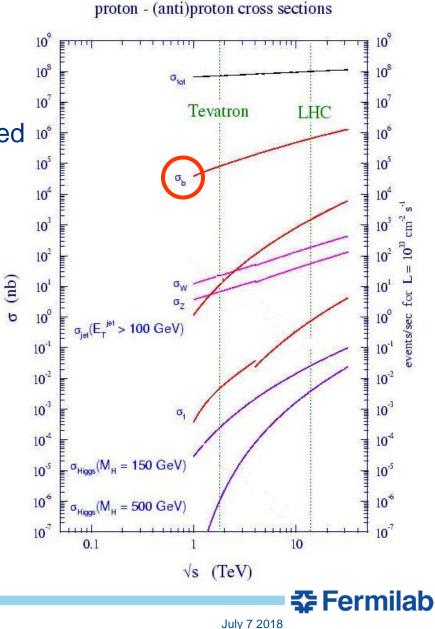


Studies of X(5568) and Evidence for $Z_c^{\pm}(3900)$ in b-flavored Hadron Decays

Presented by Dmitri Denisov (Fermilab) For the D0 Collaboration ICHEP 2018, Seoul, July 7, 2018

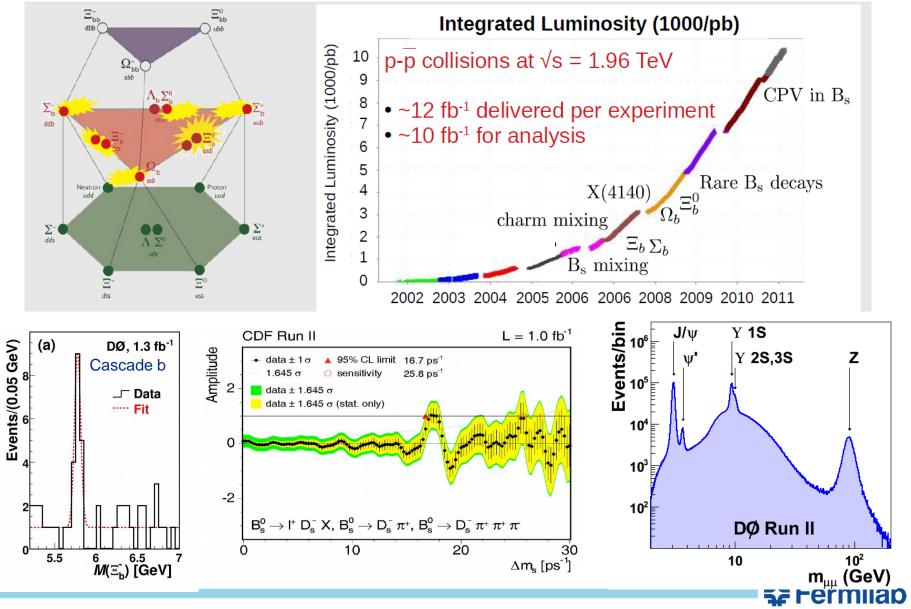
July 7 2018

‡ Fermilab



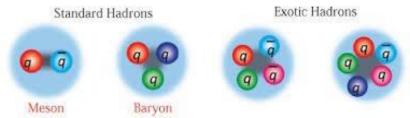
Heavy Flavor Studies at Hadron Colliders

High b quark cross section: ~ $10^{-3} \sigma_{tot}$ ~ 10^4 b's per second produced! All species containing b quark are produced B[±], B⁰, B_s, B_c, Λ_{b} ...

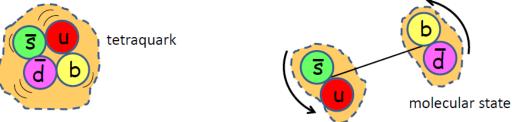

Large b quark data samples provide

- B mesons lifetime studies
- Mass spectroscopy (B_c, etc.)
- Studies of B_s oscillations
- CP violation studies
- Search for new b hadrons
- Search for rare decays

Many Legacy Heavy Flavor Results from the Tevatron



3


July 7 2018

Multi-quark States

- ~20 multi-quark states are observed since 2003 with high significance
 - BES, Belle, Babar, CDF, D0, LHCb, Atlas, CMS
- Some examples of multi-quark states
 - − Tetraquarks candidates X(3782)→J/ $\psi\pi^{+}\pi^{-}$, Z+(4430)→Ψ'π+, X(4140)→J/ $\psi\phi$, Z_b+(10610)→Yπ+, Z_b+(10650) → Yπ+
 - Pentaquarks candidates $P_c^+(4450) \rightarrow J/\psi p$, $P_c^+(4380) \rightarrow J/\psi p$
- Four-quark states interpretations: tetraquarks (large binding energy), molecular states (small binding energy), mixture with conventional states (if possible)

