Measurement of hadronic cross sections with the BABAR detector

Korneliy Todyshev NSU/BINP, Novosibirsk

on behalf of the BABAR Collaboration

ICHEP 2018 Seoul - July 6

$(g-2)_{\mu}/2$ of muon

Magnetic moment

$$\vec{\mu} = g \frac{e\hbar}{2mc} \vec{S}$$

- √ The Dirac equation predicts g=2 for point-like fermions.
- √ Higher order QFT contributions lead to nonzero

$$a_{\mu} = (g-2)_{\mu} / 2$$

✓ a_µ is sensitive to New Physics contributions

E821@BNL (1997-2001):G.W. Bennett *et al.*, Phys. Rev. D **73**, 072003 (2006)

 a_{μ} = (11 659 209.1±6.3)×10⁻¹⁰ (0.54 ppm)

E989 @ FNAL (2017-...): F. Gray *et al.*, arXiv: 1510.00346 $\mathbf{a}_u = \dots$ (0.14 ppm)

E34 @ **J-PARC** (????-...):T. Mibe *et al.*, Chin. Phys. C **34** (2010) 745 \mathbf{a}_{μ} = ... (0.1 ppm)

F.Jegerlehner, arXiv:1804.07409

Data - SM discrepancy is more than 3 σ

$(g-2)_{\mu}/2$ of muon

- ☐ The leading order hadronic contribution is calculated using dispersion relations from experimental data on the total cross section of the e⁺e⁻ annihilation into hadrons.
- \Box Low energies (E < 2 GeV) give dominant contribution into $a_{\mu}^{had,LO-VP}$ (92%).

Individual SM contributions \times 10⁻¹⁰

• a_{μ}^{QED}	· 11658471.895 ±
·	0.008

•
$$a_{\mu}^{EW}$$
 • 15.4 ± 0.1

$$a_{\mu}^{had,LO-VP}$$
 • 692.6 ± 3.3

•
$$a_{\mu}^{had,HO-VP}$$
 • -8.63 ± 0.09

•
$$a_{\mu}^{had,LBL}$$
 • 10.5 ± 2.6

DHMZ, TAU 2016, arXiv:1612.02743

$$a_{\mu}^{\text{had, LO-VP}} = \frac{\alpha^2 m_{\mu}^2}{9\pi^2} \int_{m^2}^{\infty} ds \frac{\hat{K}(s)}{s^2} R(s)$$

$$R(s) = \frac{\sigma(e^+e^- \to \gamma^* \to hadrons)}{\sigma(e^+e^- \to \mu^+\mu^-)}$$

$(g-2)_{\mu}/2$ of muon

- ☐Below 1.9(1.8) GeV the total cross section is calculated as a sum of exclusive channels.
- ☐ The exclusive data are incomplete in the region 1.6<E<2.0 GeV.
- There is no experimental information on the final states π⁺π⁻π⁰η, π⁺π⁻ηη, π⁺π⁻π⁰ π⁰π⁰, π⁺π⁻π⁰π⁰η, **7**π ...
- ☐ The important experimental task is to measure all significant exclusive channels below 2 GeV, and perform comparison with inclusive measurements and pQCD prediction.

A.Keshavarzi, D.Nomura, T. Teubner arXiv:1802.02995

The contributions of different hadronic channels into $a_{\mu}^{had,LO-VP}$ and its squared error σ^2

BABAR @ ISR method

PEP-II asymmetric e⁺e⁻ collider at SLAC (9 GeV e⁻ and 3.1 GeV e⁺)

Data, about 500 fb⁻¹, were collected in

For ISR analyses, a data sample of 469 fb⁻¹ collected near or at a c.m. energy of 10.58 GeV (at and near Y(4S)) is used.

