

Low mass dielectron measurements in pp and Pb-Pb collisions with ALICE at the LHC

Ivan Vorobyev Technische Universität München, Excellence Cluster Universe on behalf of the ALICE Collaboration

Low mass dielectron studies

Produced during all stages of collisions with negligible final-state interactions **Proton-proton collisions**:

- Medium-free reference (min. bias events)
- Heavy-flavour cross sections
- (Virtual) direct photons
- New phenomena in high-multiplicity events?

Low mass dielectron studies

Produced during all stages of collisions with negligible final-state interactions **Proton-proton collisions:**

- Medium-free reference (min. bias events)
- Heavy-flavour cross sections
- (Virtual) direct photons
- New phenomena in high-multiplicity events?

High-energy heavy-ion collisions:

- In-medium modifications of vector mesons
- Thermal radiation from QGP
- Energy loss of correlated heavy-flavour quarks

The ALICE Experiment at CERN LHC

Inner Tracking System

- Tracking, vertex, PID (d*E*/d*x*)
 Time Projection Chamber
- Tracking, PID (d*E*/dx)
 Time Of Flight detector
- PID (TOF measurement)
 V0 scintillators
- Trigger, centrality estimation

In this talk:

Collision system	N of events, \mathcal{L}_{int}	Trigger
pp at \sqrt{s} = 7 TeV	~ 370 M (ℒ _{int} ~ 6 nb⁻¹)	min. bias
pp at √s = 13 TeV	~ 440 M (ℒ _{int} ~ 7.8 nb ⁻¹) ~ 80 M (ℒ _{int} ~ 2.7 pb ⁻¹) ~ 150 M (ℒ _{int} ~ 2.7 nb ⁻¹)	min. bias high mult. (0-0.05% V0M) min. bias (low B-field)
Pb-Pb at $\sqrt{s_{NN}}$ = 2.76 TeV	~ 20 M (ℒ _{int} ~ 23 μb⁻¹)	0-10% centrality

LMee in ALICE | I. Vorobyev | ICHEP 2018 | Seoul 3

pp collisions at $\sqrt{s} = 7$ TeV

pp \sqrt{s} = 7 TeV: invariant mass spectrum

Cocktail of known hadronic sources:

- Resonance and Dalitz decays of lightflavour hadrons
 - measured π^{\pm} (for π^{0}), η , ϕ and J/ ψ [1-4] $m_{\rm T}$ scaling for η'
 - ω/π^{\pm} and ρ/π^{\pm} from PYTHIA 8 (describes well pp data at $\sqrt{s} = 2.76$ and 7 TeV)
- Correlated HF semi-leptonic decays
 - shape from PYTHIA 6 scaled to measured cross sections [5, 6]

 $(\sigma_{cc} = 7.44 \pm 0.60 \text{ mb}, \sigma_{bb} = 288 \pm 48 \text{ }\mu\text{b})$

• Detector acceptance ($p_{T,e} > 0.2 \text{ GeV/c}$, $|\eta_e| < 0.8$) and resolution effects

Analysis is performed as a function of m_{ee} , $p_{T,ee}$ and pair impact parameter DCA_{ee}

[1] ALICE Collaboration, Phys. Lett. B 717 (162) 2012 [2] ALICE Collaboration, Eur. Phys. J. C. 72 (2183) 2012 [3] ALICE Collaboration, Phys. Lett. B 704 (442) 2011 [4] ALICE Collaboration, Phys. Lett. B 718 (692) 2012 [5] ALICE Collaboration, Eur. Phys. J. C77 (2017) 550 ALICE Collaboration, Eur. Phys. J. C71 (2011) 1645 [6]

Data in agreement with cocktail

calculations within uncertainties

Heavy-flavour cross sections in pp \sqrt{s} = 7 TeV

Correlated HF decays dominate the intermediate mass region ($1.1 < m_{ee} < 2.7 \text{ GeV}/c^2$)

- Leave the normalisation free for cc and bb contributions
- Fit the dielectron spectra in 2D (mee vs p_{T,ee}) or vs DCA_{ee} with MC templates and extract σ_{cc} and σ_{bb}

Heavy-flavour cross sections in pp \sqrt{s} = 7 TeV

Results agree between two methods

• Sensitive to predicted acceptance and $m_{ee}/p_{T,ee}$ spectra ($m_{ee}/p_{T,ee}$ fit)

