

Precise Measurement of the D*(2010)+ - D+ Mass Difference

Liang Sun (Wuhan University) On behalf of the *BABAR* Collaboration

39th International Conference on High Energy Physics (ICHEP2018) Seoul, July 4-11 2018

Outline

- Motivation
- The BABAR experiment
- Analysis details
- Our results [PRL 119, 202003 (2017)]
- Summary

Motivation

- Chiral perturbation theory and lattice QCD calculations of heavy-light mesons start in the limit $m_b = m_c = \infty$ and SU(3) flavor symmetry and consider Symmetry-Breaking due to finite $m_b \& m_c$, $m_u \neq m_d \neq m_s$, and EM interactions
- SB can be related to mass differences [Goity & Jayalath, PLB 650, 22 (2007)]

ΔM	Strong HF	Light quark masses	Electromagnetic	Total	PDG [2]
$D^{+} - D^{0}$	0	2.71 ± 0.20	2.07 ± 0.32	4.78 ± 0.25	4.78±0.10
$D_s - D^+$	0	98.85 ± 0.21	0	98.85 ± 0.20	98.85 ± 0.30
$D^{*0} - D^0$	140.98 ± 0.1	0.09 ± 0.01	1.04 ± 0.05	142.12 ± 0.06	142.12 ± 0.07
$D^{*+} - D^{+}$	140.98 ± 0.1	0.18 ± 0.02	-0.52 ± 0.03	140.64 ± 0.13	140.64 ± 0.10
$D_s^* - D_s$	140.98 ± 0.1	3.30 ± 0.28	-0.52 ± 0.03	143.77 ± 0.15	143.8 ± 0.4
$B^{\bar{0}} - B^{-}$	0	2.42 ± 0.18	-2.09 ± 0.18	0.33 ± 0.04	0.33 ± 0.28
$B^* - B$	45.70 ± 0.02	0.04 ± 0.01	-0.05 ± 0.01	45.69 ± 0.02	45.78 ± 0.35
$B_s - B$	0	89.34 ± 0.16	-1.04 ± 0.10	88.3 ± 0.15	88.3 ± 1.8
$B_s^* - B_s$	45.70 ± 0.02	0.94 ± 0.11	0.09 ± 0.01	46.73 ± 0.06	45.3 ± 1.5

- Improving mass difference measurements → better understanding of SB → more precise predictions of other quantities expected
- BABAR has already measured D*(2010)+ D $^\circ$ mass difference with ~2 keV precision [PRL 111, 111801 (2013) and PRD 88, 052003 (2013)]

BABAR Experiment

Data taking period from 1999 to 2008:

- > ~1.3x10⁹ e⁺e⁻ → cc̄
- ~0.5x10⁹ e⁺e⁻ → BB

- → SVT, DCH: charged particle tracking: good vertex & momentum resolution
- → EMC: Information related to $\gamma/e/\pi^0/\eta$
- → DIRC, IFR, DCH: charged particle ID on π/μ/K/p

Reconstructing $D^*(2010)^+ \rightarrow D^+\pi_s^0$

Kinematic fitting of the full decay chain with the constraints:

- → Nominal π⁰ mass
- → D*+ (D+) decay at the Primary (Secondary) Vertex
- → D⁺ momentum pointing back to the PV

$D^*(2010)^+ \rightarrow D^+\pi_s^0$: event selection

- D+ is reconstructed from D+ \rightarrow K- π + π +
 - Well-measured tracks with kaon or pion identification
 - Requiring 1.86 < $m_{\kappa\pi\pi}$ < 1.88 GeV
 - The mass window is varied as a sanity check → no significant variation in the final result

$D^*(2010)^+ \rightarrow D^+\pi_s^0$: event selection

- Slow pion π_{s^0} is reconstructed from $\pi^0 \rightarrow \gamma \gamma$
 - Requiring two photons each with $E_{\gamma} > 60 \text{ MeV}$
 - Requiring 0.12 < $m_{\gamma\gamma}$ < 0.15 GeV
 - The background-subtracted data are compared to MC signals with different correction methods on EMC energies

