Study of three-body decays of the J/ψ and of radiative decays of the $\Upsilon(1S)$

ICHEP

Seoul, Korea – July 5, 2018

Nicolas ARNAUD (narnaud@lal.in2p3.fr)

Laboratoire de l'Accélérateur Linéaire – IN2P3/CNRS & Université Paris-Sud European Gravitational Observatory – CNRS & INFN Consortium

On behalf of the

Outline

- Radiative and hadronic quarkonium decays
- The BaBar detector & datasets
- Three-body decays of the J/ψ
 - PRD95 (2017) 072007
- Radiative decays of the $\Upsilon(1S)$
 - <u>arXiv:1804.04044</u>, accepted for publication in PRD
- Outlook

Radiative and hadronic quarkonium decays

- Useful for light meson spectroscopy
 - ■f₁ states, K*
- Good probe to look for exotic QCD states
 - Multiquarks
 - Bound states of gluons ('glueballs')
 - → Lowest state (J^{PC}=0⁺⁺) could have a mass around 1.5 GeV/c², accessible in quarkonium decays
- More experimental results about $f_0(1710)$ would help
- → Accurate measurements needed
 - Low background: quarkonium decays in B-factories

The BaBar experiment at the PEP-II B-Factory

The BaBar detector

• The BaBar dataset (1999-2008)

• Final detector paper published in 2013 http://dx.doi.org/10.1016/j.nima.2013.05.107

The BABAR Detector: Upgrades, Operation and Performance

- « The Physics of the B Factories » (BaBar + Belle): http://arxiv.org/abs/1406.6311
- 424 fb⁻¹ @ $\Upsilon(4S) \Leftrightarrow (471.0 \pm 2.8) \times 10^6$ BB pairs 'onpeak'
- 44 fb⁻¹ recorded 40 MeV below the peak 'offpeak' to study background
- 30.6 fb⁻¹ @ $\Upsilon(3S)$ and 15.0 fb⁻¹ @ $\Upsilon(2S)$ onpeak + offpeak
- \sim 3.9 fb⁻¹ from the final energy scan up to 11.2 GeV

Three body decays of the J/ψ

- J/ ψ produced from electron-positron annihiliation with initial state radiation (ISR)
 - Only J^{PC}=1⁻⁻ states produced

- Studied decays
 - $J/\psi \rightarrow \pi^+ \pi^- \pi^0$
 - $J/\psi \rightarrow K^+ K^- \pi^0$
 - $J/\psi \rightarrow K_S^{\ 0} \ K^+ \pi^-$ and charge conjugate (c.c.) final state
- Dalitz plot analysis
 - Resonance contents
 - Branching fractions

Event selection

- Tracking
 - $J/\psi \rightarrow K_S^0 (\rightarrow \pi^+ \pi^-) K^+ \pi^-$: four charged tracks and K_S flight length > 2 mm
 - J/ $\psi \rightarrow h^+ h^- \pi^0$; $h = \pi$, K; $\pi^0 \rightarrow \gamma \gamma$: two charged tracks and energy(γ) > 100 MeV
- Particle identification for the charged hadrons
- ISR events selection
 - Use the mass recoiling against the 3-hadron system:

$$M_{\rm rec}^2 \equiv (p_{e^-} + p_{e^+} - p_{h_1} - p_{h_2} - p_{h_3})^2$$
 [4-momenta]

- \rightarrow Selection cuts: < 2 GeV²/c⁴ for J/ $\psi \rightarrow h^+ h^- \pi^0$ < 2.5 GeV²/c⁴ for J/ $\psi \rightarrow K_S^0 K^+ \pi^-$ and c.c
- Additional compatibility test if γ_{ISR} detected
- Background source: $e^+e^- \rightarrow \gamma \pi^+ \pi^-$
 - Rejected using the cut $cos(\theta_{\pi}) < 0.95$, θ_{π} : helicity ange in the $\pi\pi$ system
- Mass spectrum fit
 - Resolutions from Monte-Carlo
 - Model: Crystal-Ball + Gaussian functions
 - First-order polynomials to describe background

Event selection

Branching fraction ratios

- Dominant systematics: efficiencies
- Using B(J/ $\psi \to \pi^+ \pi^- \pi^0$) = (2.11 ± 0.07) × 10⁻² [PDG] as reference
- $K^+K^-\pi^0$ final state:

$$\mathcal{R}_1 = \frac{\mathcal{B}(J/\psi \to K^+K^-\pi^0)}{\mathcal{B}(J/\psi \to \pi^+\pi^-\pi^0)} = 0.120 \pm 0.003 \text{ (stat)} \pm 0.009 \text{ (syst)}$$