In good agreement with previous independent measurements of single HF hadrons

arXiv:1805.04391 (submitted to JHEP)

Heavy-flavour cross sections in pp \sqrt{s} = 7 TeV

Results agree between two methods

• Sensitive to predicted acceptance and $m_{ee}/p_{T,ee}$ spectra ($m_{ee}/p_{T,ee}$ fit) In good agreement with previous independent measurements of single HF hadrons Model dependence: implementation of heavy-quark production mechanism

- PYTHIA 6: leading order with parton shower
- POWHEG: NLO, PYTHIA 6 for parton shower

arXiv:1805.04391 (submitted to JHEP)

7

pp collisions at $\sqrt{s} = 13$ TeV

Cocktail of known hadronic sources similar to 7 TeV data analysis

- π^{\pm} from data, PYTHIA 8 for ρ/π and ω/π , m_{T} scaling for η' and ϕ
- PYTHIA 6 for correlated HF semi-leptonic decays

Good description of data with hadronic cocktail expectations

• e^+e^- production in min. bias pp collisions is well understood for $p_{T,e} > 0.2 \text{ GeV}/c$

ALICE

pp \sqrt{s} = 13 TeV: heavy-flavour cross sections

Fit the dielectron spectra in 2D (m_{ee} vs $p_{T,ee}$) in intermediate mass region

• Similar model dependence is observed as for results in pp at \sqrt{s} = 7 TeV

arXiv:1805.04407 (submitted to PLB)

Ratio of dielectron spectra in HM over INEL events

New phenomena in high-multiplicity events? Idea: produce a ratio of dielectron spectra

Cocktail calculations take into account expected modifications:

- Hardening of h[±] p_T spectrum [1], same mult. scaling for LF hadrons at the same m_T
- D and J/ ψ production vs mult. [2,3], same enhancement for beauty as for open charm

[1] ALICE Collaboration, Phys. Lett. B 753, 319 (2016)
 [2] ALICE Collaboration, JHEP 09, 148 (2015)
 [3] ALICE Collaboration, Phys. Lett. B 712 (2012) 165

 $\frac{N_{\rm ee}({\rm HM})}{\langle N_{\rm ee}({\rm INEL}) \rangle} \times \frac{\langle dN_{\rm ch}/d\eta({\rm INEL}) \rangle}{dN_{\rm ch}/d\eta({\rm HM})}$

Ratio of dielectron spectra in HM over INEL events

New phenomena in high-multiplicity events?

Idea: produce a ratio of dielectron spectra

Cocktail calculations take into account expected modifications:

- Hardening of h[±] p_T spectrum [1], same mult. scaling for LF hadrons at the same m_T
- D and J/ ψ production vs mult. [2,3], same enhancement for beauty as for open charm

Good agreement with cocktail expectations over whole measured range arXiv:1805.04407 (submitted to PLB)

 $dN_{ch}/d\eta(HM)$

N_{ee}(HM)

⟨*N*ee(INEL)⟩

Ratio of dielectron spectra in HM over INEL events

New phenomena in high-multiplicity events?

Idea: produce a ratio of dielectron spectra

Cocktail calculations take into account expected modifications:

- Hardening of $h^{\pm} p_{T}$ spectrum [1], same mult. scaling for LF hadrons at the same m_{T}
- D and J/ ψ production vs mult. [2,3], same enhancement for beauty as for open charm

Good agreement with cocktail expectations over whole measured range arXiv:1805.04407 (submitted to PLB)

⟨d*N*ch/d*η*(INEL)⟩

 $dN_{ch}/d\eta(HM)$

N_{ee}(HM)

⟨*N*ee(INEL)⟩

Virtual direct photons

Any source of real photons can also produce virtual photons ($\rightarrow e^+e^-$ pair)

- Small internal conversion probability O (10⁻²), cross section decreases as $\sim 1/m_{ee}$
- Additional dimension: invariant mass \rightarrow can suppress hadronic background by going to $m_{\rm ee}$ > $m_{\pi 0}$