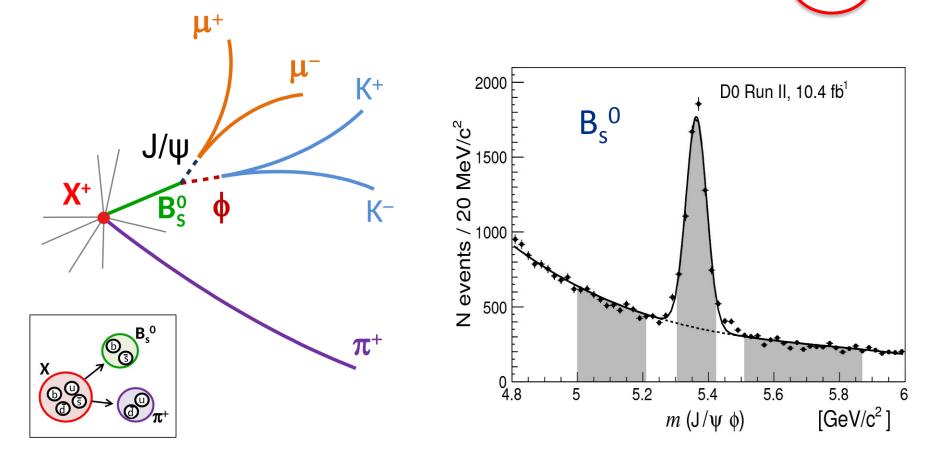
 Many observed multi-quark states lie close to two-hadron mass thresholds and, therefore, they can be interpreted as molecular states

Recent review on multiquark states: Olsen, Skwarnicki, Zieminska, Rev.Mod.Phys. 90, 015003 (2018)

DØ Detector and Data Collection

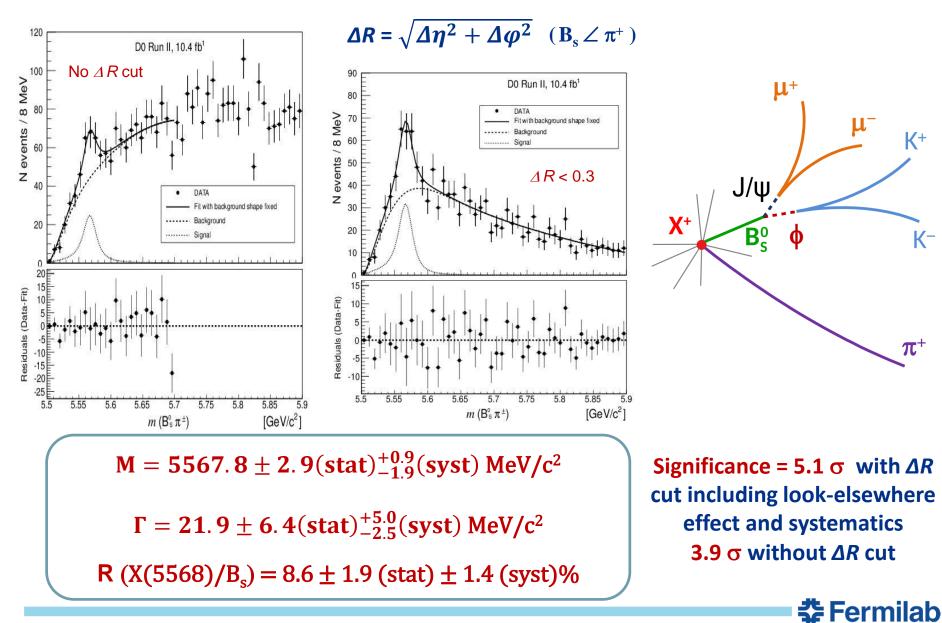
2 T solenoid and central fiber tracker Large eta coverage muon system Fast electronics