Four recent analyses are discussed in this talk

- $\checkmark \pi^{+}\pi^{-}\pi^{0}\pi^{0}$
- $\checkmark \pi^+\pi^-\eta$
- \checkmark K_SK_Lπ⁰, K_SK_Lη, K_SK_Lπ⁰π⁰
- \checkmark K_SK⁺ π ⁻ π ⁰, K_SK⁺ π ⁻ η

$e^+e^- \rightarrow \pi^+\pi^-\pi^0\pi^0$ @ BABAR

- Full reconstruction $\pi^+\pi^-\pi^0\pi^0\gamma$
- MC simulated background
- normalized to data and
- subtracted
- Cross-checked with
- 6C-fit $(E, \vec{p}, 2 \times m_{\underline{p}})$
- ratio χ^2 region 1/2

$e^+e^- \rightarrow \pi^+\pi^-\pi^0\pi^0$ @ BABAR

Intermediate states $a_1\pi$, $\omega\pi^0$, $\rho^+\rho^-$, $f_0\rho^0$

- **BABAR** results are most precise and cover wider energy range.
- **Systematic uncertainty is 3.1% in the 1.2-2.7** GeV energy range.
- **•**Contribution to a_{μ} for the range 1.02< E_{CM} <1.8 GeV is measured to be

$$\mathbf{a}_{\mu}^{\text{had LO}}(\sqrt{\text{s}} < 1.8 \text{ GeV}) = (17.9 \pm 0.1 \pm 0.6) \cdot 10^{-10}$$

Previous result including the preliminary BABAR data from 2007 is

Korneliy Todyshev 7

 $(32.1 \pm 0.2_{\rm stat} \pm 2.6_{\rm syst})$ %

e+e- $\rightarrow \pi$ +π-η cross section

Systematic uncertainty near the cross section maximum, 1.35-1.80 GeV, is 4.5%.

 $a_{\mu}^{\text{had LO}}(\sqrt{s} < 1.8 \text{ GeV}) = (1.19 \pm 0.02 \pm 0.06) \cdot 10^{-10}$ 1.15 ± 0.10 – All before BaBar

The BABAR results in the $\eta \rightarrow \gamma \gamma$ mode agrees well with the previous measurements, but is more precise and extending energy range up to 3.5 GeV.

The $e^+e^- \rightarrow \pi^+\pi^-\eta$ cross section is used to test conserved vector current (CVC) hypothesis.

$e^+e^- o ext{KK}\pi\pi$

There are six combinations in the $e^+e^- \to K\overline{K}\pi\pi$ process. Four were measured previously.

$e^+e^- \rightarrow K_S K_L \pi^0 \pi^0$ @ BABAR

- First measurement
- Systematic uncertainty is 25% at the peak, grows to 60% at 2 GeV
 - Dominant K*(892)K π intermediate state. No evidence K*0K*0

$e^+e^- \rightarrow K_S K^+ \pi^- \pi^0$ @ BABAR

Intermediate state

$K^{*0}K^{0}_{S}\pi^{0}$
$K^{*0}K^{\pm}\pi^{\mp}$
$K_2^*(1430)^0K_S^0\pi^0$
$K_2^*(1430)^0K^{\pm}\pi^{\mp}$
$K^*(892)^{\pm}K^0_S\pi^{\mp}$
$K^*(892)^{\pm}K^{\mp}\pi^0$
$K_2^*(1430)^{\pm}K_S^0\pi^{\mp}$
$K_2^*(1430)^{\pm}K^{\mp}\pi^0$
$K^{*0} \overline{K}^{*0}$
$K^*(892)^+K^*(892)^-$
$K_S^0 K^{\pm} \rho (770)^{\mp}$

- First measurement of largest $KK\pi\pi$ mode
- Systematic uncertainty is 6-7% below 3 GeV
- More than 10 intermediate states dominant are $K^*(892)K\pi$, $K_sK^+\rho^-(770)$

$e^+e^- \rightarrow K_S K_L \pi^0$, $K_S K_L \eta$, $K_S K^+\pi^- \eta$ @ BABAR

- First measurement
- Systematic uncertainty is 10% near the peak, grows to 30% at 3.0 GeV
- Dominant K*(892)K intermediate state

- First measurement
- Systematic uncertainty is 25% at the peak, grows to 60% at 2 GeV
- First measurement
- Systematic uncertainty is 12-19% below 3 GeV
- Dominant K*(892)Kη intermediate state.