■ In agreement with an old measurement from Mark-II with 25 signal events:

$$\mathcal{B}(J/\psi \to K^+K^-\pi^0) = (2.8 \pm 0.8) \times 10^{-3}$$

• $K_S^0 K^+ \pi^- + c.c.$ final state:

$$\mathcal{R}_2 = \frac{\mathcal{B}(J/\psi \to K_S^0 K^{\pm} \pi^{\mp})}{\mathcal{B}(J/\psi \to \pi^+ \pi^- \pi^0)} = 0.265 \pm 0.005 \text{ (stat)} \pm 0.021 \text{ (syst)}$$

■ Result from Mark-I (126 signal events): $\mathcal{B}(J/\psi \to K_S^0 K^{\pm} \pi^{\mp}) = (26 \pm 7) \times 10^{-4}$ → 3.6 sigmas discrepancy

Dalitz plots

- Unbinned maximum likelihood fits
- J/ψ mass sideband regions used for background estimation
- Isobar model used to describe all three Dalitz plots
 - Sum of interfering resonances: too many partial waves ⇒ unconstrained analysis
- Use an alternative model ('Veneziano') for the $J/\psi \to \pi^+ \pi^- \pi^0$ Dalitz plot
 - Based on Regge trajectories instead of resonances
 - → Strong constraint on amplitude analysis
 - Better description of the high-mass region
 - <u>Szczepaniak, Pennington, PLB737 (2014) 283</u> / G. Veneziano, Nuovo Cim. 57, 190 (1968).

$J/\psi \rightarrow \pi^+ \pi^- \pi^0$ results

- Isobar model
 - Resonances described by relativistic Breit-Wigner shapes
 - Nominal fit: 8 free parameters

- Veneziano model
 - 7 Regge trajectories
 - \rightarrow 19 free parameters

Final state	Amplitude	Isobar fraction (%)	Phase (radians)	Veneziano fraction (%)
$\rho(770)\pi$	1.	$114.2 \pm 1.1 \pm 2.6$	0.	133.1 ± 3.3
$ ho(1450)\pi$	0.513 ± 0.039	$10.9 \pm 1.7 \pm 2.7$	$-2.63 \pm 0.04 \pm 0.06$	0.80 ± 0.27
$ ho(1700)\pi$	0.067 ± 0.007	$0.8 \pm 0.2 \pm 0.5$	$-0.46 \pm 0.17 \pm 0.21$	2.20 ± 0.60
$ ho(2150)\pi$	0.042 ± 0.008	$0.04 \pm 0.01 \pm 0.20$	$1.70 \pm 0.21 \pm 0.12$	6.00 ± 2.50
$\omega(783)\pi^0$	0.013 ± 0.002	$0.08 \pm 0.03 \pm 0.02$	$2.78 \pm 0.20 \pm 0.31$	
$\rho_3(1690)\pi$				0.40 ± 0.08
Sum		$127.8 \pm 2.0 \pm 4.3$		142.5 ± 2.8
χ^2/ν		687/519 = 1.32		596/508 = 1.17

 \rightarrow Fit results, background from sidebands; dashed line: fit without $\rho(1450)$

$J/\psi \rightarrow K^+ K^- \pi^0$ and $J/\psi \rightarrow K_S^{~0} K^+ \pi^-$ results

• Isobar model only

Final state	fraction $(\%)$	phase (radians)
$K^*(892)^{\pm}K^{\mp}$	$92.4 \pm 1.5 \pm 3.4$	0.
$ ho(1450)^{0}\pi^{0}$	$9.3 \pm 2.0 \pm 0.6$	$3.78 \pm 0.28 \pm 0.08$
$K^*(1410)^{\pm}K^{\mp}$		$3.29 \pm 0.26 \pm 0.39$
$K_2^*(1430)^{\pm}K^{\mp}$	$3.5 \pm 1.3 \pm 0.9$	$-2.32 \pm 0.22 \pm 0.05$
Total	107.4 ± 2.8	
χ^2/ u	132/137 = 0.96	

• $J/\psi \rightarrow K_S^0 K^+ \pi^-$ and charge conjugate

Final state	fraction $(\%)$	phase (radians)
$K^*(892)\bar{K}$	$90.5 \pm 0.9 \pm 3.8$	0.
$\rho(1450)^{\pm}\pi_{-}^{\mp}$	$6.3\pm0.8\pm0.6$	$-3.25 \pm 0.13 \pm 0.21$
$K_1^*(1410)\bar{K}$	$1.5 \pm 0.5 \pm 0.9$	$1.42 \pm 0.31 \pm 0.35$
$K_2^*(1430)\bar{K}$	$7.1 \pm 1.3 \pm 1.2$	$-2.54 \pm 0.12 \pm 0.12$
Total	105.3 ± 3.1	
χ^2/ u	274/217 = 1.26	