2001


2011

Fermilab

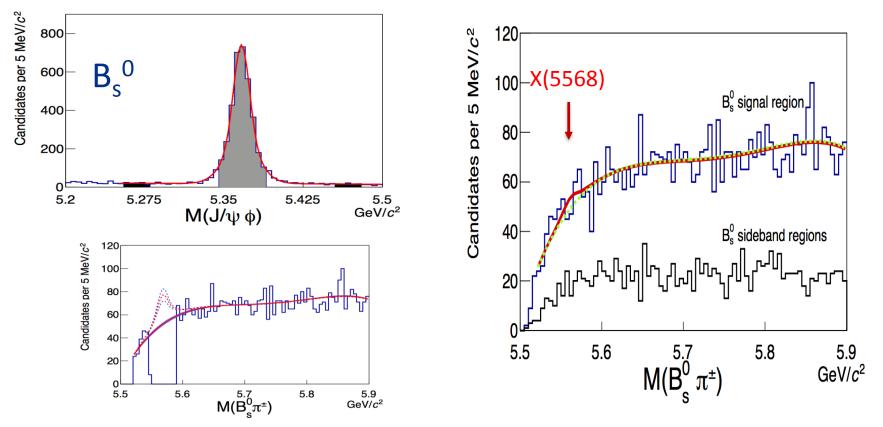
- ~10 fb⁻¹ of data for analysis
 - Billions of events recorded with single and di-muon triggers



Search for Four Quarks State X(5568) \rightarrow B_s⁰ π^{\pm} , B_s⁰ \rightarrow (J/ $\psi \phi$)

- Looking for possible strong decays of four-quarks object containing four different quarks: u, d, s and b
- Require that the pion comes from the proton-antiproton interaction vertex

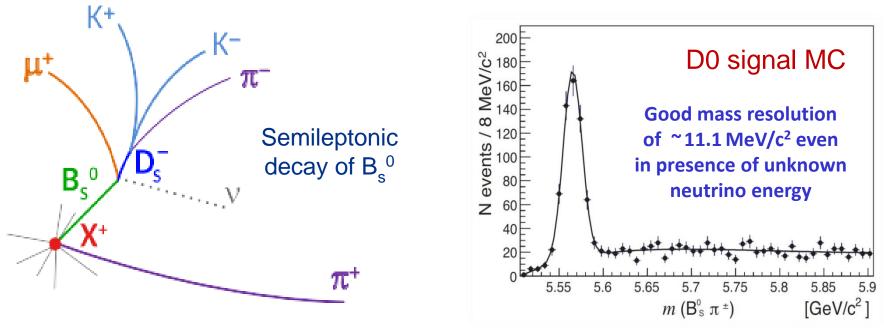
Observation of X(5568) \rightarrow B_s⁰ π^{\pm} , B_s⁰ \rightarrow J/ $\psi\phi$



7

R

CDF Search for X(5568) \rightarrow B_s⁰ π^{\pm} , B_s⁰ \rightarrow J/ $\psi\phi$


- CDF repeated the measurement with somewhat different selections, and substantially smaller muon rapidity coverage /eta/<1 vs /eta/<2
- No significant signal observed and upper limit set at 6.7% at 95% CL
- If DØ restricts eta coverage to CDF value, most of the X(5568) signal is gone
 - Critical to understand physics of the production and decay of multi-quark objects

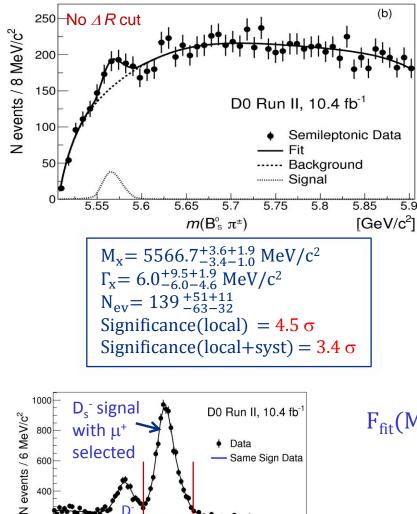
🚰 Fermilab

$X(5568) \rightarrow B_s^0 \pi^{\pm}$, with Semileptonic B_s^0 decay

D0 collaboration, PRD 97, 092004 (2018)

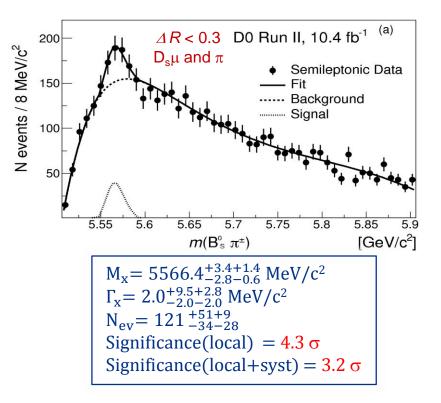
 $X^+(5568) \rightarrow B_s \pi^+$, $B_s \rightarrow D_s^- \mu^+ X_{any}$, $D_s^- \rightarrow \phi(1020) \pi^-$, $\phi \rightarrow K^+K^-$