Fit dielecton mass spectrum above π^0 mass with:

$$f(m_{ee}) = r \cdot f_{dir}(m_{ee}) + (1 - r)f_{LF}(m_{ee}) + f_{HF}(m_{ee})$$

- f_{dir} and f_{LF} are normalised to data at $m_{ee} = 0$
- $r = (virtual) direct \gamma / inclusive \gamma (at <math>m_{ee} = 0)$
- γ^*_{dir} from Kroll-Wada (m_{ee} << p_T), ~1/ m_{ee}

Virtual direct photons: results in pp collisions

No significant direct photon contribution is observed

- Results in inelastic events are consistent with pQCD NLO calculations [1]
- Upper limits at 90% C.L. are extracted with the Feldman-Cousins method [2]

Extend the measurements of direct photons in pp collisions at different energies [3]

- [1] L. E. Gordon and W. Vogelsang, Phys. Rev. D 48, 3136 (1993)
- [2] G. Feldman and R. Cousins, Phys. Rev. D 57, 3873 (1998)
- [3] ALICE Collaboration, arXiv:1803.09857

A Large Ion Collider Experiment

Central Pb-Pb collisions at $\sqrt{s_{NN}}$ = 2.76 TeV

Central Pb-Pb collisions at $\sqrt{s_{NN}}$ = 2.76 TeV

Light-flavour cocktail sources:

- Measured π^0 spectrum, η/π and K^{\pm}\!/\pi^{\pm} ratios for η [1-3]
- *m*[⊤] scaling for other hadrons Heavy-flavour cocktail:
- PYTHIA calculations for pp at 2.76 TeV scaled with N_{coll} from MC Glauber (no medium and shadowing effects)

Data compatible with cocktail within uncertainties

- Statistically limited sensitivity of current dielectron measurement
- Data/cocktail (excluding vacuum ρ^0) in 0.15 < m_{ee} < 0.7 GeV/ c^2 :

 $R = 1.38 \pm 0.28$ (stat.) ± 0.08 (syst.) ± 0.27 (cocktail)

[1] ALICE Collaboration, Eur. Phys. J. C74, 10, 3108 (2014)

- [2] ALICE Collaboration, Phys. Lett. B717, 162 (2012)
- [3] ALICE Collaboration, Phys. Lett. B736, 196 (2014)

Central Pb-Pb collisions at $\sqrt{s_{NN}}$ = 2.76 TeV

Light-flavour cocktail sources:

- Measured π^0 spectrum, η/π and K^{\pm}\!/\pi^{\pm} ratios for η [1-3]
- *m*[⊤] scaling for other hadrons Heavy-flavour cocktail:
- PYTHIA calculations for pp at 2.76 TeV scaled with N_{coll} from MC Glauber (no medium and shadowing effects)
- Alternative method: complete randomisation of initial angular correlations of cc pairs (extreme case of medium effects)

Data compatible with cocktail within uncertainties

- Statistically limited sensitivity of current dielectron measurement
- Data/cocktail (excluding vacuum ρ^0) in 0.15 < m_{ee} < 0.7 GeV/ c^2 :

 $R = 1.38 \pm 0.28$ (stat.) ± 0.08 (syst.) ± 0.27 (cocktail)

• Intermediate mass range compatible with both approaches for HF cocktail

[1] ALICE Collaboration, Eur. Phys. J. C74, 10, 3108 (2014)

- [2] ALICE Collaboration, Phys. Lett. B717, 162 (2012)
- [3] ALICE Collaboration, Phys. Lett. B736, 196 (2014)

Thermal dielectrons and direct photons

Data compared to hadronic cocktail + thermal dielectrons from two models:

- Expanding fireball model [Adv. HEP 2013 (2013) 148253, PRC 63 (2001) 054907]
- Parton-Hadron-String Dynamics transport approach [arXiv:1803.02698]

arXiv:1807.00923 (submitted to PRC)

Vew

ALICE

Thermal dielectrons and direct photons

Data compared to hadronic cocktail + thermal dielectrons from two models:

- Expanding fireball model [Adv. HEP 2013 (2013) 148253, PRC 63 (2001) 054907]
- Parton-Hadron-String Dynamics transport approach [arXiv:1803.02698]