$\rho(1450)$ branching fraction

• J/ $\psi \rightarrow \pi^+ \pi^- \pi^0$ Dalitz fit

$$\mathcal{B}_{1} = \frac{\mathcal{B}(J/\psi \to \rho(1450)^{0}\pi^{0})\mathcal{B}(\rho(1450)^{0} \to \pi^{+}\pi^{-})}{\mathcal{B}(J/\psi \to \pi^{+}\pi^{-}\pi^{0})}$$
$$= (3.6 \pm 0.6(\text{stat}) \pm 0.9(\text{sys}))\%.$$

• J/ $\psi \rightarrow K^+ K^- \pi^0$ Dalitz fit

$$\mathcal{B}_{2} = \frac{\mathcal{B}(J/\psi \to \rho(1450)^{0}\pi^{0})\mathcal{B}(\rho(1450)^{0} \to K^{+}K^{-})}{\mathcal{B}(J/\psi \to K^{+}K^{-}\pi^{0})}$$
$$= (9.3 \pm 2.0(\text{stat}) \pm 0.6(\text{sys}))\%.$$

→ Ratio of branching fractions

$$\frac{\mathcal{B}(\rho(1450)^0 \to K^+K^-)}{\mathcal{B}(\rho(1450)^0 \to \pi^+\pi^-)} = 0.307 \pm 0.084(\text{stat}) \pm 0.082(\text{sys})$$

Radiative decays of the $\Upsilon(1S)$

- $\Upsilon(1S)$ radiative decays suppressed by a factor ~25 with respect to J/ψ \rightarrow Challenging analysis
- Decays
 - $\blacksquare \Upsilon(1S) \rightarrow \pi^+ \pi^- \gamma$
 - $\blacksquare \Upsilon(1S) \rightarrow K^+ K^- \gamma$
- Υ(1S) production modes
 - $\Upsilon(3S)$ \rightarrow $\pi_s^+ \pi_s^ \Upsilon(1S)$ Using $\Upsilon(3S)$ and $\Upsilon(2S)$ on-resonance datasets

 Soft pions
- Branching fractions normalized to the dominant $\Upsilon(1S) \to \mu^+ \mu^-$ decay
 - \sim 435,000 events in the Υ (2S) dataset
 - \sim 132,000 events in the Υ (3S) dataset
 - \rightarrow For a resonance R:

$$\mathcal{B}(R) = \frac{N_R(\Upsilon(nS) \to \pi_s^+ \pi_s^- \Upsilon(1S)(\to R\gamma))}{N(\Upsilon(nS) \to \pi_s^+ \pi_s^- \Upsilon(1S)(\to \mu^+ \mu^-))} \times \underbrace{\mathcal{B}(\Upsilon(1S) \to \mu^+ \mu^-)}_{(2.48 \pm 0.05)\% \text{ [PDG]}}$$

Same number of charged tracks

$\Upsilon(1S)$ event selection

- Exactly four charged tracks with transverse momentum greater than 100 MeV/c
- Exactly one photon with energy greater than 2.5 GeV
- Charged particle identification
 - Very loose: high efficiency, low purity

[3-momenta]

- Momentum balance: $\chi^2 = \sum_{i=1}^3 \frac{(\Delta \mathbf{p}_i \langle \Delta \mathbf{p}_i \rangle)^2}{\sigma_i^2}$ with $\Delta p_i = p_i^{e^-} + p_i^{e^+} (p_i^{\gamma} + p_i^{\pi_s^+} + p_i^{\pi_s^-} + p_i^{h^+} + p_i^{h^-})$
 - Means and with computed from Monte-Carlo (MC) simulations
- Mass recoiling to the two soft pions close to the $\Upsilon(1S)$ mass

[4-momenta]

$$=\pm 2.5 \sigma$$

$$M_{\rm rec}^2(\pi_s^+\pi_s^-) = |p_{e^+} + p_{e^-} - p_{\pi_s^+} - p_{\pi_s^-}|^2$$

$\pi^+\pi^-$ mass spectrum

- Simultaneous fit to the $\Upsilon(3S)$ and $\Upsilon(2S)$ datasets 16 free parameters
 - S-wave: coherent sum of $f_0(500)$ and $f_0(980)$

S-wave =
$$|BW_{f_0(500)}(m) + cBW_{f_0(980)}(m)e^{i\phi}|^2$$

- $f_2(1270)$ and $f_0(1710)$
- Combinatorial background
- ρ_0 background for $\Upsilon(3S)$ dataset