- 1. Calculate visible mass $M(D_s^-\mu^+)$
- 2. Use visible mass as \mathbf{B}_{s} mass
- 3. Combine \mathbf{B}_{s} and π^{+} to form X
- 4. Estimate $M(X) = M(B_s^0 \pi^{\pm}) =$


 $\mathsf{M}(\mathsf{D}_{\mathsf{s}}\,\mu\,\pi)-\mathsf{M}(\mathsf{D}_{\mathsf{s}}\,\mu)+\mathsf{M}_{\mathsf{PDG}}(\mathsf{B}_{\mathsf{s}}^{\ 0})$

 $\begin{array}{l} \underline{Selection:} \ \ \textbf{4.5} < \textbf{M}(\textbf{D}_{s}\,\mu\,\textbf{)} < \textbf{M}(\textbf{B}_{s})\\ \textbf{3} < \textbf{p}_{T}(\mu) < \textbf{25} \ \textbf{GeV}; \ \textbf{p}_{T}(K) > \textbf{1} \ \textbf{GeV}\\ \textbf{1.012} < \textbf{M}(KK) < \textbf{1.03} \ \textbf{GeV}; \ \textbf{p}_{T}\,(\textbf{D}_{s}\,\mu) > \textbf{10} \ \textbf{GeV};\\ \textbf{1.91} < \textbf{M}(KK\pi) < \textbf{2.03} \ \textbf{GeV} \end{array}$

9


$X(5568) \rightarrow B_s^{0}\pi^{\pm}$, with Semileptonic B_s^{0} decay

2.1

2.3

2.2 2 [GeV/c²]

$$\begin{split} F_{\text{fit}}(M, M_X, \Gamma_X) =& f_{\text{bgr}} \cdot F_{\text{bgr}}(M) + f_{\text{sig}} \cdot F_{\text{sig}}(M, M_X, \Gamma_X) \\ & \text{where } F_{\text{sig}}(M, M_X, \Gamma_X) - \text{S-wave relativistic} \\ & \text{BW function convoluted with resolution,} \\ & f_{\text{bgr}}, f_{\text{sig}} - \text{normalization coefficients} \\ & \text{Background shape estimated using data and MC} \end{split}$$

m(φ π[±])

1.9

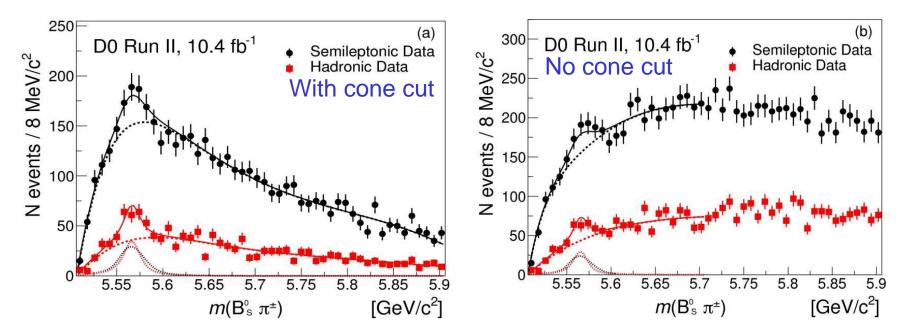
1.8

200

Comparison of X(5568) Production in two B_s⁰ Decay Channels

	Semileptonic		Hadronic (from Ref. [15])	
	Cone cut	No cone cut	Cone cut	No cone cut
Fitted mass, MeV/c^2	$5566.4_{-2.8}^{+3.4}$ $^{+1.5}_{-0.6}$	$5566.7^{+3.6}_{-3.4} {}^{+1.0}_{-1.0}$	$5567.8 \pm 2.9 \substack{+0.9 \\ -1.9}$	5567.8
Fitted width, MeV/c^2	$2.0^{+9.5}_{-2.0}$ $^{+2.8}_{-2.0}$	$6.0^{+9.5}_{-6.0}$ $^{+1.9}_{-4.6}$	$21.9 \pm 6.4 \substack{+5.0 \\ -2.5}$	21.9
Fitted number of signal events	$121^{+51}_{-34} {}^{+9}_{-28}$	$139^{+51}_{-63}\ {}^{+11}_{-32}$	$133\pm31\pm15$	$106 \pm 23 (\mathrm{stat})$
Local significance	4.3σ	4.5σ	6.6σ	4.8σ
Significance with systematics	3.2σ	3.4σ	5.6σ	
Significance with LEE+systematics			5.1σ	3.9σ