- → MC signals with nominal corrections on EMC energies used to improve data/MC agreement
- → Additional 0.3% rescaling on photon energies applied on MC signals to determine systematic uncertainty related to EMC calibration (see p14)

π_s^0 : additional correction

• For signal MC events, reconstructed π° momentum distributions do not peak at the generated values

• Observed variation accounted for by making a momentum scale correction in each of 10 bins of $\gamma\gamma$

laboratory opening angle $\theta_{\gamma\gamma}$

As will be seen later, this correction largely mitigates an observed variation of Δm_{\downarrow} with θ_{w}

Signal shape of $\Delta m \equiv m(D^+\pi_s^0)-m(D^+)$

- Signal shape modeled based on simulation defined as: A sum of three Gaussian-like PDFs with a common mean
 - Standard Gaussian (G) +
 Crystal-Ball (CB) + Bifurcated
 Gaussian (BfG):

$$S(\Delta m) = f_1 G(\Delta m; \Delta m_+ + \delta_{\Delta m_+}, \sigma_1)$$

$$+ (1 - f_1) \left[f_2 CB(\Delta m; \Delta m_+ + \delta_{\Delta m_+}, \sigma_2, \alpha, n) + (1 - f_2) BfG(\Delta m; \Delta m_+ + \delta_{\Delta m_+}, \sigma_3^L, \sigma_3^R) \right],$$

PDF parameters are determined in the fit to MC signals, except for Δm₊, which is fixed to the generated value of 140.636 MeV

Signal shape of $\Delta m \equiv m(D^+\pi_s^0)-m(D^+)$

- Signal shape modeled based on simulation defined as: A sum of three Gaussian-like PDFs with a common mean
 - Standard Gaussian (G) +
 Crystal-Ball (CB) + Bifurcated
 Gaussian (BfG):

$$S(\Delta m) = f_1 G(\Delta m; \Delta m_+ + \delta_{\Delta m_+}, \sigma_1)$$

$$+ (1 - f_1) \left[f_2 CB(\Delta m; \Delta m_+ + \delta_{\Delta m_+}, \sigma_2, \alpha, n) + (1 - f_2) BfG(\Delta m; \Delta m_+ + \delta_{\Delta m_+}, \sigma_3^L, \sigma_3^R) \right],$$

 PDF parameters are determined in the fit to MC signals, except for Δm₊, which is fixed to the generated value of 140.636 MeV

Data fit for $\Delta m_{\perp} \equiv m(D^{*+}) - m(D^{+})$

• Together with a threshold function to model the background, we fit to real data to extract Δm_+ in the signal model:

$$S(\Delta m) = f_1 G(\Delta m; \Delta m_+ + \delta_{\Delta m_+}, \sigma_1)$$

$$+ (1 - f_1) \left[f_2 CB(\Delta m; \Delta m_+ + \delta_{\Delta m_+}, \sigma_2, \alpha, n) + (1 - f_2) BfG(\Delta m; \Delta m_+ + \delta_{\Delta m_+}, \sigma_3^L, \sigma_3^R) \right],$$

- CB shape parameters, fractions f_1 & f_2 , and $\delta_{\Delta m^+}$ fixed to MC values
- Resolution parameters allowed to vary to account for possible data/MC differences
- The fitted Δm_+ central value is corrected by the bias of **3.4 keV** in our nominal fit model, based on a set of pseudoexperiments
- The central value becomes Δm_{+} = 140 601.0 keV