→ Significant S-wave contribution

- $f_0(500)$ fitted parameters $m = 0.856 \pm 0.086 \text{ GeV/c}^2$ $\Gamma = 1.279 \pm 0.324 \text{ GeV}$
- $\phi = 2.41 \pm 0.43 \text{ rad}$
- \rightarrow Hint for $f_0(1710)$
- \rightarrow No f_J(1500) visible
 - Contrary to K+Kmass spectrum
 - → See next slide

Resonances $(\pi^+\pi^-)$	Yield $\Upsilon(2S)$	Yield $\Upsilon(3S)$ Signi	ficance (σ)
S-wave	$133\pm16\pm13$	87 ± 13 (stat only)	12.8
$f_2(1270)$	$255 \pm 19 \pm 8$	$77\pm7\pm4$	15.9
$f_0(1710)$	$24 \pm 8 \pm 6$	$6\pm 8\pm 3$	2.5
$f_0(2100)$	33 ± 9 (stat only)	8 ± 15 (stat only)	
$ ho(770)^{0}$		54 ± 23 (stat only)	

K+K- mass spectrum

- Combination of the 2 K⁺K⁻ spectra
 - •6 free parameters / fit
 - $f_0(980)$
 - $f_2(1270)$
 - $f'_2(1525)$ and $f_0(1500)$
 - Unable to separate contributions
 - \rightarrow Labelled f_I(1500)
 - → Angular analysis needed
 - $f_0(1710)$
 - $f_0(2200)$
 - Combinatorial background

Resonances (K^+)	(K^-) Yield $\Upsilon(2S) + \Upsilon(3S)$	Significance (σ)
$f_0(980)$	47 ± 9	5.6
$f_J(1500)$	$77\pm10\pm10$	8.9
$f_0(1710)$	$36 \pm 9 \pm 6$	4.7
$f_2(1270)$	15 ± 8	
$f_0(2200)$	38 ± 8	

Branching fractions

Resonance	$\mathcal{B}(10^{-5})~(extit{BABAR})$	CLEO	_
$\pi\pi$ S-wave	$4.63 \pm 0.56 \pm 0.48$	$(f_0(980)) 1.8^{+0.8}_{-0.7} \pm 0.1$	
$f_2(1270)$	$10.15 \pm 0.59 {}^{+0.54}_{-0.43}$	$10.2\pm0.8\pm0.7$	Coods
$f_0(1710) \rightarrow \pi\pi$	$0.79 \pm 0.26 \pm 0.17$		Good agreement with CLEO
$f_J(1500) \rightarrow K\bar{K}$	$3.97 \pm 0.52 \pm 0.55$	$3.7^{+0.9}_{-0.7} \pm 0.8$	
$f_2^{\prime}(1525)$	$2.13 \pm 0.28 \pm 0.72$		
$f_0(1500) \rightarrow K\bar{K}$	$2.08 \pm 0.27 \pm 0.65$		_
$f_0(1710) \rightarrow K\bar{K}$	$2.02 \pm 0.51 \pm 0.35$	$0.76 \pm 0.32 \pm 0.08$	_

- $f_0(1710)$ combined significance: 5.7 σ
 - \rightarrow First observation in $\Upsilon(1S)$ radiative decays

• Measurement
$$\frac{\mathcal{B}(f_0(1710) \to \pi \pi)}{\mathcal{B}(f_0(1710) \to K\bar{K})} = 0.64 \pm 0.27_{\text{stat}} \pm 0.18_{\text{sys}}$$

Angular analysis

- Partial wave analysis (PWA)
 - Efficiency-corrected mass spectra weighted by Legendre polynomial moments(θ_H)
 - → S- and D-wave contributions for both final states

Consistent with mass spectrum fit

 $f_0(1500)$ and $f'_2(1525)$

- Full angular analysis in resonance mass windows
 - $f_2(1270) \rightarrow \pi^+ \pi^-$
 - S-wave $\rightarrow \pi^+ \pi^-$
 - f'₂(1525) → K⁺K⁻
 - → In agreement with PWA

Outlook

- High-statistics Dalitz plot analysis of J/ψ decays
 - Comparison of Isobar and Veneziano models for $J/\psi \to \pi^+ \pi^- \pi^0$
 - → Complementary description of resonance structure
 - First measurement of $J/\psi \to K_S^0 K^+ \pi^-$ and charge conjugate
- → PRD95 (2017) 072007
- Studies of radiative $\Upsilon(1S) \to \pi^+ \pi^- \gamma$ and $\Upsilon(1S) \to K^+ K^- \gamma$ decays
 - Observation of various resonances: broad S-wave, $f_0(980)$, $f_2(1270)$, $f_0(1710)$, $f'_2(1525)$ and $f_0(1500)$ → Observation of the $f_0(1710)$ state in these decays
 - Spin-parity and branching fraction measurements
- \rightarrow arXiv:1804.04044, accepted for publication in PRD