Production ratio of X(5568) to B_s


 $X(5568)/B_s = 7.3^{+2.8}_{-2.4}(stat)^{+0.6}_{-1.7}(syst)\%$ $X(5568)/B_s = 8.6 \pm 1.9(stat) \pm 1.4(syst)\%$

Semileptonic channel, no cone cut Hadronic channel, cone cut

- Study in semileptonic channel confirms X(5568) observed in hadronic channel
- Good agreement between results obtained in hadronic and semileptonic channels

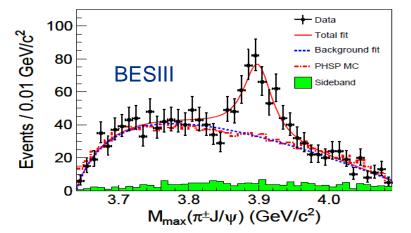
3

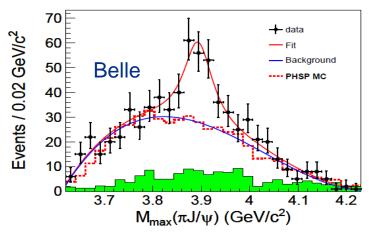
Simultaneous X (5568) Fit to Hadronic and Semileptonic Channels

	Cone cut	No cone cut
Fitted mass, MeV/c^2	$5566.9^{+3.2}_{-3.1} (\text{stat})^{+0.6}_{-1.2} (\text{syst})$	$5565.8^{+4.2}_{-4.0} (\text{stat})^{+1.3}_{-2.0} (\text{syst})$
Fitted width, MeV/c^2	$18.6^{+7.9}_{-6.1} (\text{stat})^{+3.5}_{-3.8} (\text{syst})$	$16.3^{+9.8}_{-7.6} (\text{stat})^{+4.2}_{-6.5} (\text{syst})$
Fitted number of hadronic signal events	$131^{+37}_{-33} (\text{stat})^{+15}_{-14} (\text{syst})$	$99^{+40}_{-34} (\mathrm{stat})^{+18}_{-33} (\mathrm{syst})$
Fitted number of semileptonic signal events	$147^{+42}_{-37} (\text{stat})^{+17}_{-16} (\text{syst})$	$111.7^{+46}_{-39} (\text{stat})^{+20}_{-38} (\text{syst})$
χ^2/ndf	94.7/(100-6)	54.2/(50-6)
<i>p</i> -value	2.2×10^{-14}	$1.9 imes10^{-8}$
Local significance	7.6σ	5.6σ
Significance with LEE	6.9σ	5.0σ
Significance with LEE+systematics	6.7σ	4.7 σ

Substantial increase in significance combining two independent data samples

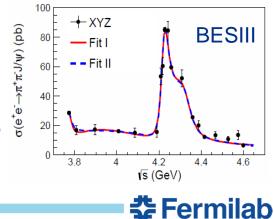
Results from Five Collider Experiments on X(5568)


Analysis	Production ratio (B _s / X(5568))	Reference
D0 (J/ψ φ)	8.6 ± 1.9 ± 1.4%	PRL 117,022003(2016)
D0 (μ D _s)	7.3 ^{+2.8} -2.4 ^{+0.6} -1.7%	PRD 97, 092004 <mark>(</mark> 2018)
LHCb	< 2.4% (p _T (B _s ⁰) > 10 GeV)	PRL 117,152003 (2016)
CMS	< 1.1% (p _T (B _s ⁰) > 10 GeV)	PRL 120, 202005 (2018)
ATLAS	< 1.5% (p _T (B _s ⁰) > 10 GeV)	PRL 120, 202007 (2018)
CDF	< 6.7% (2.3 ± 1.9 ± 0.9%)	PRL 120, 202006 (2018)

