+L
7 p? (2
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OPE: Gluon condensate (G, G"")

@ Massless quark propagator in external gluon field (Fock-Schwinger gauge):

S(z,y) = So(z,y) + 577 (2,4)Gap(0) + Sa(z,y)Gas(0)G*(0).

YAl VAR § IS

@ Fourier transform needed to convert the result into p-representation.

@ Results, for example for (VV' A) (and (AAA)), are suprisingly simple [TK,
K. Kampf and J. Novotny '18]:

L (@) P = 4¢°) + 0t + (¢ +17)
W _

967 pgir2 ’
G B (G Vo 01 e ki) R
T 967 pigir? T

@ Cancelation of logarithmic terms!
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OPE: Quark-gluon and four-quark cond

@ Quark-gluon condensate: (go,.,G""q).
e Given by a propagation of nonlocal quark-gluon (left) and quark (right)

condensates.

e Four-quark condensate: (0[gT'y ¢gT'2 ¢|0) ~
o I'y, I'z: combination of {1, 'y5,'yﬂ,w*y5,aw} W|th {1, 7}, that preserves the
Lorentz invariance.
o Given by a perturbative contribution (left) and propagation of nonlocal quark
(middle) and quark-gluon (right) condensates.

SR
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Conclusion
@ We calculated OPE of all 3-point 5 . .
Green functions of chiral currents é% & i { % :;;i i%:

for all momenta large.
@ At high energies, the Green g"?i i fjg
functions are given in terms of QCD « @ ¢ > &

condensates (D < 6):

L Gam,
o (oG q), & ® & ®

o (GT14qT2q).

@ Our interest: odd sector of QCD @ @

‘C’ng - ZZ on,uuaﬁ pah .

@ Our goal: match OPE with RxT. @ @} @

o Unclear how to deal with
logarithmic terms!

o Infinite tower of resonances!
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Thank you for your attention!