Total $e^+e^- \rightarrow K\overline{K}\pi$ and $K\overline{K}\pi\pi$ cross sections

- All modes have now been measured by BABAR
- KK π is about 12% of the total cross section for E_{cm} = 1.65 GeV
- KK $\pi\pi$ is about 25% of the total cross section for E_{cm} = 2.0 GeV
- Precision on (g-2)/2 improved (no reliance on isospin)

$$a_{\mu}(KK\pi) = (2.45 \pm 0.15) \ 10^{-10}$$

2.39 ± 0.16

$$a_{\mu}(KK\pi\pi) = (0.85 \pm 0.05) \ 10^{-10}$$
 1.35 ± 0.39

Summary

- ✓ Precise low-energy e⁺e⁻ hadronic cross section data are needed to obtain an accurate SM prediction for a_μ had, LO-VP
- ✓ Recent results on the $e^+e^-\to \pi^+\pi^-\pi^0\pi^0$, $\pi^+\pi^-\eta$, $KK\pi$, $KK\pi\pi$ modes from BABAR reduce the uncertainty on $a_\mu^{had,LO-VP}$
- ✓ New results are expected from BABAR, as well as from BES III, SND, CMD-3

e+e- $\rightarrow \pi$ + π - π 0 π 0 (before BABAR)

Before the BaBar measurement:

- Limited precision
- Big disagreement between experiments
- Small energy ranges

M. Davier, A. Hoecker, B. Malaescu and Z. Zhang, Eur. Phys. J. C71 (2011) 1515, C72 (2012) 1874.

Channel	$a_{\mu}^{\rm had, LO} \ [10^{-10}]$
$\pi^0\gamma$	$4.42 \pm 0.08 \pm 0.13 \pm 0.12$
$\eta\gamma$	$0.64 \pm 0.02 \pm 0.01 \pm 0.01$
$\pi^+\pi^-$	$507.80 \pm 1.22 \pm 2.50 \pm 0.56$
$\pi^+\pi^-\pi^0$	$46.00 \pm 0.42 \pm 1.03 \pm 0.98$
$2\pi^+2\pi^-$	$13.35 \pm 0.10 \pm 0.43 \pm 0.29$
$\pi^+\pi^-2\pi^0$	$18.01 \pm 0.14 \pm 1.17 \pm 0.40$
$2\pi^{+}2\pi^{-}\pi^{0} \ (\eta \ \text{excl.})$	$0.72 \pm 0.04 \pm 0.07 \pm 0.03$
$\pi^+\pi^-3\pi^0$ (η excl., from isospin)	$0.36 \pm 0.02 \pm 0.03 \pm 0.01$
$3\pi^+3\pi^-$	$0.12 \pm 0.01 \pm 0.01 \pm 0.00$
$2\pi^{+}2\pi^{-}2\pi^{0} \ (\eta \text{ excl.})$	$0.70 \pm 0.05 \pm 0.04 \pm 0.09$
$\pi^+\pi^-4\pi^0$ (η excl., from isospin)	$0.11 \pm 0.01 \pm 0.11 \pm 0.00$
$\eta\pi^+\pi^-$	$1.15 \pm 0.06 \pm 0.08 \pm 0.03$
$\eta\omega$	$0.47 \pm 0.04 \pm 0.00 \pm 0.05$
$\eta 2\pi^+ 2\pi^-$	$0.02 \pm 0.01 \pm 0.00 \pm 0.00$
$\eta \pi^+ \pi^- 2\pi^0$ (estimated)	$0.02 \pm 0.01 \pm 0.01 \pm 0.00$
$\omega\pi^0 \; (\omega o\pi^0\gamma)$	$0.89 \pm 0.02 \pm 0.06 \pm 0.02$
$\omega\pi^+\pi^-, \omega2\pi^0 \ (\omega o \pi^0\gamma)$	$0.08 \pm 0.00 \pm 0.01 \pm 0.00$
$\omega \; (ext{non-}3\pi,\pi\gamma,\eta\gamma)$	$0.36 \pm 0.00 \pm 0.01 \pm 0.00$
K^+K^-	$21.63 \pm 0.27 \pm 0.58 \pm 0.36$
$K^0_{\scriptscriptstyle S} K^0_{\scriptscriptstyle L}$	$12.96 \pm 0.18 \pm 0.25 \pm 0.24$
$\phi \; (ext{non-}K\overline{K}, 3\pi, \pi\gamma, \eta\gamma)$	$0.05 \pm 0.00 \pm 0.00 \pm 0.00$
$KK\pi$ (partly from isospin)	$2.39 \pm 0.07 \pm 0.12 \pm 0.08$
$K\overline{K}2\pi$ (partly from isospin)	$1.35 \pm 0.09 \pm 0.38 \pm 0.03$
$KK3\pi$ (partly from isospin)	$-0.03 \pm 0.01 \pm 0.02 \pm 0.00$
$\phi\eta$	$0.36 \pm 0.02 \pm 0.02 \pm 0.01$
$\omega K \overline{K} \ (\omega o \pi^0 \gamma)$	$0.00 \pm 0.00 \pm 0.00 \pm 0.00$