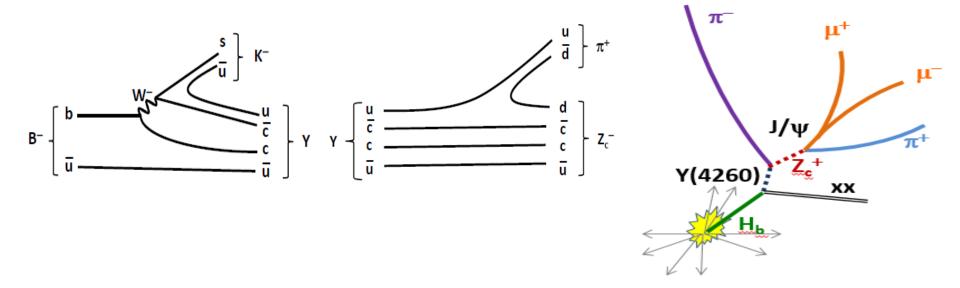

- LHC experiments do not observe X(5568) at higher collisions energy
- CDF result is in ~ 2σ tension with DØ studies in hadronic decay channel
 - Kinematic selections vary substantially
 - Ratio to B_s^0 production might not be the best metric
- Without theoretical model of X(5568) production and decays it is hard to compare various experiments quantitively

Z_c⁺(3900) Search in Hadron Collisions

• Z⁺(3900) was discovered in 2013 by Belle and BESIII in the process



Minimum Z_c ⁺(3900) quark content cc(bar)ud(bar)


 $M = 3886.6 \pm 2.4 \text{ MeV}$ $\Gamma = 28.1 \pm 2.6 \text{ MeV}$

- Latest from BESIII
 - "Y (4260)" consists of two interfering resonances
 - PDG 2018 names them $\psi(4260)$ and $\psi(4360)$
- Questions
 - Which component of the "Y (4260)" decays to the $Z_c(3900)$?
 - Are there decays $H_b \rightarrow Y (\rightarrow Z_c^{+}(3900)\pi^{-})$ + anything?

July 7 2018

Production of Z_c^{\pm}(3900) in b-hadron Decays

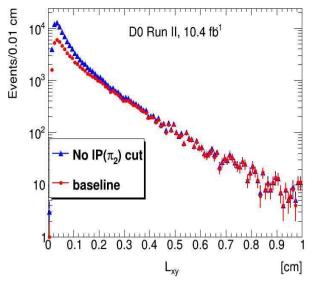
• We search for the $Z_c^+(3900)$ production in H_b decays via the following decays

arXiv:1807.00183

🛠 Fermilab

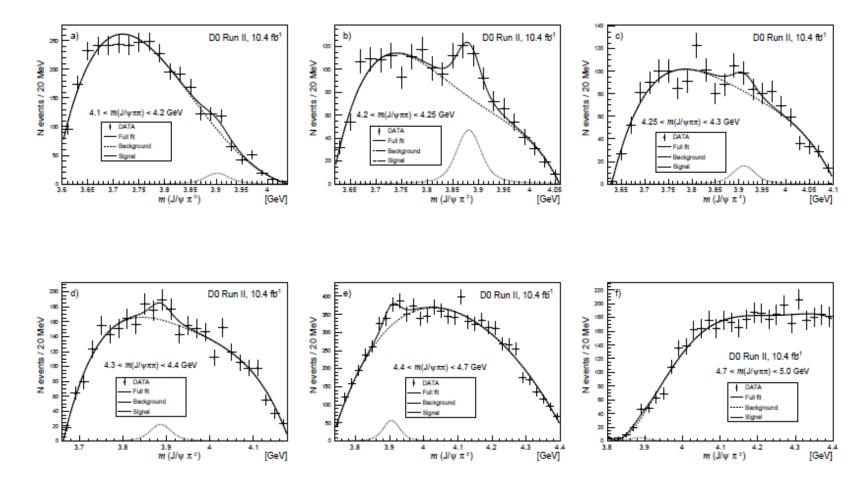
Data Sample

- 10.4 fb⁻¹ of proton antiproton collisions at 1.96 TeV
- Collected with single and di-muon triggers
- Select events with $J/\psi \rightarrow \mu^+\mu^-$ in the final state plus two tracks
 - $p_T (track_1) > 1.0 \text{ GeV}, p_T (track_2) > 0.8 \text{ GeV}$
- Treat both tracks as pions
 - Charge(track₁) * Charge(track₂) < 0</p>
- Veto $K^* \to \pi K(K\pi)$, $\phi \to KK$, and γ conversions
- Displaced vertex selection


- $L_{xy}(J/\psi\pi^+)/\sigma(L_{xy}) > 5$, $IP_{xy}(track_{1(2)})/\sigma(IP) > 2(1)$