Observed FWHM of the signal shape: ~ 2 MeV

Searching for anomalous variations – I

Data divided into 10 disjoint sets of $p(D^{*+})$ and of $\cos \theta(D^{*+})$

- Variations in fit results as functions of kinematic variables to identify possible sources of detector/simulation differences. Systematics assigned by mimicking the PDG scale factor method for inflating errors
- If the fit results from a given dependence study are compatible with a constant value, in the sense that $\chi^2/\nu < 1$, no systematic uncertainty is assigned
- If $\chi^2/\nu > 1$, an uncertainty of $\sigma_{sys} = \sigma_{stat} \sqrt{\chi^2/\nu 1}$ is ascribed to account for unidentified detector effects
- The variations observed as functions of $p(D^{*+})$ and $\cos \theta(D^{*+})$ lead to ± 5.0 keV and ± 6.9 keV systematic uncertainties in Δm_+ , respectively

Searching for anomalous variations – II

Data divided into 10 disjoint sets of $\phi(D^{*+})$ and of $m(K\pi\pi)$

- The variations seen with these variables are "consistent" with being purely statistical (i.e., $\chi^2/\nu < 1$)
- Therefore, the systematic uncertainties in Δm₊ associated with these variations are zero

Searching for anomalous variations – III

Data divided into 10 disjoint sets of π^0 opening angle $\theta_{\gamma\gamma}$

- As mentioned previously, the MC momentum scale correction leads to a smaller χ^2/ν value related to π^0 opening angle dependence
- We assign ±6.1 keV systematic uncertainties in Δm_+ on the variation observed as a function of θ_{yy}

Before (left) and after (right) the correction in MC π^0 momentum scale

Summary of Δm_{\downarrow} systematic uncertainties

BABAR

Source	syst. [keV]		
_Fit bias	1.7		
D^{*+} $ ho_{ m lab}$ dependence	5.0	DADAD	
D^{*+} cos $ heta$ dependence	6.9	BABAR	
D^{*+} ϕ dependence	0.0	Source	<i>p</i> -value
$m(D_{reco}^+)$ dependence	0.0	D^{*+} $p_{ m lab}$ dependence	0.12
Diphoton opening angle dependence	6.1	D^{*+} cos $ heta$ dependence	0.03
Run period dependence	0.0	D^{*+} ϕ dependence	0.99
Signal model parametrization	2.1	$m(D_{reco}^+)$ dependence	0.47
EMC calibration	7.0	Diphoton opening angle dependence	0.06
MC π^0 momentum rescaling	0.5	Average	0.33
Total	12.9		

 $\Rightarrow \Delta m_{+} = (140\,601.0 \pm 6.8 \pm 12.9) \text{ keV}$

Our final result!

Previous BABAR results on $\Delta m_0 \equiv m(D^{*+}) - m(D^0)$

PRL 111, 111801 (2013) PRD 88, 052003 (2013)

Two reconstruction channels:

Summary of our results

• By combining the *BABAR* results on Δm_{+} and Δm_{0} , we have

$$\Delta m_{+} \equiv m(D^{*}(2010)^{+}) - m(D^{+}) = (140601.0 \pm 6.8[stat] \pm 12.9[syst]) keV$$

$$\Delta m_{0} \equiv m(D^{*}(2010)^{+}) - m(D^{0}) = (145425.9 \pm 0.4[stat] \pm 1.7[syst]) keV$$

$$\Delta m_{D} \equiv m(D^{+}) - m(D^{0}) = (4824.9 \pm 6.8[stat] \pm 12.9[syst]) keV$$

 These results are compatible with and ~5x more precise than the current PDG averages

parameter	prior WA	present measurement
Δm_+	$(140670\pm80)~\mathrm{keV}$	$(140601\pm15)~\mathrm{keV}$
Δm_D	$(4750\pm80)~\mathrm{keV}$	(4825 \pm 15) keV

 Our results can be compared with the corresponding values for the pion and kaon systems reported by PDG

$$\Delta m_{\pi} = (4593.6 \pm 0.5) \text{ keV}$$
 $\Delta m_{K} = (-3934 \pm 20) \text{ keV}$