Precise measurement of the $D^*(2010)^+ - D^+$ mass difference

Thursday 5 July 2018 17:40 (15 minutes)

We measure the mass difference, Δm_+ , between the $D^*(2010)^+$ and the D^+ , using the decay chain $D^*(2010)^+ \rightarrow D^+\pi^0$ with $D^+ \rightarrow K^-\pi^+\pi^+$. The data were recorded with the BABAR detector at center-of-mass energies at and near the $\Upsilon(4S)$ resonance, and correspond to an integrated luminosity of approximately 468 fb^{-1} . We measure $\Delta m_+ = (140\ 601.0 \pm 6.8\ [\text{stat}] \pm 12.9\ [\text{syst}])$ keV. We combine this result with a previous BaBar measurement of $\Delta m_0 \equiv m(D^*(2010)^+) - m(D^0)$ to obtain $\Delta m_D = m(D^+) - m(D^0) = (4\ 824.9 \pm 6.8\ [\text{stat}] \pm 12.9\ [\text{syst}])$ keV. These results are compatible with, and approximately five times more precise than, previous world averages.

Authors: ANULLI, Fabio (Sapienza Universita e INFN, Roma I (IT)); Dr SUN, Liang (Wuhan University (CN))

Presenter: Dr SUN, Liang (Wuhan University (CN))

Session Classification: Strong Interactions and Hadron Physics

Track Classification: Strong Interactions and Hadron Physics