• Vertex fits

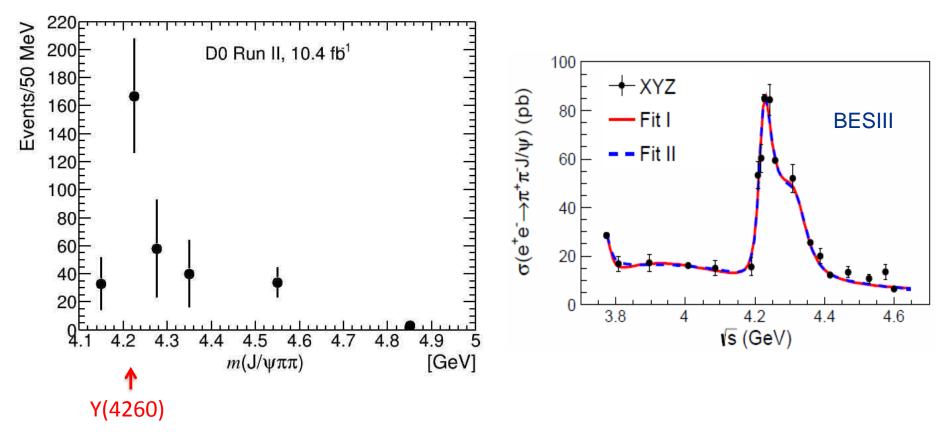
– J/ ψ π⁺ χ 2 < 10, adding extra pion J/ ψ π⁺π⁻ δ χ 2 < 6


- After above cuts we selected events with displaced J/ $\psi\pi^+\pi^-$ vertices
 - L_{xy} distribution has slope consistent with B hadron decays lifetime

We study m(J/ $\psi\pi$) in the events that have 4.1 < m(J/ $\psi\pi^+\pi^-$) < 5.0 GeV

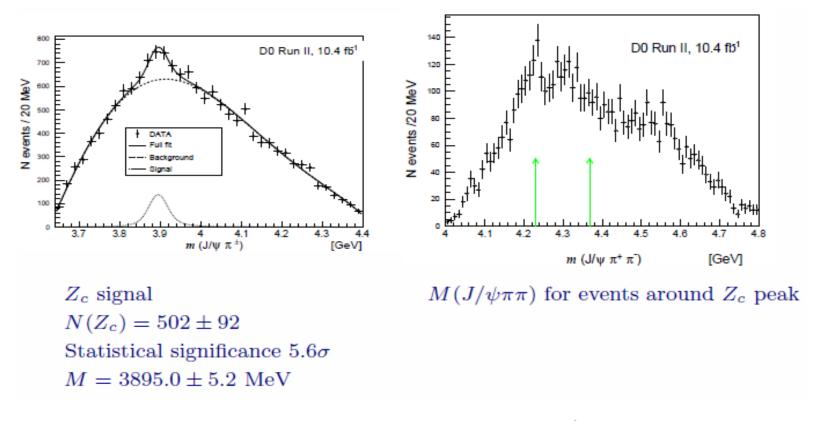
🛠 Fermilab

m(J/ $\psi\pi^+$) Mass Distributions in Slices of m(J/ $\psi\pi^+\pi^-$)



We fit m(J/ $\psi\pi^+$) in six slices of m(J/ $\psi\pi^+\pi^-$) using the S-wave relativistic Breit-Wigner function with Γ fixed to PDG value for the Z_c⁺(3900) signal and background parametrized with Chebyshev polynomials

‡ Fermilab


Number of $Z_c^+(3900)$ Events vs m(J/ $\psi\pi^+\pi^-$)

- Majority of $Z_c^+(3900)$ events, as expected, are coming from ψ states with masses in the 4.2 to 4.3 GeV region
 - But there is an indication that some Z_c events come from J/psiππ masses above the ψ(4260) and ψ(4360)
 Control Fermilab

Z_c⁺(3900) Signal

- Select events with $4.2 < m(J/\psi\pi^+\pi^-) < 5.0 \text{ GeV}$
 - Fit parameters of $Z_c^+(3900)$ signal (width is fixed at PDG value)

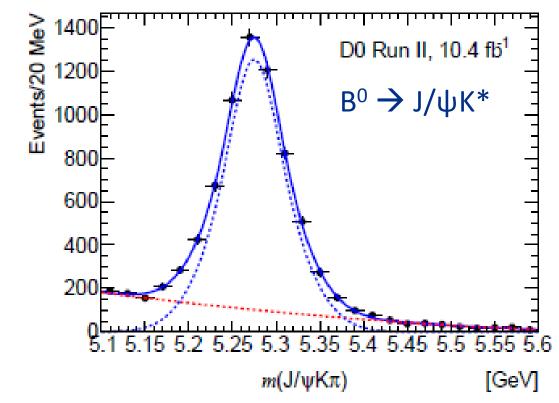
If we select events with $J/\psi\pi^+$ mass in the vicinity of $Z_c^+(3900)$ we can see clear enhancement in $\psi(4260)$ mass region even though signal/background ratio is low