Virtual direct photon results in agreement with real direct photon measurements

LMee in ALICE | I. Vorobyev | ICHEP 2018 | Seoul 16

Vew

ALICE

Summary and outlook

pp collisions

- Results are described with cocktail calculations of known hadronic sources
- Measurement of heavy-flavour production cross-sections and direct photons
- First low-mass dielectron analysis of high-multiplicity events

Pb-Pb collisions

- Challenging analysis, limited sensitivity for detailed studies
- Results compatible with hadronic cocktail within uncertainties, room for additional contributions
- Plan to collect ~100x more central Pb-Pb events in Run 3 after detector upgrade: precise studies, access to T_{init}

First results from Run 1 and Run 2 data are submitted for publication

More Run 2 results are on their way (p-Pb and Pb-Pb at $\sqrt{s_{NN}} = 5.02$ TeV)

Back-up slides

Dielectron pair analysis

• Physics signal:

$$S = N_{+-} - B \cdot R$$

 Combinatorial background: geometric mean of like-sign pairs from same event

$$B = 2\sqrt{N_{++}} \cdot N_{--}$$

Pair acceptance correction factor (from mixed events)

$$R = \frac{N_{+-MIX}}{2\sqrt{N_{++MIX}} \cdot N_{--MIX}}$$

 Conversion rejection techniques: V0 tagging, pair orientation relative to the magnetic field

The ALICE Experiment at CERN LHC: PID

20

pp \sqrt{s} = 7 TeV: DCA_{ee} analysis

- Observable: DCA_{ee} = $\sqrt{\frac{(DCA_{xy,1}/\sigma_{xy,1})^2 + (DCA_{xy,2}/\sigma_{xy,2})^2}{2}}$
- HF decays: D mesons cr ~ 150 μm, B mesons cr ~ 470 μm
 - Daughter tracks do not point to vertex
- Vertex • Obtain DCA_{ee} templates from MC, normalise to cocktail and compare with data

Good description of data in all observed mass regions

Separation of prompt and non-prompt sources with DCA_{ee}

(non-prompt),

DCA1

e

DCA₂

ALICE

pp \sqrt{s} = 7 TeV: DCA resolution

- DCA resolution should be smaller than observable (ct of D meson ~ 150 μ m)
- Pair DCA analysis is done for $p_T > 0.4 \text{ GeV}/c$

HF production mechanisms

Idea: study different charm production processes using PYTHIA 6 simulations

- Gluon splitting (GSP) (default fraction 55%)
- Flavour excitation (FEX) (20%)
- Flavour creation (FCR) (10%)
- e⁺e[−] from bb (15%)

Fit the data in 2d (m_{ee} vs $p_{T,ee}$) allowing each fractional contribution to be between 0 and 1

Fit results:

- GSP: (0.00 ± 0.67)
- FEX: (0.68 ± 0.06)
- FCR: (0.00 ± 0.99)
- e⁺e⁻ from bb: (0.32 ± 0.06)
- Fit prefers larger FEX contribution than predicted by PYTHIA
- Poor constraint on FCR and GSP contributions: more data needed

g 20000

g 20000

FCR

pp \sqrt{s} = 13 TeV: low *B*-field studies

Run 3: major experiment upgrade (ITS, TPC), dedicated run for low-mass dielectrons with reduced magnetic field of the ALICE solenoid

- Increased charged-particle acceptance, access to $low-p_T/low-m_{ee}$ pairs
- Improved background rejection capabilities

Results from pilot runs in 2016 and 2017: data on the upper edge of the cocktail unc.

- Need more data and η measurements at very low p_T
- Will help to understand the excess of dielectrons observed by the AFS experiment [1]
- [1] Ph. D. thesis of V.Hedberg, Lund University (1987)

Cocktail calculations:

- Resonance and Dalitz decays: π[±] and J/ψ measurements, *m*_T scaling for other hadrons
- Heavy flavour contributions: cross section extrapolated from pp at 7 TeV measurements

Data consistent with cocktail within uncertainties

ALI-PREL-69715

Differential analysis in m_{ee} - p_T^{ee} :

- Sensitive to cc and bb cross sections
- Cold nuclear matter effects?

x5 more p-Pb data in Run 2: detailed studies vs m_{ee} and p_{T}^{ee} are ongoing

pp \sqrt{s} = 13 TeV: cocktail details

Cocktail of known hadronic sources:

- Resonance and Dalitz decays of lightflavour hadrons
 - h[±] at 13 TeV [1], h[±]/π[±] at 7TeV [2] for π^{\pm}
 - PYTHIA 8 (Monash 2013) for ρ/π and ω/π ratios (good description of data [3, 4])
 - $m_{\rm T}$ scaling for other hadrons (η ' and ϕ)
- Correlated HF semi-leptonic decays
 - PYTHIA 6 scaled to FONLL extrapolated cross-sections from 7 TeV [5, 6] $d\sigma_{c\bar{c}}/dy|_{y=0} = 1296^{+172}_{-162} \ \mu b$ $d\sigma_{b\bar{b}}/dy|_{y=0} = 68^{+15}_{-16} \ \mu b$
- Detector acceptance ($p_{T,e} > 0.2$ GeV/c, $|\eta^e| < 0.8$) and resolution effects

Good description of data with hadronic cocktail expectations

- e^+e^- production in min. bias pp collisions is well understood for $p_{T,e} > 0.2 \text{ GeV}/c$
- [1] ALICE Collaboration, Phys. Lett. B 753 (2016) 319
- [2] ALICE Collaboration, Eur. Phys. J. C 73 (2013) 2662
- [3] ALICE Collaboration, arXiv:1805.04365
- [4] ALICE Collaboration, ALICE-PUBLIC-2018-004
- [5] ALICE Collaboration, Eur. Phys. J. C77 (2017) 550
- [6] ALICE Collaboration, JHEP 11 (2012) 065

New phenomena in high multiplicity pp events?

- Production / destruction of ρ meson
- Thermal radiation in small systems
- Understanding of Multiple Parton Interactions

Idea: produce a ratio of dielectron spectra in high-multiplicity over inelastic events:

 $\frac{N_{\rm ee}({\rm HM})}{\langle N_{\rm ee}({\rm INEL}) \rangle} \times \frac{\langle dN_{\rm ch}/d\eta({\rm INEL}) \rangle}{dN_{\rm ch}/d\eta({\rm HM})}$

• $dN_{ch}/d\eta(HM) / \langle dN_{ch}/d\eta(INEL) \rangle = 6.27 \pm 0.22$ (measured at $\eta \sim 0$)

Input for high-multiplicity cocktail calculations:

- LF: modification of *p*_T spectrum of charged particles in events with higher multiplicities [1]
 - Assume same scaling with multiplicity for all LF hadrons at the same m_T
- HF: multiplicity dependent production of D meson [2] and inclusive J/ ψ [3] in pp at \sqrt{s} = 7 TeV
 - Same enhancement for beauty is assumed as for open charm
- [1] ALICE Collaboration, Phys. Lett. B 753, 319 (2016)
- [2] ALICE Collaboration, JHEP 09, 148 (2015)
- [3] ALICE Collaboration, Phys. Lett. B 712 (2012) 165

pp \sqrt{s} = 13 TeV: cocktail calculations vs multiplicity

Light-flavour decays:

- ALICE π[±] measurements as input, *m*_T scaling for other hadrons
- Modification of *p*_T spectrum in events with higher charged particle multiplicities ——

Heavy-flavour contribution:

- PYTHIA simulation of open charm production
- Multiplicity dependent production of D meson in pp at $\sqrt{s} = 7$ TeV —

AT.T-PUB-10251

ALICE Upgrade for Run 3 (2020-2022)

Major upgrades of main tracking systems

- Completely new 7-layer ITS detector
- New TPC GEM-based readout chambers
- Higher readout rate up to 50 kHz in PbPb (x50 compared to Run 2)

ALICE Upgrade for Run 3 (2020-2022)

- Dedicated low B field = 0.2 T to increase acceptance of low p_T & mass pairs
- Expected statistics: 2.5 x 10⁹ PbPb events in 4 weeks of PbPb data taking

Excess above 1 GeV is dominated by thermal QGP radiation

- T of early stages without blue shift
- 10% statistical and 10-20% systematic uncertainties in IMR

New developments: machine learning methods

- Electron identification: improves efficiency while keeping hadron contamination low
- Dielectron signal: suppress conversions, reduce combinatorial background
- Usage of the methods are foreseen in the dielectron analysis of pp, p-Pb and Pb-Pb Run 2 data

