Measurement of Diffractive Charm in DIS at HERA

Andrew Mehta

ICHEP, Seoul, South Korea

5 July 2018

Diffractive DIS D* Production

$$ep \rightarrow epX$$

- Diffraction characterized by larger rapidity gap or intact proton
- QCD description as an exchange of a colourless partonic state (pomeron) based on
 - colinear factorisation
 - proton vertex factorisation
- Diffractive PDFs obtained from fit to inclusive diffractive data with DGLAP evolution equations
- D* produced via photon—gluon fusion
 - probe gluon content of pomeron and test factorisation ansatz

NLO QCD Calculation

- HVQDIS program to produce inclusive inclusive charm adapted to produce diffractive events
- Use collinear factorisation model with diffractive PDFs taken from H1
 2006 FIT B
- Charm fragmentation assuming $f(c \rightarrow D^*) = 0.235 \pm 0.007$ and the Kartvelishvili parameterisation
- Factorisation and normalisation scales set to $\mu_f = \mu_r = \sqrt{(Q^2 + 4m_c^2)}$ with $m_c = 1.5$ GeV
- Uncertainties:
 - Factorisation and normalisation scales varied from 0.5 to 2
 - m_c varied between 1.3 and 1.7 GeV
 - Uncertainties on Kartvelishvili parameters
 - DPDF uncertainties
- Contributions from b hadron decays (3% in non-diffractive) not subtracted from measurements

H1 Detector

Reconstruction of D*s

- Use the 'golden' decay $D^{*\pm} \rightarrow D^0 \pi^{\pm} \rightarrow (K^{\mp} \pi^{\pm}) \pi^{\pm}$
- Branching ratio of 2.66 ± 0.03%
- Solution Use $D^{*\pm} D^0$ mass difference (better resolution)
- Simultaneous fit to right and wrong charge combinations to obtain signal and background

D* in diffractive DIS

ICHEP 2018

Diffractive DIS Charm Production

- Data collected 2005 and 2006
- Integrated luminosity 287 pb⁻¹
- Diffractive data selected by rapidity gap method
 - no activity in calorimeter for η >3.2
 - no activity in forward detectors
- Data corrected for
 - background
 - acceptance
 - trigger efficiency
 - QED randiation

DIS phase space
$5 < Q^2 < 100 \; { m GeV}^2$
0.02 < y < 0.65
D^* kinematics
$p_{t,D^*} > 1.5 \text{ GeV}$
$-1.5 < \eta_{D^*} < 1.5$
Diffractive phase space
$x_{I\!\!P} < 0.03$
$M_Y < 1.6 \text{ GeV}$
$ t < 1 { m GeV}^2$

Uncorrected distributions compared with RAPGAP Monte Carlo

Andrew Mehta 05/07/2018

ICHEP 2018

Total Cross Section

$$\sigma_{ep \to eYX(D^*)} = 314 \pm 23 \text{ (stat.)} \pm 35 \text{ (syst.) pb.}$$

$$\sigma_{ep \to eYX(D^*)}^{\text{theory}} = 265 \, {}^{+54}_{-40} \, \text{(scale)} \, {}^{+68}_{-54} \, (m_c) \, {}^{+7.0}_{-8.2} \, \text{(frag.)} \, {}^{+31}_{-35} \, \text{(DPDF)} \, \text{pb}.$$

Agrees with theory within errors

Theory depends strongly on charm mass and factorisation and renormalisation scales

Differential Cross Sections

Good agreement with NLO inclusive diffractive fit

Differential Cross Sections

Good agreement with inclusive diffractive fit

Differential Cross Sections

Diffractive to Non-diffractive ratio

Diffractive Fraction Summary

 Compatible with previous measurements even with slightly different kinematic regions

ICHEP 2018

Summary

- New measurement with 6 time statistics
- Good agreement with NLO QCD
- Validates colinear factorisation in diffractive DIS

More details: <u>H1 Collab., V. Andreev et al., Eur.Phys.J.C77 (2017), 340</u>