🛠 Fermilab

B

Systematic Uncertainties

Table 1: Systematic uncertainties for the Z_c (5900)				
Systematic uncertainty	${\rm Mass}~({\rm MeV})$	Yield		
Mass calibration	$^{+3}_{-0}$	0		
Mass resolution	< 0.1	± 27		
Background shape	± 0.4	± 53		
Bin size	± 1.1	± 9		
Signal model	± 2.4	± 3		
Natural width variation	0	± 23		
Total (sum in quadrature)	-2.7, +4.0	± 64		


Table 1: Systematic uncertainties for the $Z_c^{\,+}(3900)$ mass and yield

- Measured $Z_{c}^{+}(3900)$ mass is M = 3895.0±5.2 (stat)^{+4.0}_{-2.7} (syst) MeV
 - In good agreement with BESIII and Belle
- Systematic uncertainties reduce significance of $Z_c^+(3900)$ peak to 4.6 σ

🚰 Fermilab

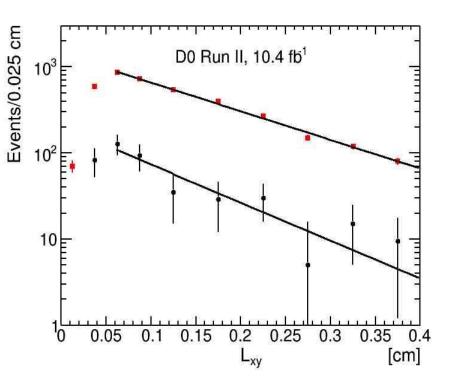
R S

Normalizing Z_c⁺(3900) Signal Yield

• Decay $B_d^0 \rightarrow J/\psi K^*$ has similar efficiencies to

- $~H_b \,{\rightarrow}\,\, Y(4260),\, Y(4260) \,{\rightarrow}\,\, Z_c^{\,\pm}(3900) \pi^{\mp}$, $Z_c^{\,\pm}(3900) \,{\rightarrow}\,\, J/\psi \pi^{\pm}$

• The ratio is


− N(H_b → Z_c^+ (3900)+anything)/N(B⁰ → J/ψK^{*}) = 8.5+-1.9%

Cross Checks

- p_T(π) > 1.5 GeV and <1.5 GeV
- Three Z_c⁺(3900) rapidity ranges
- m(π⁺π⁻) > 1 GeV and <1 GeV
- π⁺ and π⁻
- Various run periods
- Reversed IP cut on track₂
- Same sign pion pairs
- Events in the high chi2 tail
- J/ψ sidebands
- And many others

L_{xy} distribution for Z_c⁺(3900) obtained in slices of L_{xy} (black) compared to the similar distribution for B⁰→ J/ ψ K* (red)

All cross checks provide expected results

Conclusions

- DØ observed $Z_c^{\pm}(3900)$ exotic state decaying to $J/\psi\pi^{\pm}$ in proton-antiproton collisions at 1.96 TeV with 4.6 σ significance
 - Measured mass of $Z_{c}^{+}(3900)$ is M = 3895.0±5.2 (stat)^{+4.0}_{-2.7} (syst) MeV
 - Consistent with Belle and BESIII measurements
- Production of $Z_c(3900)$ is consistent with coming from heavy flavor hadron decays
 - $-~~H_b \,{\rightarrow}\,\, Y(4260),\, Y(4260) \,{\rightarrow}\,\, Z_c^{\,\pm}(3900) \pi^{\mp}$, $Z_c^{\,\pm}(3900) \,{\rightarrow}\,\, J/\psi \pi^{\pm}$
- Yield of $Z_c^{\pm}(3900)$ in proton-antiproton collisions
 - − N(H_b → Z_c⁺(3900)+anything)/N(B⁰ → J/ψK^{*}) = 8.5+-1.9%
- We confirm production of X(5568) state in proton-antiproton collisions at 1.96 TeV
 - In an independent data set with semileptonic decay of B_s^0 meson
 - X(5568) properties in B_s^0 meson hadronic and semileptonic decays are consistent
 - Combined significance of X(5568) state observation in these two channels is 6.7σ
- Studies of exotic mesons, including their properties, production and decay mechanisms should help to develop models of multi-quark configurations
 - Such models are critical to guide experimental studies
 - Important for our understanding of strong interactions