e+e- $\rightarrow \pi$ + π -η: VMD fits

16

$e+e- \rightarrow \pi+\pi-\eta$: CVC test

$$\frac{\mathcal{B}(\tau^- \to \pi^- \pi^0 \eta \nu_\tau)}{\mathcal{B}(\tau^- \to e^- \bar{\nu_e} \nu_\tau)} = \int_{(2m_\pi + m_\eta)^2}^{m_\tau^2} dq^2$$

$$\sigma_{e^+ e^- \to \pi^+ \pi^- \eta}^{I=1} (q^2) \frac{3|V_{ud}|^2 S_{EW}}{2\pi\alpha^2} \frac{q^2}{m_\tau^2} (1 - \frac{q^2}{m_\tau^2})^2 (1 + 2\frac{q^2}{m_\tau^2})$$

CVC-prediction based on BABAR data: $B(\tau^- \to \pi^- \pi^0 \eta \nu_{\tau}) = (0.162 \pm 0.008)\%$

CVC-prediction based on the SND data: $B(\tau \rightarrow \pi^{-}\pi^{0} \eta \nu_{\tau}) = (0.156 \pm 0.011)\%$

The difference between the CVC prediction and experimental value, about 15%, is too large to be explained by isospin-breaking corrections.

The conserved vector current (CVC) hypothesis and isospin symmetry allow to predict the hadronic mass spectrum and branching fraction for the decay $\tau^- \rightarrow \pi^- \pi^0 \eta \nu_{\tau}$ from data on the e⁺e⁻ $\rightarrow \pi^+ \pi^- \eta$ cross section.

PDG14 value:

B(τ - \to π - π 0 η ν $_{\tau}$) = (0.139 ± 0.010)% CVC-experiment difference is 1.8 σ .

The PDG value is dominated by the Belle measurement:

$$B(\tau \to \pi^- \pi^0 \eta \nu_{\tau}) = (0.135 \pm 0.007)\%$$

CVC-experiment difference is 2.4σ .

ISR method@BABAR

The mass spectrum of the hadronic system in the reaction $e^+e^- \rightarrow f \gamma$ reaction is related to the cross section of the reaction $e^+e^- \rightarrow f$.

$$\frac{d\sigma(s,x)}{dxd(\cos\theta)} = W(s,x,\theta) \cdot \sigma_0(s(1-x)), \quad x = \frac{2E_y}{\sqrt{s}}$$

The ISR photon is emitted predominantly along the beam axis. The produced hadronic system is boosted against the ISR photon. Due to limited detector acceptance the mass region below 2 GeV can be studied only with detected photon (about 10% of ISR events).

BABAR tagged ISR analyses

Fully exclusive measurement

- ✓ Photon with $E_{CM} > 3$ GeV, which is assumed to be the ISR photon
- ✓ All final hadrons are detected and identified Large-angle ISR forces the hadronic system into the detector fiducial region
 - ✓ A weak dependence of the detection efficiency on dynamics of the hadronic system (angular and momentum distributions in the hadron rest frame) ⇒ smaller model uncertainty
 - ✓ A weak dependence of the detection efficiency on hadron invariant mass ⇒ measurement near and above threshold with the same selection criteria.

Kinematic fit with requirement of energy and momentum balance

- ✓ excellent mass resolution
- √ background suppression

Can access a wide range of energy in a single experiment: from threshold to ~5 GeV

$e^+e^- \rightarrow \pi^+\pi^-$

- Large progress in ISR measurements during the last decade
- CMD-2, KLOE, BABAR, BES-III claim systematic uncertainty at a sub-percent level

- Most recent measurement was performed by BES III using ISR technique
- Analysis is based on the data set with an integrated luminosity of 2.93 fb⁻¹ taken at 3.773 GeV

Phys. Lett. B 753, 629 (2016)

$e^+e^- \rightarrow \pi^+\pi^-$

Systematic differences between data from different experiments reach 5% and are significantly larger than the claimed systematic uncertainties (<1%)

21